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Abstract

The use of conceptual neighbourhood diagrams
(CNDs) isnow fairly well established in Al literature.
In Al applications, and in particular Qualitative
Spatial Reasoning (QSR), the nodes of CNDs are
typicdly populated by individua relations defined on
regions or intervals, and the ealges conrecting
adjacent nodes as continuous transformations
between them. While CNDs have been used to
measure the similarity between relations and their
relata, region-identity is often assumed rather than
explicitly determined by the representational theory
used. In this paper we eplore QSR theories and
relationbased measures of similarity for region
identity in a dynamic setting. Ambiguity in potential
identity mappings arising from using a we&
qualitative similarity measure is reduced by
combining conceptudly related bu distinct QSR
theories, each supporting a CND. Results from a
simulation program that implements the theory are
discus=d.

1 Introduction

Tradking of objeds over time, is central to many machine
vision applicaions. For example, this may be redised in the
case of a robot identifying and then moving towards an
objed, or following it, or where we need to make sense of a
sequence of interpreted images with the task of extrading an
explanatory narrative. Either way, to dothis we will require
a sufficiently robust theory of the continuity of object
identity that enables us to map oljeds to regions or clusters
of spatial relationships or features extraded from a sequence
of images. This neads to be sufficiently robust in order to
make plausible matches in the presence of, for example,
ocdusion events, and changes of position o pose. One
approach to this problem isto fador out a set of feaure-rich
properties predicated onindividual bodes. Such properties
might include low-level information abou colour, texture
and motion. Alternatively one might use high-level

descriptions cgpturing spatial relation information between
bodies (or at least their images). The former approach has
been widely investigated; the latter is considered from both
theoreticd and pradicd standpoints here.

This paper reports on preliminary work where several
relational-based Qualitative Spatial Reeasoning (QSR)
theories, ead suppating a Conceptual Neighbourhood
Diagram (CND), are used to determine the identity of
tracked regions over time.

Our starting paint is a sequence of temporally indexed
images. Eacdh image is assumed to be segmented into a set
of unique named regions with spatial relations defined on
the regions. Asauming relational informational only, our
task is then to crosscorrelate the regions in each image in
terms of a ‘best-fit’ match so that the identity of the regions
track through the sequence of images.

This task of reliably tradking symbalic objeds over time
is central to many Al applications and is made manifest in
the well-known symbol grounding and anchoring problem.
The main dfference gplied here is restricting the ontology
to spatial relational information extracted from the domain.
This dands in dred contrast to the more usual method of
defining monadic region-identity properties on regions, and
using these for rewgnition and tracking. The interest in
relational information aso forms pat of a genera
investigation into the pradicd applicaion of QSR
formalisms for reasoning about red-world domains using
robas spplied with vision sensors. See for example,
[Randell et al, 2001].

The utility and application CNDs is now fairly well
established in Al literature and reseach. In their most
abstrad form, CNDs can be thought of as digraphs or as
non-deterministic finite state automata, ead with a set of
nodes conneded by paths representing transition functions.
In Al applications, however, their role and interpretation has
largely been for representing and reasoning about qualitative
meta-level properties of theory fragments of space ad time,
with the nodes mapping to a set of relations and the paths
conneding pairs of nodes to continuows transformations
between them. Typicdly, the set of relations used to



populate the nodes of CNDs are defined to be Jointly
Exhaustive and Pairwise Digjoint (JEPD), meaning that in
any model used, at least one and at most one relation from
the set is stisfiable [Cohn 1997].

CNDs share many properties with (and in fad were
predated by the use of) Aspect Graphs (AGs) [Koenderink
and Van Doorn, 1979], which have proved poplar in
model-based vision reseach [e.g. Dickinson and Metaxsis,
1997; Herbin, 199§. In contrast with CNDs the nodes of
AGs represent individual prototypicd aspeds or viewpoints
of aparticular objed type rather than relations between pairs
of individuals, and the paths the dired transitions between
them. Asped Graphs have, for example, been used for
objed recognition and for encoding the similarity between
views against stored prototypes [Cyr and Kimia, 2001].
Within QSR proper, CNDs have been successully used in
for encoding continuity in guelitative simulation programs
[Cui, et a 1992], for encoding vagueness of the extent of
regions [Lehmann and Cohn, 1994], and for querying spatial
databases extracting models similar to the target one
[Papadias and Delis, 1997. However, most of these
appli cations presuppase that the identity between compared
relata is asumed, rather than suppied by the underlying
theory.

The rest of this paper is structured asfollows. Insedion
2 conceptual neighbourhoad diagrams are discussd. In
sedion 3 the CND structure is used to define severa
similarity distance functions mapping between individual
relations and their relata, and between sets of these & a
measure of the similarity between models. The distance
functions are gplied to severa conceptually related but
distinct spatial theories, and then combined to reduce
ambiguity where model-isomorphism yields more than one
potential identity assgnment aadoss models. Sedion 4
describes a simulation program that implements the theory.
Sedion 5 presents me preliminary results using the
program implementing the dgorithm described in sedion 4,
leading to a discussion d further work and conclusions
drawn in sedion 6.

2 Conceptual neighbourhood diagrams

The term conceptual neighbourhood originates with
Freksa's [Freksa, 19®ab] analysis of the 13 interval
relations defined by Allen’s [Allen, 1981, 1983 temporal
logic. Entries in cdls of the logic’s 13x13 composition
table, were shown to exhibit clustering, forming a path
conneded subset when interpreted as nodes of a graph.
These graphs were originally cdled “transition graphs’ but
are now known as conceptual neighbourhood dagrams
(figure 1).
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Figure 1: CND and composition table for RCC8.

Conceptual neighbourhood dagrams as used in QSR are
constructed in one of two common ways, either (i) from an
axiomatic or logicd theory that supplies the JEPD set of
logicd relations, or (i) from descriptions assuming an
algebraic model. Either way the CND’s structure is
generaly stipulated, rather than derived from some
underlying theory. For the purpose of this paper we will
asaume these CNDs are built from the former base, however
this does not mean many of the properties discussed below
fail to trad through to other representational formalisms
used.

With resped to the transformation functions used (and
notion o continuity assumed) this depends on the nature of
the domain and the interpretation d the aiomatised
primitives. Many CNDs used in QSR model topologica
change but CNDs are by no means restricted to this, e.g. one
can model continuity in terms of metricd or geometricd
change too. For the purposes of this paper however, we shall
illustrate the method using the well known spatia logic
RCC8 and a spatial analogue of Allen’s interval logic of
time, reducing the standard set of 13 relationsto 3.



2.1 CNDsand Envisionment axioms

In the case of RCC8 the structure of the CND is provided by
a stipulated set of envisionment axioms [see e.g. Cui et al,
1992]. The stipulation is necessary since the axiomatised
primitive connects relation C/2 has a spatia interpretation
only; it does not encode a theory of time, nor of change, nor
of continuity over time, which will be required here. These
axioms typically assume the regions in the projected state
are non-null, i.e. they do not pass out of existence, as would
be the case where two overlapping regions (with a non-
empty product) separate; though as we will see below this
restriction can be lifted.

3 Similarity and CNDs

Similarity is typically defined in terms of some metric that
measures the closeness between specified elements, groups
or variables of some model. In our case however we wish to
compare and measure the distance between sets of spatial
regions with respect to some background theory.

Let xy,....%, be spatial region variables, and X,...,. X, be
sets of ground spatia relations defined on these. We
additionally assume a set of related background
theories: @,...,®, each of which has a set of JEPD relations
(JEPD¢), and an associated CND (CND ).

We first define the distance function: dming(Ru(Xy,...Xn)
JRo(X1',... %)), that maps R; and R, to two CND nodes and
maps this to the minimum CND, (node to node) distance:

dming(Ru(X,..-Xn) ;R(Xt',--- X)) = n; n=20
where:
Rl(Xl,...Xn) D\]EPDQ)
Ro(Xq',... . %n' ) JJEPD o

for every mapping: X; —X¢',....Xn — X'

Clearly, dming(x,x)=0, and dming(x,y)>0 iff xZy. From this
we can see that each CND can now be presented as a
similarity matrix that maps pairs of CND¢ hodes to the
minimal CND node-node path distance between them:

R]_(X]_,...Xn)D X]_
Ro(X1',.... X0 ) T X2
for every mapping: X; —X¢',...,Xn — Xn'

For example, assuming the spatial logic RCC8 with its
similarity matrix:
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Table 1: Similarity matrix for CND
Similarly, we define the function: Dming(Xy,X;) that

takes two sets of spatial relations X; and X, and returns the
minimal CND, distance between the sets.

Dmi nm(xl,XZ) =
z AMiNG(Ry(Xe,-..Xn) JRo(X' .o X)) = i 120

where:

1 [2
0 |1
1 [o
2 |1
2 |1
2 |1
3 |2
3 |2
Table 2: Similarity matrix for CNDgccs
Then, for example:
X;= {dc(a,b),dc(b,a)},
Xo={ntpp(a’,b’),ntppi(b",a’)}
Dmi chcg(XL Xz):8
where: {a-a’',b-b'}
and:
Xs={dc(a,b),po(b,c),dc(a,c),
dc(b,a),po(c,b),dc(b,a)}
X={eqa,b),ntpp(b’,c"),dc(a’,c),
eqb’,a’),ntppi(c’,b’),dc(c’,a)}
Dmi Nrccs (Xg, X4): 6,
where: {a-a',b-b',c-c},..}

The elipsis {{ x3 »X1',... X0 = Xn'},..} indicated here shows
that more than one set of mappings can satisfy some
minima CND distance.

Finally, we define two other functions: Dming* ™ (X1,X5)
and n(Dming "X (X1,X2)) that respectively maps the
minimised distance between sets to the set of assignments,
and the number of these:

Dming ™ (X1,X) = | ] Dming(X.Xz)
XX
where:
Rl(Xl,...Xn)D X1
RZ(X]_l,...,XnI)DXZ
for every mapping: Xg —Xq',...,Xn — X'

By applying the function Dminy to the set of models being
compared, we @n define an ordering on the similarity
measures returned for all posgble mappings. In some caes
asingemodd isreturned, in other cases sveral models are
generated. If severa distinct models are returned we say the
similarity measure used is ambiguaus. This means that the
theory encoded in CND is underdetermined with resped to
the models being compared. If a single @rresporndenceis
sought, then either a richer representation, or a different




CND (and set of primitives) for the basis of our metric must
beused. Thisisdiscussd in sedion 32 below.

3.1 Similarity and continuity

Each CND,, encodes a notion of continuity between its path-
conneded nodes; and this concept is ultimately reduciblein
terms of theory @'s axiomatised primitives. Thus for
example, CNDgccg interprets continuity in terms of
instantaneous topalogicd change between states (as ts of
relations); ead state of which is reducible to the
axiomatised primitive relation C/2 defined onregions. It is
therefore important to emphasise here that the distance
functions used here, predsely encode this nation o
similarity, and nomore. The measure of similarity between
models given by Dminy is nore other than setting out the
minima number of transitions required, in order to achieve
model isomorphism.  This approach mirrors that aready
done for Asped Graphs where the simil arity between views
to 2D shape metrics have been used to rate the similarity
between urknown views of an dbjed and stored prototypes
[Cyr and Kimig, 2001]. Here, and in contrast, the logicd
asped of the underlying theory and its primitives are
fadored out.

Two aspeds of similarity are rewmgnised here: (i)
relational (or structural) similarity which concerns itself
how various objeds are mnreded but withou regard to
their shape and size; and (ii) metric similarity which is
concerned with the similarity between correspondng
objeds themselves. We mncentrate upon the former notion
here, noting that the goproac can be easily augmented with
thelatter. Thisisdiscussed hriefly in sedion 5

3.2 Isomor phism, ambiguity and granularity

We mnjedure that QSR theories for which a distance
function dmin, can be set up may well be too week for
many applicaions. RCC8, for example, is quite a
rudimentary measure of similarity. It is not even a metric
since norridentical pairs of regions can have distance O -
they just neal to instantiate the same RCC relation. Thus
two model s that are RCC8-isomorphic will have distance0,
even though from a geometrica point of view, they look

very different — seeFigure 2.
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Figure 2: Geometricdly dissmilar RCC8-isomorphic
models. The two sets of regions. {a,b,c,d} and{a’,b’,c’,d'}
satisfy identicd RCC8 relations assuming the mappings
{a-a ,..,.&-d }

However, this failure to distinguish between models, where
such distinctions are sought, highlights a modelling
problem. This problem ultimately stems from the primitives
seleded rather than from the measurement of similarity
between models being proposed here. Indeed, for some
applications this weg isomorphism may well be
advantageous. Even asauming a wed target theory, the
generality and modularity of the gproad lends itself well
to diff erent techniques where this can be aldressed.

Firstly, we can suitably enrich ouw chosen
representational  formalism (and thereby reduce for
example, geometric ambiguity) by couding together and
applying several theory related CNDs. This can be dore
either by extending a given theory, or by joining together
two theories via aspedfied set of axioms that map between
both theories. An example of the latter is the viewpoint
dependent spatial logic ROC20 (defined on badies) that
fadors out and embeds the wedker spatial logic RCC8
(defined on images). Here, for example, ambiguity
stemming from the RCC8 overlap relation when applied to
the interpretation of images (as the geometric projedion of
bodies from some viewpoaint) is grengthened by the use of
stronger ocdusion relation [Galton, 1994; Randell et al,
2001]. We give anr example of thisreduction d ambiguity in
sedion 3.3 below, where asimplified spatiad theory based
on the left/right ordering of spatial regions is used to
complement the assumed RCC8 relations used in our model.

Semndly, another common QSR technique ca be used
that that maps a predefined nxm granularity matrix (or grid)
to the extra-logicd domain model. Relational properties of
cdl-cdl adjacency of individual elements as well as
properties of the cdls themselves are then additionall y taken
into acount, as when a cél is either empty, partialy
occupied or, completely occupied by some region in the
domain model.

3.3 Reducing ambiguity by composing CNDs

Consider the two models depicted in Figure 3 immediately
below. X; maps to a set of ground spatia relations defined
on the set of regions {a,b,c} and similarly with X, mapping
to the set of regions {a',b’,c'}. The individua regions are
uniquely labelled, and the spatia relations on the regions
can now be determined. As given no identity map is made
between paired regions aaoss models, the models remain
uncorrelated.

(e

Figure 3: Uncorrelated models.



As an example, et us now assume we have a simple theory
Left that gives relative left/right orientation information; of
whether a region is either wholly to the left or right of
another, and where in neither case we say the regions
overlap with respect to their left-right most extents. We
assume that the embedding space has a predefined |eft/right
axis that is fixed with respect to some assumed viewpoint,
as in the typical orientation of this page assumed by the
reader when reading this text.
The axioms and definitions of Left/2 are asfollows:

(AL) X = Left(x,X)

(A2)OxOyOz [[Left(xy) & Left(y,2)] — Left(x,2)]]
(A3) LIXLY[Left(xy) — Lz[P(zX) — Left(zy)]]
(D1) Right(x,y) =df. Left(y,x)

(D2) Overlaps(x,y) =df. = Left(x,y) & —Left(y,x)

Axioms (Al) and (A2) define the primitive relation Left/3 as
irreflexive and transitive (and hence asymmetrical) while
(A3) maps Left/2 to the part-whole relation P/2 of the spatial
logic RCC8, i.e. if xisleft of y, then any part of xisaso left
of y'. (D1) and (D2) provide definitions for when x isto the
right (and the inverse of being to the left) of y, and where,
with overlap, neither x, nor y is wholly left or right of the
other. A casual inspection of the axioms and definitions will
show that the set: {Left(x,y),Overlaps(x,y),Right(x,y)} is
JEPD. and given this property, we assign these relations to a
CND ¢ similarity matrix:

Dmin et Left | Overlaps | Right
Left 0 1 2
Overlaps 1 0 1
Right 2 1 0

Table 2: Similarity matrix for CND)

We now stipulate the following sets of relations depicted in
the models depicted in Figure 3, then compute product set of
the minimal CND, ¢ distance between matched pairs of
regions:

X1= {Left(a,b),Left(b,c),Left(a,c),
Right(b,a),Right(c,b),Right(c,a)}

X, = {Right(a’,b’),Overlaps(b’,c’) ,Overlaps(a’,c'),
Left(b',a’) ,Ovelaps(c’,b’),Overlaps(c’,a’)}

(a,b,c) L L L R R R n
(a,b) (b,c) (a,c) (b,a) (c,b) (c,a)

! This is a very strong notion of being left of and is used
here for simplicity only. We wuld have equally used a
wegker more expressve version d this predicate, where x
being left of y means ome part of x is left of y, thus
alowing for overlapping regions — see[Randell et al, 2001]
for an example of this.

@ b o) R o) o) L o) o) 8
@b) | c)|@c)|®a | (€b)]|(ca)
@ch) R o} 0 L o} o) 8
@c) | (ep) | @pb)|(ca)|(b)]| ®a)
bac)| R o) o) L o) o) 2
a) | @c)|be)| @p)| ()] (cb)
bca) | R o} 0 L o} o) 8
(e) | (ca) | (ba) ]| (cb) | (@c) | (@)b)
cap)| R o) o) L o) o) 2
ca)|@pb)|(b) | @c)|@a)](cb)
cba) R o} 0 L 0 o} Z
)| Pa)|(ca) | ®c) | @p)]|@c)

Table 3: CND similarity measures for Left assuming the
model depicted in Figure 3. Note the shorthand L for Left,
etc.

The top (header) row of Table 3 givesthe set of relationsfor
X; and the &l entries immediately below for X, The
leftmost column gives the permutation for the set {a' ,b" }¢'

The second row shows the asdgnment: (&' ,b' ¢ ): as

Right(@' ,b' ), Overlaps(b' ,c' ), Overlaps(a ,don,which
n(Dmin (X, Xj))=8, andwhere:

Xi= {Left(a,b),Left(b,c),Left(a,c),
Right(b,a),Right(c,b),Right(c,a)}

Xi={Right(a’,b’),Overlaps(b’,c’) ,Overlaps(a’,c),
Left(b’,a’),Overlaps(c’,b’) ,Overlaps(c’,a)}

We can immediately see that: n(Dming** (X1,X2))=3;
meaning three @ggnments have Left-isomorphic models
and thus indistinguishable with resped to this reduced
theory. In order to disambiguate the models, we may note
that the eplicit modelling of connedivity between the
regions themselves which is ceptured by the logic RCC8 is
missing. So we gply the RCC8 relation set to ou modedl,
and then compute our CND measures as before:

Xi1= {Left(a,b),Left(b,c),Left(a,c),
EC(a,b),EC(b,c),DC(a,c)}

X,= {Right(a’,b’"),Overlaps(b’,c’) ,Overlaps(a’,c’),
DC(a' \b’),TPP(b',c’),NTPP(a',c')}

(a,b,c) EC EC DC EC EC DC n
(a,b) (b,c) (a,c) (b,a) (c,b) (c,a)
(@b,) | DC TPP NTPP | DC TPPI NTPPi | 14
@p)| ®c)|@c)| ®a)|b)] (ca)

(@,c)b) | DC TPP NTPP | DC TPPI NTPPi | 10

@c)| b)) |@p)|(ca)|®,c)]| ®a)
(ac) | DC TPP NTPP | DC TPPI NTPPi | 14
wa)| @c)|®,c)]| @p)| (a)](cb)
(bca) | DC TPP NTPP | DC TPPI NTPPi | 14
() | (ca) | (cb) | (€h)]| @c)]|(bc)
(cab) | bC TPP NTPP | DC TPPI NTPPi | 10
ca)| @pb)|Epb)| @c)| ®a)| {®.c)
(c¢ba) | DC TPP NTPP | DC TPPI NTPPi | 14
ch)y|®@a)|(a)| ®c)| @p)| (@.c)

Table 4: Similarity measures for RCC8 asauming the model
depicted in Figure 3.




We first note that: n(Dmingecs'™* (X1,X))=2 meaning
that, again, two assignments yield (RCC8) isomorphic
models. But now by combining both theories, i.e by adding
the values for each assigment for both matrices, we see that
the target models are now distinguished with respect to the
two theories Left and RCC8. The minimised value
NDMiNe* "> (X1,X2)) + N(DMingecs® ™ (X1,X2))=14 returns
the singleton set {a-b',b-c ,e.a Jcorresponding to the
assignment (c' ,a ,barjd which is depicted in Figure 4
below:

@ ¢

Figure 4: Correlated models assuming the similarity
matrices for the theories Left and RCC8. Here similarly
shaded regions indicate region identity with the mapping:
{a-bb-c'c-al.

This example illustrates the general procedure, where
constraints for model-isomorphism gets progressively
stronger/weaker by the composition/reduction  of
functionally related similarity matrices.

4 Implementation

To support the theoretical anaysis presented in this
paper we have prepared a simulation program, implemented
in C++ running under Windows, to investigate and eval uate
the practica and pragmatic consequences of the issues
raised in this paper, particularly the degree of ambiguity of
region-identity for several distinct spatial theories. The
program incorporates a GUI interface. Regions are
represented by small bitmaps, which may be loaded into
layers and subsequently moved (by the user directly or from
a recorded file of movements) within a restricted operating
area. These layers represent a notional depth (z-axis) to
alow the calculation of the spatial relations in the presence
of overlap, as is required, for instance, for the LOS14
relation set. At present the program is limited to nine
distinct regions, for reasons that will become apparent |ater.

Whenever any of the n regions move, the program
recalculates the RCC8, LOS 14, Left/Right and Above/Below
relation sets and displays these in separate sub-windows.
The Left/Right and Above/Below relations used are direct
analogues of the temporal relations described by [Allen,
1994]. After computation, each relation set is presented as
an nxn matrix of results in a sub-window. An example (for
LOSH) is shown in figure 5. Note that the presentation is
symmetric about the diagonal. The program also detects
when a move results in a change of one or more relations.
Not al regions movements cause any of the relations to
change, and some will cause change to several relations
simultaneously. This alone represents a useful tool for

demonstrating the generation of different types of spatial
relation.
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Figure 5: Sample LOS 14 relations matrix

Note that these are discrete representations of continuous
descriptions. Adjacency (as, for instance, in the RCC8
relations EC or TTP) is defined in terms of 8-connectivity
between neighbouring pixels. Notions of discontinuity,
overlap and containment follow from this. There are
important issues relating to the use of such digitised regions,
however the intended interpretation is clear here (refer to
[Galton, 1999] or [Roy and Stell, 2002] for a more detailed
discussion).

The-top level outline agorithm, implementing the
process described in section 3.3, isas follows:

For any change of any relation, in any theory, between
any pair of regions:
(i) for every pair of regions, record (and display) the
appropriate JEPD, relation (@ = RCC8, LOS14,
Left/Right, Above/Below), and compute the similarity
measures as follows:

{

ii) Generate the departure set vector, ignoring

duplication through argument order.

(iii) Initialise distance sums and counters.

iv) For each permutation of the ordered tuples of the
relations:

{
(v) For each theory @:

(vi) look-up and sum the individual
distances between elements in the departure
set vector and the previous (saved) departure
set vector (n(dming)).
(vii) If the new @ distance sumislessthan
the existing @ distance sum, record the new
sum, reinitialise @ counter. If equal, then
increment the @ counter only.
}
(viii) Tota all individual @ distance sumsto
form totalsum. If the new totalsum less than the
existing, record the new and reinitialise the total



counter. If they are equal, then increment the
total courter only.

(ix) Save the aurrent departure set vedor.

(x) Display (andreaord to file) the resulting values of
theindividua @ distancesum andindividua @
counters, and the totalsum and total courter.

}

Step (i) only requires us to re-compute the similarity
measures if some relation changes in any of the theories
(®); for instance when any region moves, or changes szeor
shape, or is introduced o removed. Note that not all
movements or changes necessarily lead to a change in any
of the relation pairs. Step (ii) generates the dements in the
departure set for {rl..,rn}. This gep corresponds to the
generation d the top row of table 4. Step (iv) generates eat
element of the target set in turn. The aurrent program uses
Dijkstra’'s algorithm for creaing permutations in
lexicographic order. This correspondsto ead row intable 4.
Steps (vi) and (vii) and then generate a new distance
measure between the departure set vedor and the target set
vedor for eatt model (n(dming)). Thisis repeded for eah
of the (four) target theories (Step (V)).

The result of steps (v) to (vii) is to record the lowest
distance sum for ead of the theories (@ distance sum), and
the number of models giving rise to this lowest distance
value (@ counter). We will refer to the latter as an ambiguity
measure (see sedion 5. Note than the individual distances
between the airrent and previous departure set vectors are
given within the program. The similarity matrix recording
the relation-to-relation dstances for RCC8 is given in table
2. Those used for LOSH4 are derived from the CND givenin
Galton [1994] and those for Left/Right and Above/Below
derived from the CND presented in [Freksa, 19924] and also
in [Papadias and Delis, 1977]. Further, it is easy to seethat
once aset of envisonment axioms are stipulated (or a
digraph given) similarity matrices can be automaticdly
computed, and models compared. This program moduarity
mirrors the general approach described in [Randell and
Witkowski, 2002] and used to buld composition tables for
large aiomatic theories.

Step (vii) derives overall measures of conceptua
distance and ambiguity acossall the theories used (section
3). Step (ix) records the airrent departure set vedor for use
in the next computation and step (x) displays and records
the results for the arrent step. A typicd set of results
obtained is shown in sedion 5

4.1 A Note on Complexity and Performance

The number of computational steps inherent in the
algorithm described in the previous sdion is clealy
diredly related to the number of regions, n, under
consideration. Taking the “payload” of this algorithm to be

the evaluation o the theory distance ad ambiguity
measures, we @an seethat step (iv) introduces a permutation
"P, or n! Step (v) introduces a repetition kesed on the
number of theories, m, to be used. Step (vi) is proportional
to the combination d the number of regions, ,P?, noting the
use of dyadic relations. This leads to a first, rough,
approximation o "P, x m x ,P? steps. The initial surprise,
perhaps, is that the complexity of the underlying theory has
no bearing on the timings; this complexity is reduced to a
simple look-up operations provided by the similarity matrix
(e.g. table 2).

Given the limiting computational overhead is
determined by the permuted set of mappings, this quickly
places an upper practicd limit of the number of regions that
can be mnsidered. In pradice we note that on a relatively
modest desktop computer (PlII, 933MHz, Windows 98),
and cespite the rel atively heavy computational |oad impaosed
by the agorithm, up to seven regions (846720 steps
acording to the formulation above) may be processed with
little perceptible delay. Addition d an eight region (~9M
steps) introduces a small, but noticeale, delay and the
introduction of the ninth (~105M steps) causes unaceptable
(severa seaonds) delay in rea time whenever the similarity
must be ommputed. Sequences might still be processed in
“batch” mode from a recorded file of movements; but
without substantial algorithm redesignthereislittleredistic
prosped of processng 10 or more regions with this
approach in the foreseedl e future.

Clealy we would like to maximise the number of
regions that cen be mnsidered. Apart from minor
improvements in code organisation, several steps might be
considered in order to reduce the number of possble
assgnments to be made. For instance the number of
elements to be compared might be reduced. In the case of
RCC8, for example, the function sum(x,y) can be reaursively
applied to pairs of regions of a finite modedl, to reduce the
number of regions being compared urtil some spedfied
upper limit isreadied. The (reduced) models are mmpared,
then we then use the theory itself to constrain the properties
of the decomposed reation sets as they are reaursively
unpacked. For example, in the simple ca&e where: X;=
{ntpp(a,b),ntpp(b,c)}, X={ntpp(x,y),ntpp(y,2)}; we ca re-
work the sets as. X;'= {ntpp(sum(a,b),c)}, Xo'={ntpp(x,y)}.
We calculate Dmi chcg(X]_’ Xz): 0 where:
{sum(a,b) - x,c -y}, decompose the region sum(a,b), then
make the asdgnments. The forma corredness of this
equivalenceis provided by the RCC8 theorem:

OXCKOz[[NTPP(sum(x,y),2)] <
[NTPP(x,2) & NTPP(y,2)]]

5 Example Results

Figure 6 shows an example run using seven regions, and the
asciated ambiguity measures for eat of the four theories



used, RCC8, LOS14, Left/Right and Above/Below, during an
(arbitrary) sequence of movements of the regions. The
images above the start, central and end points indicae the
configuration of the regions at the indicated points.

At the start of the example eab of the seven regions was
disoint. Each was then brought to the centre, some being
hidden by the square region, some only overlapping. The
central image indicaes a stage just before this processwas
completed. Note that the central image dso corresponds to
the LOS14 relation matrix shown in figure 5. The regions
were then moved away again to result in the configuration
shown in the right hand image. The shape, size (and colour)
of the regions have no effect onthe computation performed,
but ad as a useful aid to the user; only the relations as

The overall higher ambiguity of the RCC8 and, to a
marginally lesser extent, the LOS14 relations indicates that
they represent a wedker description than those of the
Left/Right and Above/Below relation sets. While dl the
regions are disconreded, the ambiguity of the RCC8 and
LOS14 models is total (5040), as there is no pcssbility of
resolving the ambiguity. The RCC8 and LOS14 measures
are dosely related, and LOS14 reduces ambiguity only on
the basis of relative depth to the viewpaint, but this effed is
significant. The Left/Right and Above/Below measures are
very similar, as expeded, and largely independent of
overlap. They are dso highly effedive & managing
ambiguity. These Allen based relations are ineffedive when
identical objeds are digned to the orthogonal of the
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Figure 6: Sample runwith seven regions howing the ambiguity measure for four theories.

indicated are cnsidered.

Each of the five graphs in figure 6 record the anbiguity
measure & computed during the sequence of movements.
The seven regions represent a possble ambiguity of 5040
(7") models. Note the use of logarithmic ambiguity scde.

measure's axis. The total ambiguity measure indicaes that,
when taken together, this combination d similarity
measures reduces the overall ambiguity to almost zero, note
the single anbiguity arising at step 688



6 Further work and suggested applications

In this :dion we discussa few potential QSR applicaions
for this approach. However, the technique is by no means
restricted to this domain and can be applied to any theory
that supports a CND, from which the CND distance is
computed.

Where an extra-logicd model is used to interpret sets of
defined relations, any pair of models can be mmpared. This
means we can either compare models where the identity of
regions have been assumed and the the region labels have
been pre-asdgned (as in the cae where we are mwmparing
the CND distance between the sets: X;= {dc(ab)},
X={ntpp(a',b")}, asuuming here{a-a’,b-b'}; or where
the mappings themselves are not pre-assgned and are to be
computed by minimising the CND distance itself for all
region combinations — for example where, X, is an open-
sentence X;= {dc(a,b)}, Xo={ntpp(x,y)}. An example of this
latter approach might be where we ae using this technique
to complement a region-matching algorithm used in a
madhine vision application, or for GIS data mining; where
while we a@aume some @rrespondence «ists between
regions in a set of images (or set of geographicd maps), an
open question exists exadly what that correspordenceis —
see [Papadias and Delis, 1997. As discussed above, this
technigue may also have a applicdion in symbadl
anchoring; except here the distance function applied to the
CND determines the best fit between objects in a registered
set of images instead of matching properties of individual
fedures.

One severe restriction assumed in this method is that a
one-to-one mapping is assumed between the sets of regions
being compared. In many pradicd situations, however, this
restriction rarely arises, as in a machine vision applicaion
where objeds appea to appea and disappea, or fuse
together or separate owing to the asence of noise, or from
changes in resolution with variations in the observer-subjec
distance This in part stems from the ewisionment axioms
used, where in the envisionment projedion regions do not
passto null. However, each CND node can be aigmented to
allow for such transitions where, either a single region
beaomes null, or both do. An example of this may be where
products of regions are being explicitly modelled, and where
two owerlapping regions separate (so the product becomes
null), or separated, then overlap.

Two simple theories, Left, RCC8 were to illustrate the
method Other natural extensions include encoding
relational concepts such as being: above/overlaps/below, or
being smaller-than'same-size/larger-than For modelling
geometrical solids, we culd also consider Asped Graphs
themselves, define and decompose their node descriptions,
and then model the CNDs of these feaures. For example
ead asped of a abe can be decompased into sets of line
junctions forming acute/right/obtuse angles that can in turn
be represented as a CND.
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