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Abstract 
The use of conceptual neighbourhood diagrams 
(CNDs) is now fairly well established in AI li terature. 
In AI applications, and in particular Qualitative 
Spatial Reasoning (QSR), the nodes of CNDs are 
typically populated by individual relations defined on 
regions or intervals, and the edges connecting 
adjacent nodes as continuous transformations 
between them. While CNDs have been used to 
measure the similarity between relations and their 
relata, region-identity is often assumed rather than 
explicitly determined by the representational theory 
used.  In this paper we explore QSR theories and 
relation-based measures of similarity for region-
identity in a dynamic setting.  Ambiguity in potential 
identity mappings arising from using a weak 
quali tative similarity measure is reduced by 
combining conceptually related but distinct QSR 
theories, each supporting a CND. Results from a 
simulation program that implements the theory are 
discussed. 

1  Introduction 
Tracking of objects over time, is central to many machine 
vision applications. For example, this may be realised in the 
case of a robot identifying and then moving towards an 
object, or following it, or where we need to make sense of a 
sequence of interpreted images with the task of extracting an 
explanatory narrative. Either way, to do this we will require 
a sufficiently robust theory of the continuity of object 
identity that enables us to map objects to regions or clusters 
of spatial relationships or features extracted from a sequence 
of images. This needs to be suff iciently robust in order to 
make plausible matches in the presence of, for example, 
occlusion events, and changes of position or pose. One 
approach to this problem is to factor out a set of feature-rich 
properties predicated on individual bodies. Such properties 
might include low-level information about colour, texture 
and motion. Alternatively one might use high-level 

descriptions capturing spatial relation information between 
bodies (or at least their images). The former approach has 
been widely investigated; the latter is considered from both 
theoretical and practical standpoints here. 

This paper reports on preliminary work where several 
relational-based Qualitative Spatial Reasoning (QSR) 
theories, each supporting a Conceptual Neighbourhood 
Diagram (CND), are used to determine the identity of 
tracked regions over time.  

Our starting point is a sequence of temporally indexed 
images.  Each image is assumed to be segmented into a set 
of unique named regions with spatial relations defined on 
the regions. Assuming relational informational only, our 
task is then to cross-correlate the regions in each image in 
terms of a ‘best-fit’ match so that the identity of the regions 
track through the sequence of images.  

This task of reliably tracking symbolic objects over time 
is central to many AI applications and is made manifest in 
the well -known symbol grounding and anchoring problem. 
The main difference applied here is restricting the ontology 
to spatial relational information extracted from the domain. 
This stands in direct contrast to the more usual method of 
defining monadic region-identity properties on regions, and 
using these for recognition and tracking. The interest in 
relational information also forms part of a general 
investigation into the practical application of QSR 
formalisms for reasoning about real-world domains using 
robots supplied with vision sensors. See, for example, 
[Randell et al, 2001]. 

 The util ity and application CNDs is now fairly well 
established in AI literature and research. In their most 
abstract form, CNDs can be thought of as digraphs or as 
non-deterministic finite state automata, each with a set of 
nodes connected by paths representing transition functions. 
In AI applications, however, their role and interpretation has 
largely been for representing and reasoning about qualitative 
meta-level properties of theory fragments of space and time, 
with the nodes mapping to a set of relations and the paths 
connecting pairs of nodes to continuous transformations 
between them. Typically, the set of relations used to 



populate the nodes of CNDs are defined to be Jointly 
Exhaustive and Pairwise Disjoint (JEPD), meaning that in 
any model used, at least one and at most one relation from 
the set is satisfiable [Cohn, 1997]. 

CNDs share many properties with (and in fact were 
predated by the use of) Aspect Graphs (AGs) [Koenderink 
and Van Doorn, 1979], which have proved popular in 
model-based vision research [e.g. Dickinson and Metaxsis, 
1997; Herbin, 1998]. In contrast with CNDs the nodes of 
AGs represent individual prototypical aspects or viewpoints 
of a particular object type rather than relations between pairs 
of individuals, and the paths the direct transitions between 
them. Aspect Graphs have, for example, been used for 
object recognition and for encoding the similarity between 
views against stored prototypes [Cyr and Kimia, 2001]. 
Within QSR proper, CNDs have been successfully used in 
for encoding continuity in qualitative simulation programs 
[Cui, et al 1992], for encoding vagueness of the extent of 
regions [Lehmann and Cohn, 1994], and for querying spatial 
databases extracting models similar to the target one 
[Papadias and Delis, 1997]. However, most of these 
applications presuppose that the identity between compared 
relata is assumed, rather than supplied by the underlying 
theory.  

The rest of this paper is structured as follows.  In section 
2 conceptual neighbourhood diagrams are discussed. In 
section 3 the CND structure is used to define several 
similarity distance functions mapping between individual 
relations and their relata, and between sets of these as a 
measure of the similarity between models.  The distance 
functions are applied to several conceptually related but 
distinct spatial theories, and then combined to reduce 
ambiguity where model-isomorphism yields more than one 
potential identity assignment across models.  Section 4 
describes a simulation program that implements the theory. 
Section 5 presents some preliminary results using the 
program implementing the algorithm described in section 4, 
leading to a discussion of further work and conclusions 
drawn in section 6. 

2 Conceptual neighbourhood diagrams 
The term conceptual neighbourhood originates with 
Freksa’s [Freksa, 1992a,b] analysis of the 13 interval 
relations defined by Allen’s [Allen, 1981, 1983] temporal 
logic. Entries in cells of the logic’s 13x13 composition 
table, were shown to exhibit clustering, forming a path 
connected subset when interpreted as nodes of a graph.  
These graphs were originally called “ transition graphs” but 
are now known as conceptual neighbourhood diagrams 
(figure 1). 
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Figure 1: CND and composition table for RCC8. 

 
Conceptual neighbourhood diagrams as used in QSR are 

constructed in one of two common ways, either (i) from an 
axiomatic or logical theory that supplies the JEPD set of 
logical relations, or (ii ) from descriptions assuming an 
algebraic model. Either way the CND’s structure is 
generally stipulated, rather than derived from some 
underlying theory.  For the purpose of this paper we wil l 
assume these CNDs are buil t from the former base, however 
this does not mean many of the properties discussed below 
fail to track through to other representational formalisms 
used.   

With respect to the transformation functions used (and 
notion of continuity assumed) this depends on the nature of 
the domain and the interpretation of the axiomatised 
primitives. Many CNDs used in QSR model topological 
change but CNDs are by no means restricted to this, e.g. one 
can model continuity in terms of metrical or geometrical 
change too. For the purposes of this paper however, we shall 
il lustrate the method using the well known spatial logic 
RCC8 and a spatial analogue of Allen’s interval logic of 
time, reducing the standard set of 13 relations to 3. 



2.1  CNDs and Envisionment axioms 
In the case of RCC8 the structure of the CND is provided by 
a stipulated set of envisionment axioms [see e.g. Cui et al, 
1992]. The stipulation is necessary since the axiomatised 
primitive connects relation C/2 has a spatial interpretation 
only; it does not encode a theory of time, nor of change, nor 
of continuity over time, which will be required here. These 
axioms typically assume the regions in the projected state 
are non-null, i.e. they do not pass out of existence, as would 
be the case where two overlapping regions (with a non-
empty product) separate; though as we will see below this 
restriction can be lifted. 

3  Similarity and CNDs 
Similarity is typically defined in terms of some metric that 
measures the closeness between specified elements, groups 
or variables of some model.  In our case however we wish to 
compare and measure the distance between sets of spatial 
regions with respect to some background theory. 

Let x1,…,xn be spatial region variables, and X1,…,Xn be 
sets of ground spatial relations defined on these. We 
additionally assume a set of related background 
theories:Φ1,…,Φn each of which has a set of JEPD relations 
(JEPDΦ), and an associated CND (CNDΦ). 

We first define the distance function: dminΦ(R1(x1,...xn) 
,R2(x1',...,xn')), that maps R1  and R2  to two CNDΦ nodes and 
maps this to the minimum CNDΦ (node to node) distance: 
 

dminΦ(R1(x1,...xn) ,R2(x1',...,xn')) = n; n≥ 0 
where:  
R1(x1,...xn)∈JEPDΦ 
R2(x1',...,xn')∈JEPDΦ 

for every mapping: x1→x1',...,xn→xn' 
 

Clearly, dminΦ(x,x)=0, and dminΦ(x,y)>0 iff x≠y.  From this 
we can see that each CND can now be presented as a 
similarity matrix that maps pairs of CNDΦ nodes to the 
minimal CND node-node path distance between them: 
 
dminΦ R1(x1′,…,xn′) R2(x1′,…,xn′) … Rn(x1′,…,xn′) 
R1(x1,…,xn) 0 n1 … nn 
R2(x1,…,xn) n1 0 … … 
… … … 0 … 
Rn(x1,…,xn) nn … … 0 

Table 1: Similarity matrix for CNDΦ 

 
Similarly, we define the function: DminΦ(X1,X2) that 

takes two sets of spatial relations X1 and X2 and returns the 
minimal CNDΦ  distance between the sets. 
 

DminΦ(X1,X2) = 

∑
i

dminΦ(R1(x1,...xn) ,R2(x1',...,xn')) = i; i≥ 0 

where:  

R1(x1,...xn)∈ X1  
R2(x1',...,xn')∈ X2 

for every mapping: x1→x1',...,xn→xn' 
 

For example, assuming the spatial logic RCC8 with its 
similarity matrix: 
 
dminRCC8 DC EC PO TPP TPPI EQ NTPP NTPPI 
DC 0 1 2 3 3 3 4 4 
EC 1 0 1 2 2 2 3 3 
PO 2 1 0 1 1 1 2 2 
TPP 3 2 1 0 2 1 1 2 
TPPI 3 2 1 2 0 1 2 1 
EQ 3 2 1 1 1 0 1 1 
NTPP 4 3 2 1 2 1 0 2 
NTPPI 4 3 2 2 1 1 2 0 

Table 2: Similarity matrix for CNDRCC8 

 
Then, for example: 

X1= {dc(a,b),dc(b,a)},  
X2={ntpp(a',b'),ntppi(b’ ,a’ )} 

DminRCC8(X1, X2)=8 
where: {a→a’ ,b→b’ } 

and: 
X3={dc(a,b),po(b,c),dc(a,c), 
 dc(b,a),po(c,b),dc(b,a)} 
X4={ec(a',b'),ntpp(b',c'),dc(a',c'), 
 ec(b’ ,a’ ),ntppi(c’ ,b’) ,dc(c’ ,a’) } 

DminRCC8 (X3, X4)=6, 
where: {{a→a',b→b',c→c'},…} 

 
The ellipsis {{ x1→x1',...,xn→xn'},…} indicated here shows 
that more than one set of mappings can satisfy some 
minimal CND distance. 

Finally, we define two other functions: DminΦ
x→x’(X1,X2) 

and n(DminΦ
x→x’(X1,X2)) that respectively maps the 

minimised distance between sets to the set of assignments, 
and the number of these: 

 

DminΦ
x→x’(X1,X2) = �

'xx→

DminΦ(X1,X2) 

 where:  
 R1(x1,...xn)∈ X1  
 R2(x1',...,xn')∈ X2 

 for every mapping: x1→x1',...,xn→xn' 
 

By applying the function DminΦ to the set of models being 
compared, we can define an ordering on the similarity 
measures returned for all possible mappings. In some cases 
a single model is returned, in other cases several models are 
generated.  If several distinct models are returned we say the 
similarity measure used is ambiguous.  This means that the 
theory encoded in CNDΦ is underdetermined with respect to 
the models being compared.  If a single correspondence is 
sought, then either a richer representation, or a different 



CND (and set of primitives) for the basis of our metric must 
be used.  This is discussed in section 3.2 below. 

3.1  Similarity and continuity 
Each CNDΦ encodes a notion of continuity between its path-
connected nodes; and this concept is ultimately reducible in 
terms of theory Φ’ s axiomatised primitives. Thus for 
example, CNDRCC8 interprets continuity in terms of 
instantaneous topological change between states (as sets of 
relations); each state of which is reducible to the 
axiomatised primitive relation C/2 defined on regions. It is 
therefore important to emphasise here that the distance 
functions used here, precisely encode this notion of 
similarity, and no more. The measure of similarity between 
models given by DminΦ is none other than setting out the 
minimal number of transitions required, in order to achieve 
model isomorphism.  This approach mirrors that already 
done for Aspect Graphs where the similarity between views 
to 2D shape metrics have been used to rate the similarity 
between unknown views of an object and stored prototypes 
[Cyr and Kimia, 2001]. Here, and in contrast, the logical 
aspect of the underlying theory and its primitives are 
factored out. 

Two aspects of similarity are recognised here: (i) 
relational (or structural) similarity which concerns itself 
how various objects are connected but without regard to 
their shape and size; and (ii) metric similarity which is 
concerned with the similarity between corresponding 
objects themselves.  We concentrate upon the former notion 
here, noting that the approach can be easily augmented with 
the latter.  This is discussed briefly in section 5. 

3.2  Isomorphism, ambiguity and granularity 
We conjecture that QSR theories for which a distance 

function dminΦ can be set up may well be too weak for 
many applications. RCC8, for example, is quite a 
rudimentary measure of similarity. It is not even a metric 
since non-identical pairs of regions can have distance 0 - 
they just need to instantiate the same RCC relation. Thus 
two models that are RCC8-isomorphic wil l have distance 0, 
even though from a geometrical point of view, they look 
very different – see Figure 2. 
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Figure 2: Geometrically dissimilar RCC8-isomorphic 
models.  The two sets of regions: {a,b,c,d} and {a’ ,b’ ,c’ ,d’ } 
satisfy identical RCC8 relations assuming the mappings 
{ a→a' ,...,d→d' } 
 

However, this failure to distinguish between models, where 
such distinctions are sought, highlights a modelling 
problem. This problem ultimately stems from the primitives 
selected rather than from the measurement of similarity 
between models being proposed here. Indeed, for some 
applications this weak isomorphism may well be 
advantageous. Even assuming a weak target theory, the 
generali ty and modularity of the approach lends itself well 
to different techniques where this can be addressed. 

Firstly, we can suitably enrich our chosen 
representational formalism (and thereby reduce, for 
example, geometric ambiguity) by coupling together and 
applying several theory related CNDs. This can be done 
either by extending a given theory, or by joining together 
two theories via a specified set of axioms that map between 
both theories. An example of the latter is the viewpoint 
dependent spatial logic ROC20 (defined on bodies) that 
factors out and embeds the weaker spatial logic RCC8 
(defined on images). Here, for example, ambiguity 
stemming from the RCC8 overlap relation when applied to 
the interpretation of images (as the geometric projection of 
bodies from some viewpoint) is strengthened by the use of 
stronger occlusion relation [Galton, 1994; Randell et al, 
2001]. We give an example of this reduction of ambiguity in 
section 3.3 below, where a simplified spatial theory based 
on the left/right ordering of spatial regions is used to 
complement the assumed RCC8 relations used in our model. 

Secondly, another common QSR technique can be used 
that that maps a predefined n×m granularity matrix (or grid) 
to the extra-logical domain model. Relational properties of 
cell-cell adjacency of individual elements as well as 
properties of the cells themselves are then additionally taken 
into account, as when a cell is either empty, partially 
occupied or, completely occupied by some region in the 
domain model. 

3.3  Reducing ambiguity by composing CNDs 
Consider the two models depicted in Figure 3 immediately 
below.  X1 maps to a set of ground spatial relations defined 
on the set of regions {a,b,c} and similarly with X2  mapping 
to the set of regions {a’ ,b’ ,c’ }. The individual regions are 
uniquely labelled, and the spatial relations on the regions 
can now be determined. As given no identity map is made 
between paired regions across models, the models remain 
uncorrelated. 

 
 

Figure 3: Uncorrelated models. 
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As an example, let us now assume we have a simple theory 
Left that gives relative left/right orientation information; of 
whether a region is either wholly to the left or right of 
another, and where in neither case we say the regions 
overlap with respect to their left-right most extents. We 
assume that the embedding space has a predefined left/right 
axis that is fixed with respect to some assumed viewpoint, 
as in the typical orientation of this page assumed by the 
reader when reading this text.  

The axioms and definitions of Left/2 are as follows: 
 
(A1)∀x ¬Left(x,x) 
(A2)∀x∀y∀z [[Left(x,y) & Left(y,z)] → Left(x,z)]] 
(A3) ∀x∀y[Left(x,y) → ∀z[P(z,x) → Left(z,y)]] 
(D1) Right(x,y) ≡df. Left(y,x) 
(D2) Overlaps(x,y) ≡df. ¬Left(x,y) & ¬Left(y,x) 
 
Axioms (A1) and (A2) define the primitive relation Left/3 as 
irreflexive and transitive (and hence asymmetrical) while 
(A3) maps Left/2 to the part-whole relation P/2 of the spatial 
logic RCC8, i.e. if x is left of y, then any part of x is also left 
of y1. (D1) and (D2) provide definitions for when x is to the 
right (and the inverse of being to the left) of y, and where, 
with overlap, neither x, nor y is wholly left or right of the 
other. A casual inspection of the axioms and definitions will 
show that the set: {Left(x,y),Overlaps(x,y),Right(x,y)} is  
JEPD; and given this property, we assign these relations to a 
CNDLeft  similarity matrix: 
 

DminLeft Left Overlaps Right 

Left 0 1 2 
Overlaps 1 0 1 
Right 2 1 0 

 
Table 2: Similarity matrix for CNDleft 

 

We now stipulate the following sets of relations depicted in 
the models depicted in Figure 3, then compute product set of 
the minimal CNDLeft distance between matched pairs of 
regions: 
 
X1= {Left(a,b),Left(b,c),Left(a,c), 
 Right(b,a),Right(c,b),Right(c,a)} 
X2 = {Right(a’ ,b’ ),Overlaps(b’ ,c’) ,Overlaps(a’ ,c’ ), 
 Left(b’ ,a’) ,Overlaps(c’ ,b’ ),Overlaps(c’ ,a’) } 
 
(a,b,c) L 

(a,b) 
L 
(b,c) 

L 
(a,c) 

R 
(b,a) 

R 
(c,b) 

R 
(c,a) 

n 

                                                           
1 This is a very strong notion of being left of and is used 
here for simplicity only. We could have equally used a 
weaker more expressive version of this predicate, where x 
being left of y means some part of x is left of y, thus 
allowing for overlapping regions – see [Randell et al, 2001] 
for an example of this. 
 

(a' ,b’ ,c’) R 
(a’ ,b’ ) 

O 
(b’ ,c’ ) 

O 
(a’ ,c’ ) 

L 
(b’ ,a) 

O 
(c’ ,b’ ) 

O 
(c’ ,a’ ) 

8 

(a’ ,c’ ,b’ ) R 
(a’ ,c’ ) 

O 
(c’ ,b’ ) 

O 
(a’ ,b’ ) 

L 
(c’ ,a’ ) 

O 
(c’ ,b’ ) 

O 
(b’ ,a’ ) 

8 

(b’ ,a’ ,c’ ) R 
(b’ ,a’ ) 

O 
(a’ ,c’ ) 

O 
(b’ ,c’ ) 

L 
(a’ ,b’ ) 

O 
(c’ ,a’ ) 

O 
(c’ ,b’ ) 

4 

(b’ ,c’ ,a’ ) R 
(b’ ,c’ ) 

O 
(c’ ,a’ ) 

O 
(b’ ,a’ ) 

L 
(c’ ,b’ ) 

O 
(a’ ,c’ ) 

O 
(a’ ,b’ ) 

8 

(c’ ,a’ ,b’ ) R 
(c’ ,a’ ) 

O 
(a’ ,b’ ) 

O 
(c’ ,b’ ) 

L 
(a’ ,c’ ) 

O 
(b’ ,a’ ) 

O 
(c’ ,b’ ) 

4 

(c’ ,b’ ,a’ ) R 
(c’ ,b’ ) 

O 
(b’ ,a’ ) 

O 
(c’ ,a’ ) 

L 
(b’ ,c’ ) 

O 
(a’ ,b’ ) 

O 
(a’ ,c’ ) 

4 

 
Table 3:  CND similarity measures for Left assuming the 
model depicted in Figure 3. Note the shorthand L for Left, 
etc.  
 
The top (header) row of Table 3 gives the set of relations for 
X1 and the cell entries immediately below for X2. The 
leftmost column gives the permutation for the set {a' ,b' ,c'} . 
The second row shows the assignment: (a' ,b' ,c' ): as 
Right(a' ,b' ), Overlaps(b' ,c' ), Overlaps(a' ,c' ),…, for which 
n(DminLeft(Xi,Xj))=8, and where:  
 
Xi= {Left(a,b),Left(b,c),Left(a,c), 
 Right(b,a),Right(c,b),Right(c,a)} 
Xj={Right(a’ ,b’ ),Overlaps(b’ ,c’) ,Overlaps(a’ ,c’) , 
 Left(b’ ,a’ ),Overlaps(c’ ,b’) ,Overlaps(c’ ,a’) } 
 
We can immediately see that: n(DminLeft

x→x’(X1,X2))=3; 
meaning three assignments have Left-isomorphic models 
and thus indistinguishable with respect to this reduced 
theory. In order to disambiguate the models, we may note 
that the explicit modelling of connectivity between the 
regions themselves which is captured by the logic RCC8 is 
missing.  So we apply the RCC8 relation set to our model, 
and then compute our CND measures as before: 
 
X1= {Left(a,b),Left(b,c),Left(a,c), 

EC(a,b),EC(b,c),DC(a,c)} 
X2 = {Right(a’ ,b’ ),Overlaps(b’ ,c’) ,Overlaps(a’ ,c’ ), 

DC(a’ ,b’ ),TPP(b’ ,c’ ),NTPP(a’ ,c’ )} 
 

(a,b,c) EC 
(a,b) 

EC 
(b,c) 

DC 
(a,c) 

EC 
(b,a) 

EC 
(c,b) 

DC 
(c,a) 

n 

(a’ ,b’ ,c’ ) DC 
(a’ ,b’ ) 

TPP 
(b’ ,c’ ) 

NTPP 
(a’ ,c’ ) 

DC 
(b’ ,a’ ) 

TPPi 
(c’ ,b’ ) 

NTPPi 
(c’ ,a’ ) 

14 

(a’ ,c’ ,b’ ) DC 
(a’ ,c’ ) 

TPP 
(c’ ,b’ ) 

NTPP 
(a’ ,b’ ) 

DC 
(c’ ,a’ ) 

TPPi 
(b’ ,c’ ) 

NTPPi 
(b’ ,a’ ) 

10 

(b’ ,a’ ,c’ ) DC 
(b’ ,a’ ) 

TPP 
(a’ ,c’ ) 

NTPP 
(b’ ,c’ ) 

DC 
(a’ ,b’ ) 

TPPi 
(c’ ,a’ ) 

NTPPi 
(c’ ,b’ ) 

14 

(b’ ,c’ ,a’ ) DC 
(b’ ,c’ ) 

TPP 
(c’ ,a’ ) 

NTPP 
(c’ ,b’ ) 

DC 
(c’ ,b’ ) 

TPPi 
(a’ ,c’ ) 

NTPPi 
(b’ ,c’ ) 

14 

(c’ ,a’ ,b’ ) DC 
(c’ ,a’ ) 

TPP 
(a’ ,b’ ) 

NTPP 
(c’ ,b’ ) 

DC 
(a’ ,c’ ) 

TPPi 
(b’ ,a’ ) 

NTPPi 
(b’ ,c’ ) 

10 

(c’ ,b’ ,a’ ) DC 
(c’ ,b’ ) 

TPP 
(b’ ,a’ ) 

NTPP 
(c’ ,a’ ) 

DC 
(b’ ,c’ ) 

TPPi 
(a’ ,b’ ) 

NTPPi 
(a’ ,c’ ) 

14 

 
Table 4:  Similarity measures for RCC8 assuming the model 
depicted in Figure 3. 

 



We first note that: n(DminRCC8
x→x’(X1,X2))=2 meaning 

that, again, two assignments yield (RCC8) isomorphic 
models. But now by combining both theories, i.e by adding 
the values for each assigment for both matrices, we see that 
the target models are now distinguished with respect to the 
two theories Left and RCC8.  The minimised value 
n(DminLeft

x→x’(X1,X2)) + n(DminRCC8
x→x’(X1,X2))=14 returns 

the singleton set {a→b',b→c' ,c→a' } corresponding to the 
assignment (c' ,a' ,b' ) and which is depicted in Figure 4 
below: 

 

c b′
c′

a′a b

 
Figure 4: Correlated models assuming the similarity 
matrices for the theories Left and RCC8.  Here similarly 
shaded regions indicate region identity with the mapping: 
{a→b',b→c',c→a'}. 
 

This example illustrates the general procedure, where 
constraints for model-isomorphism gets progressively 
stronger/weaker by the composition/reduction of 
functionally related similarity matrices. 

4 Implementation 
To support the theoretical analysis presented in this 

paper we have prepared a simulation program, implemented 
in C++ running under Windows, to investigate and evaluate 
the practical and pragmatic consequences of the issues 
raised in this paper, particularly the degree of ambiguity of 
region-identity for several distinct spatial theories.  The 
program incorporates a GUI interface. Regions are 
represented by small bitmaps, which may be loaded into 
layers and subsequently moved (by the user directly or from 
a recorded file of movements) within a restricted operating 
area. These layers represent a notional depth (z-axis) to 
allow the calculation of the spatial relations in the presence 
of overlap, as is required, for instance, for the LOS14 
relation set. At present the program is limited to nine 
distinct regions, for reasons that will become apparent later. 

Whenever any of the n regions move, the program 
recalculates the RCC8, LOS14, Left/Right and Above/Below 
relation sets and displays these in separate sub-windows. 
The Left/Right and Above/Below relations used are direct 
analogues of the temporal relations described by [Allen, 
1994]. After computation, each relation set is presented as 
an nxn matrix of results in a sub-window. An example (for 
LOS14) is shown in figure 5. Note that the presentation is 
symmetric about the diagonal. The program also detects 
when a move results in a change of one or more relations. 
Not all regions movements cause any of the relations to 
change, and some will cause change to several relations 
simultaneously. This alone represents a useful tool for 

demonstrating the generation of different types of spatial 
relation.  

 

 
Figure 5: Sample LOS14 relations matrix 

 
Note that these are discrete representations of continuous 

descriptions. Adjacency (as, for instance, in the RCC8 
relations EC or TTP) is defined in terms of 8-connectivity 
between neighbouring pixels. Notions of discontinuity, 
overlap and containment follow from this. There are 
important issues relating to the use of such digitised regions, 
however the intended interpretation is clear here (refer to 
[Galton, 1999] or [Roy and Stell, 2002] for a more detailed 
discussion). 

The-top level outline algorithm, implementing the 
process described in section 3.3, is as follows: 

 
For any change of any relation, in any theory, between 
any pair of regions: 
(i) for every pair of regions, record (and display) the 
appropriate JEPDΦ  relation (Φ = RCC8, LOS14, 
Left/Right, Above/Below), and compute the similarity 
measures as follows: 

{ 
ii) Generate the departure set vector, ignoring 
duplication through argument order.  
(iii) Initialise distance sums and counters. 
 
iv) For each permutation of the ordered tuples of the 
relations: 

{ 
(v) For each theory Φ: 

{ 
(vi) look-up and sum the individual 
distances between elements in the departure 
set vector and the previous (saved) departure 
set vector (n(dminΦ)). 
(vii)  If the new Φ distance sum is less than 
the existing Φ distance sum, record the new 
sum, reinitialise Φ counter. If equal, then 
increment the Φ counter only. 
} 

(viii) Total all individual Φ distance sums to 
form totalsum. If the new totalsum less than the 
existing, record the new and reinitialise the total 



counter. If they are equal, then increment the 
total counter only.  
}  

(ix) Save the current departure set vector. 
(x) Display (and record to file) the resulting values of 
the individual Φ distance sum and individual Φ 
counters, and the totalsum and total counter. 
}  

 
Step (i) only requires us to re-compute the similarity 

measures if some relation changes in any of the theories 
(Φ); for instance when any region moves, or changes size or 
shape, or is introduced or removed. Note that not all 
movements or changes necessarily lead to a change in any 
of the relation pairs. Step (ii ) generates the elements in the 
departure set for {r1...,rn}. This step corresponds to the 
generation of the top row of table 4. Step (iv) generates each 
element of the target set in turn. The current program uses 
Dijkstra’s algorithm for creating permutations in 
lexicographic order. This corresponds to each row in table 4. 
Steps (vi) and (vii ) and then generate a new distance 
measure between the departure set vector and the target set 
vector for each model  (n(dminΦ)). This is repeated for each 
of the (four) target theories (Step (v)).  

The result of steps (v) to (vii ) is to record the lowest 
distance sum for each of the theories (Φ distance sum), and 
the number of models giving rise to this lowest distance 
value (Φ counter). We will refer to the latter as an ambiguity 
measure (see section 5). Note than the individual distances 
between the current and previous departure set vectors are 
given within the program. The similarity matrix recording 
the relation-to-relation distances for RCC8 is given in table 
2. Those used for LOS14 are derived from the CND given in 
Galton [1994] and those for Left/Right and Above/Below 
derived from the CND presented in [Freksa, 1992a] and also 
in [Papadias and Delis, 1977]. Further, it is easy to see that 
once a set of envisionment axioms are stipulated (or a 
digraph given) similarity matrices can be automatically 
computed, and models compared. This program modularity 
mirrors the general approach described in [Randell and 
Witkowski, 2002] and used to build composition tables for 
large axiomatic theories.   

Step (vii) derives overall measures of conceptual 
distance and ambiguity across all the theories used (section 
3). Step (ix) records the current departure set vector for use 
in the next computation and step (x) displays and records 
the results for the current step. A typical set of results 
obtained is shown in section 5. 

 

4.1 A Note on Complexity and Performance 
The number of computational steps inherent in the 
algorithm described in the previous section is clearly 
directly related to the number of regions, n, under 
consideration. Taking the “payload” of this algorithm to be 

the evaluation of the theory distance and ambiguity 
measures, we can see that step (iv) introduces a permutation 
nPn or n! Step (v) introduces a repetition based on the 
number of theories, m, to be used. Step (vi) is proportional 
to the combination of the number of regions, nP

2, noting the 
use of dyadic relations. This leads to a first, rough, 
approximation of nPn x m x nP

2 steps. The initial surprise, 
perhaps, is that the complexity of the underlying theory has 
no bearing on the timings; this complexity is reduced to a 
simple look-up operations provided by the similarity matrix 
(e.g. table 2). 

Given the limiting computational overhead is 
determined by the permuted set of mappings, this quickly 
places an upper practical li mit of the number of regions that 
can be considered. In practice, we note that on a relatively 
modest desktop computer (PII I, 933MHz, Windows 98), 
and despite the relatively heavy computational load imposed 
by the algorithm, up to seven regions (846720 steps 
according to the formulation above) may be processed with 
little perceptible delay. Addition of an eight region (~9M 
steps) introduces a small , but noticeable, delay and the 
introduction of the ninth (~105M steps) causes unacceptable 
(several seconds) delay in real time whenever the similarity 
must be computed. Sequences might stil l be processed in 
“batch” mode from a recorded file of movements; but 
without substantial algorithm redesign there is little realistic 
prospect of processing 10 or more regions with this 
approach in the foreseeable future.  

Clearly we would like to maximise the number of 
regions that can be considered. Apart from minor 
improvements in code organisation, several steps might be 
considered in order to reduce the number of possible 
assignments to be made. For instance, the number of 
elements to be compared might be reduced. In the case of 
RCC8, for example, the function sum(x,y) can be recursively 
applied to pairs of regions of a finite model, to reduce the 
number of regions being compared until some specified 
upper limit is reached.  The (reduced) models are compared, 
then we then use the theory itself to constrain the properties 
of the decomposed relation sets as they are recursively 
unpacked.   For example, in the simple case where: X1= 
{ntpp(a,b),ntpp(b,c)}, X2={ntpp(x,y),ntpp(y,z)}; we can re-
work the sets as: X1'= {ntpp(sum(a,b),c)}, X2'={ntpp(x,y)}. 
We calculate DminRCC8(X1, X2)=0 where: 
{sum(a,b)→x,c→y}, decompose the region sum(a,b), then 
make the assignments. The formal correctness of this 
equivalence is provided by the RCC8 theorem:  
 

∀x∀y∀z[[NTPP(sum(x,y),z)] ↔  
 [NTPP(x,z) & NTPP(y,z)]]  

5 Example Results 
 
Figure 6 shows an example run using seven regions, and the 
associated ambiguity measures for each of the four theories 



used, RCC8, LOS14, Left/Right and Above/Below, during an 
(arbitrary) sequence of movements of the regions. The 
images above the start, central and end points indicate the 
configuration of the regions at the indicated points.  

At the start of the example each of the seven regions was 
disjoint. Each was then brought to the centre, some being 
hidden by the square region, some only overlapping. The 
central image indicates a stage just before this process was 
completed. Note that the central image also corresponds to 
the LOS14 relation matrix shown in figure 5. The regions 
were then moved away again to result in the configuration 
shown in the right hand image. The shape, size (and colour) 
of the regions have no effect on the computation performed, 
but act as a useful aid to the user; only the relations as 

indicated are considered. 
Each of the five graphs in figure 6 record the ambiguity 

measure as computed during the sequence of movements. 
The seven regions represent a possible ambiguity of 5040 
(7!) models. Note the use of logarithmic ambiguity scale.  

The overall higher ambiguity of the RCC8 and, to a 
marginally lesser extent, the LOS14 relations indicates that 
they represent a weaker description than those of the 
Left/Right and Above/Below relation sets. While all the 
regions are disconnected, the ambiguity of the RCC8 and 
LOS14 models is total (5040), as there is no possibil ity of 
resolving the ambiguity. The RCC8 and LOS14 measures 
are closely related, and LOS14 reduces ambiguity only on 
the basis of relative depth to the viewpoint, but this effect is 
significant. The Left/Right and Above/Below measures are 
very similar, as expected, and largely independent of 
overlap. They are also highly effective at managing 
ambiguity. These Allen based relations are ineffective when 
identical objects are aligned to the orthogonal of the 

measure’s axis. The total ambiguity measure indicates that, 
when taken together, this combination of similarity 
measures reduces the overall ambiguity to almost zero, note 
the single ambiguity arising at step 688. 
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Figure 6: Sample run with seven regions showing the ambiguity measure for four theories. 



6 Further work and suggested applications 
In this section we discuss a few potential QSR applications 
for this approach.  However, the technique is by no means 
restricted to this domain and can be applied to any theory 
that supports a CND, from which the CND distance is 
computed.  

Where an extra-logical model is used to interpret sets of 
defined relations, any pair of models can be compared.  This 
means we can either compare models where the identity of 
regions have been assumed and the the region labels have 
been pre-assigned (as in the case where we are comparing 
the CND distance between the sets: X1= {dc(a,b)}, 
X2={ntpp(a',b')}, assuming here:{a→a’ ,b→b’ }; or where 
the mappings themselves are not pre-assigned and are to be 
computed by minimising the CND distance itself for all 
region combinations – for example where, X2 is an open-
sentence: X1= {dc(a,b)}, X2={ntpp(x,y)}. An example of this 
latter approach might be where we are using this technique 
to complement a region-matching algorithm used in a 
machine vision application, or for GIS data mining; where 
while we assume some correspondence exists between 
regions in a set of images (or set of geographical maps), an 
open question exists exactly what that correspondence is – 
see [Papadias and Delis, 1997]. As discussed above, this 
technique may also have an application in symbol 
anchoring; except here the distance function applied to the 
CND determines the best fit between objects in a registered 
set of images instead of matching properties of individual 
features. 

One severe restriction assumed in this method, is that a 
one-to-one mapping is assumed between the sets of regions 
being compared.  In many practical situations, however, this 
restriction rarely arises, as in a machine vision application 
where objects appear to appear and disappear, or fuse 
together or separate owing to the absence of noise, or from 
changes in resolution with variations in the observer-subject 
distance. This in part stems from the envisionment axioms 
used, where in the envisionment projection regions do not 
pass to null .  However, each CND node can be augmented to 
allow for such transitions where, either a single region 
becomes null , or both do.  An example of this may be where 
products of regions are being explicitly modelled, and where 
two overlapping regions separate (so the product becomes 
null ), or separated, then overlap. 

Two simple theories, Left, RCC8 were to il lustrate the 
method. Other natural extensions include encoding 
relational concepts such as being: above/overlaps/below, or 
being smaller-than/same-size/larger-than.  For modelling 
geometrical solids, we could also consider Aspect Graphs 
themselves, define and decompose their node descriptions, 
and then model the CNDs of these features.  For example 
each aspect of a cube can be decomposed into sets of line 
junctions forming acute/right/obtuse angles that can in turn 
be represented as a CND. 
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