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Abstract. This paper is concerned with issues relating to the source of reward and reinforcement with potential application
to various robot leaning and behaviour shaping situations (Dorigo and Colombetti, 1994; Lin, 1991, Madin and Shavlik,
1996). The mnventional approach to behaviour shaping by reinforcement leaning is to present “reward” to an animal,
animat or roba immediately following the performance by the aiimat of some required or desirable adivity. It is a
commongaceobservation in experimental psychology that if this procedure is repeaed a sufficient number of times by a
trainer the behaviour of an anima will come to favour those adivities in the drcumstances under which they were
reinforced.

This paper describes the Dynamic Expectancy Model, a new approach to issues in reinforcement leaning that
emphasises the role of internally generated “reward” signals, and in which overt behaviour is sleded readively from a
policy map created dynamicdly in response to motivating “goals’. The results of two investigations that ill ustrate these
facds of leaning and behaviour are presented. It is hoped that this technique will find application in a variety of task aress
where animat/roba and man co-operate to address $iared tasks.

1 Introduction

The recent introduction d systematic dgorithms to propagate the dfeds of occasional reward has overcome a
perennial problem with simple reinforcement, how to gve the gpeaance of chained o goal-seeking
behaviour. Such algorithms are exemplified by Watkins' Q-learning procedure (Watkins, 1989; Sutton, 1990,
Watkins and Dayan, 1993, but there ae many variants of the reinforcement procedure (Kadbling et al., 1996,
for review). The Q-leaning algorithm effedively distributes the dfeds of external reward to generate astatic
policy map, from which the animat may seled adions on the basis of current sensory information (reactively)
to maximise the amourt of reward oltained.

Cursory inspedion d the Q-leaning procedure reveds that no leaning can occur until external reward is
applied, and that learning and performance ae intimately boundtogether, encoded in the palicy map. The static
policy map generated is highly spedfic to the source(s) of reward applied. Interest in pradicable gplicaions
using reinforcement learning techniques as a roba leaning and control architedure leads us to consider two
related isaues:

» Isexterna reward necessary for reinforcement learning?
e Towhat extent are reward and leaning inter-related?

The midde part of the paper is given over to a description d the Dynamic Expedancy Model. The remainder
of the paper then presents two investigations using the C++ implementation d the model (SRSE) relevant to
these questions. The first investigation repli cates the established latent learning procedure (Bower and Hilgard,
1981 Riolo, 1991). Latent leaning experiments were originally devised to refute the (then widely held) view
that natural learning was entirely mediated by external reinforcement. Having shown this need not be the case,
and repli caed the essntial condtions used in the original animal experiments with SRS/E, it is then necessary
to explain why so much observable learning daes indeed appea to be mediated by externa reward. Thisisthe
subjed of the second investigation.
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2 TheDynamic Expectancy M odel

In contrast to the two-part (SR or “stimulus-resporse”) representations used by external reinforcement
algorithms the Dynamic Expedancy Model is based onathreepart leaned representation, the expedancy or
p-hypothesis. p-Hypotheses are constructed from two signs (‘s1’ and ‘s2’) and one response (‘r1’). Signs are
conjunctions of sensory tokens. A sign is defined as adive when al the dements of the @njunction are
satisfied. A resporse is sleded from a number of predefined elementary motor adions or compound
behaviours that the animat can perform. Recet adive tokens, signs and resporses are recorded in traces.
Information in these traces is used to construct new p-hypotheses as the neel arises. Signs may aso
incorporate past tokens recorded in the trace & itemsin the conjunction. The form of the p-hypothesisis:

u-hypothesis: s1+r1 's2 (egqn. D

A p-hypathesis can be read as “performing the resporse ‘r1’ in the context defined by the sign ‘sl’ predicts
the occurrence of the sensory condtion ‘s2’ at timet in the future”. A p-hypothesisis itself said to be adive,
and so makes the prediction, whenever both the sign ‘s1’ is adive and the resporse ‘r1’ is being performed.
Reinforcement is between the two itemsto the left of the* —’, andthe signto itsright.

Reinforcement, recorded in the corr oboration measure (Cy,) of ead p-hypothesis, is updated following every
activation (prediction) of the p-hypathesis. C,, is grengthened by the reinforcement rate a (0 < a < 1) for each
successul prediction, and wegkened by the extinctionrate 3 (0 < 3 < 1) according to:

m= Cm + a(1 —Cy)) where apredictionis siccessul, or (egn. )
Cm = Cn—B(Ch), where apredictionis unsuccessul, or (egn. 2B
Unchanged atherwise.

Reinforcement is thus fully independent of any external reward and may be made immediately the
predictive expedancy has been validated. Predictions awaiting validation are stored within the model, bu are
discarded orce the crroboration measure is updated.

2.1 Default Behaviours and Setting Goals

Normally the system seleds resporses readively acording to some fixed set of behaviour rules. Behaviour
rules are pre-programmed and cefine gopropriate resporses for the roba either before learning hes taken place,
or in situations where leaned responses are inappropriate (i.e. in highly safety criticd situations where the
variability introduced by leaned behaviour is courter prodictive.) If no such behaviour rules are goplicable or
defined, responses are seleded acording to a default exploratory regime (the seledion d responses at randam
being ore option))

Any sign known to the system can be designated a goal. Several goals may be aserted at any time, they are
held onthe god list ordered by their priority. Only one, the top-god, that of the highest priority, motivates the
behaviour of the system at any one time. Once atop-goal is established the system switches to an exploitative
or valenced mode of behaviour in which exploratory adivities are suspended and purposive, gaal-direded,
behaviour is adopted. A god is deemed satisfied when the sign that defines it becomes adive. Satisfied gaals
are removed from the godl list, and remaining gals reordered acording to their current priority. Goals may be
asserted acording to (a sub-set of) the pre-defined behaviour rules. Goals may also be aserted externally by
an experimenter or operator. The investigations described in this paper use the external assertion method.

2.2 Constructinga Dynamic Policy Map

Whenever atop-goal is asserted the system attempts to construct a Dynamic Policy Map (DPM) from al the p-
hypotheses known to the system at the time by a processof spreading activation. The DPM takes the form of a
graph in which the nodes are signs and the acs transitions represented by individual p-hypotheses. The top-
gaoa nock is sid to have avalence levé (v) of zero, any signs that may be readed in a single ac a vaence
level of one, and so on.The net effed of the DPM construction rocessisto charaderise eat sign (sl) at some
level (n) acordingto apdlicy \alue, P,:

P/SL) - min (Z (€ (eqn. 3)



Thischain of nodes and arcs defines the sequence of signs and adions that are estimated to take the animat
from the sign sl;, to the goal with the minimum estimated cost. For ead sign in the DPM there is one such
valenced path (there may, of course, be many other paths.) C,, the cost estimate, is calculated from the Cp,
value ssciated with the ac and the actual physicd effort of performing the resporse as<ciated with the ac:

Ce — resporse_cost(rl) / Cn, (egn. 9

The response cost is a pre-defined measure of the dfort required to perform the response (rl) associated
with the p-hypothesis. Resporse asts may be expressed in terms of energy expended, time taken or any other
units that can be mnsistently applied to the resporses defined in the system. Once @nstructed the DPM adsin
a similar manner to a static pdicy map, alowing resporses to be seleded readively (from the ac p-
hypothesis) solely onthe basis of incoming sensory condtions. The animat seleds responses from the valenced
path of lowest estimated cost associated with ore of the aurrently adive signs.

The computational cost of constructing a complete DPM is broadly charaderised by the relationship:

voH * Vv (egn. 5

Where H is the number of p-hypotheses known to the system at the time and V the maximum valence level
readed before the DPM is completed. Construction d the DPM is complete when no more p-hypotheses can
be incorporated into the graph and when no valenced paths of lower estimated cost through the graph are
possble. The DPM may be utilised by the roba as son as it incorporates at lesst one adive sign (as a
valenced resporee is then avail able) athough pdicy paths of lower estimated cost may still be undscovered. It
may aso be that the DPM, athouwgh complete, incorporates no currently adive signs. In this case the system
seleds a response on the basis of the default behavioural strategies. In dang so it may be that an adive sign on
the DPM is then encourtered and a valenced resporse may subsequently be seleded.

An incomplete DPM may arise for a number of reasons. First, the roba may have had insufficient
oppatunity to lean the p-hypotheses required to construct a solution. Second, there may be insufficient
processng powver avail able to complete the mnstruction d the DPM before the next response must be seleded.
While eab step in the constructionis not computationally expensive, the spreading adivation processis clealy
sensitive to the number of p-hypotheses held by the system. This may be managed in a number of ways. The
system may adknowledge the processng bound treaing the unfinished DPM as it would an incomplete one. It
may spread the computation over severa “sense-ad” cycles, at the risk of employing valenced resporses that
are out of date. It may aternatively define astrategy to restrict the number of p-hypotheses held by the system
at any time to match the resource available to utili se them. As the number of p-hypotheses held also affeds the
effort required to manage outstanding predictions and corrobarations the management of p-hypotheses is
considered in the next sedion. None of the investigations described in this paper are resource bound in this
manner.

The spreading adivation method employed here is a modified form of the well-established breadth-first
graph seach/construction algorithm (Nilsson, 1980. The DPM is recomputed when the top-goal changes, or
when the available p-hypotheses have changed materially. Valenced behaviour seleded from the DPM is
terminated orce outstanding gaal conditions are satisfied and behaviour seledion reverts to the default strategy
until anew goal isaserted.

2.3 Managng p-Hypotheses

The system begins with no stored p-hypotheses. New p-hypotheses are aeaed whenever a previousy
unknown sign is encountered (creation by novdty method), or by the unexpeded appeaance of a previously
known, but unpredicted sign is encountered (creation by unexpeded event method). A new p-hypothesis is
creaed from the novel (or unexpeded) sign forming the ‘s2’ comporent, and a sign ‘sl’ and resporse ‘r1’
drawn respedively from the sign and response traces recording pest events. The timing fador t (egn. 1) is
derived from timing information held in the traces. As leaning by credion is a resource-boundadivity, the
probability that a p-hypothesis will be aeaed is regulated by the learning probability rate, A (0< A < 1). This
parameter determines whether any particular oppatunity to creae anew p-hypothesis will be taken or passed
over. Where A < 1 the system will retain signs for which no corresponding p-hypothesis exists. However at
subsequent (unpredicted) appeaances of the sign the oppatunity again arises to crede a p-hypothesis to
predict that sign by the unexpeded event credionrule.



Following a period d credion and corrobaration eat sign may be predicted by p-hypotheses that either (1)
completely or nealy completely predict corredly, (2) only partially predict corredly, or (3) predict at or below
the rate determined by chance Clealy p-hypotheses falling into the first group merit little further attention,
and those in group three may be discarded. Those in the second goup may indicae that the condtion
comporent of the pu-hypathesis (‘sl’) isunderspedfied, in effed giving rise to the perceptual aliasing problem
(Chrisman, 1992. Such p-hypotheses can be differentiated by adding further tokens to the ‘s’ comporent,
taken either diredly from the adive tokens, or from the token traceif a temporal discrimination is required.
This procedure is used to crede mmpeting p-hypotheses, and introduces new signs into the system. To be
effedive these methods for p-hypothesis management must take into acount several fadors, and severa
strategies have been considered (Witkowski, 1997).

3 Latent Learning

The latent leaning procedure nedly demonstrates both the separation d leaning from performance and
distinguishes between the dfeds of “internal” and “external” reinforcement. The procedure compares the
learned performance of an animal (or animat or roba in our case) in threedistinct conditions:

1. Wherethetask is always rewarded
2. Wherethetask isinitially unrewarded, bu where reward is later introduced
3. Wherethetask isaways unrewarded

In case 1 we exped the animat to bah learn and hence improve task performance on subsequent trials, at some
rate determined by the charaderistics of the underlying leaning mechanism. Typicdly this will refled the
negatively acceerating leaning curve tharaderistic of this type of task (Sutton, 1990. After sufficient trials
performancetypicdly stabilises at or abou the optimal performancelevel.

In case 2, if external reward is indeed required for leaning, we would exped no leaning to take place (as
thereis no external reward applied) and so no performance improvement would be gparent. If external reward
is required to lean we would exped performance to begin to improve gradually following the avail ability of
reward, much as it would do duing cese 1. Whereas if internal reward is being wsed leaning takes place during
the initial phase of case 2, bu no performance improvement will be gparent, as the animat has no reason to
perform the “task”. Once reward is introduced performance will improve éruptly, a result of the leaning that
has taken place, bu which was not previously made manifest.

In cese 3, the oontrol, we would exped no significant task improvement in either case, regardless of
whether leaning haed or had not occurred, as the animat is unrewarded throughout the procedure.

3.1 The Tolman and Honzik Experiments

We replicae the essential conditions employed by Tolman and Honzik (Bower and Hilgard, 198L, pp. 338
340. In the original experimental procedure Tolman and Honzik tested threegroups of food deprived ratsin a
maze pparatus. Group 1(“Regularly rewarded”, figure 1) were dlowed to wander the mazeonce per day and
obtained food reward on reaching the end location. Each animal was placed in the gparatus once per day
before being return to their normal acommodation. Oncethe aiimal readed the end locaion it was prevented
from re-entering the body of the mazeby an arrangement of one-way doas. Group 2(“No food reward until
day 11") were dlowed to traverse the maze bu on reading the end locaion recéved nofood reward. On the
eleventh day group 2were given foodreward in the end locaion. Group 3, ading as control, ran the mazeonce
per day with nofoodreward throughout the duration o the experiment.

Group 1, figure 1, displays a normal leaning curve, performance improving gadually, much as would be
expedaed from, say, a Q-leaning based animat (“Q-animat”). Up to day 11, Group 2,withou food motivation,
perform similarly to the control group. With no knowvn source of reward to drive leaning, a to motivate
behaviour, performance remains largely constant. This again would be expeded from a Q-animat. The rapid
performance improvement foll owing the introdwction d foodto group 2would certainly not be expeded from
a onventional external reinforcement leaning based Q-animat. Note that the performance drops below that for
Group 2, demonstrating bdh that learning is indeed na dependent on externa reward, and that motivation
(hunger) dramaticdly modifies behaviour when the opportunity arises (foodat the end location).
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Figure 1: Tolman and Honzik’s L atent L ear ning Results

3.2 Replicating the Latent Learning Experiments with SRSYE

Figure 3 shows the dfeds of running the latent leaning experimenta procedure described on an SRS/E based
animat/roba (“ SRS-animat”). In these experiments the robat is placed in the mazeshown in figure 2 at the start
point shown and all owed to traverse the mazeuntil it readies the end a “goa” poaint at the top of the maze at
which pdnt thetrial ends and the next may begin. The roba may reacgnise some 33 locations within the maze
These equate diredly to signs. The roba is supgied with four responses with which to traverse the maze
between signs. The SRS/E agorithm is diredly interfaced to a Nomad roba (Nomadic Technologies, 1998)
simulator, which provides a useful methodto visuali se the behaviour of the roba. The robat deteds mazewalls
using the infrared range detedors (“short sensors’, right of figure 2) provided. To conduct the bulk trias
described in this dion the robot may be disconneded and the dfeds of the mazetraversal emulated. Where
reward is required onany trial during the procedure the end location is asserted as a “goal” diredly by the
operator, i.e. that locationis made “rewarding’.
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Eadh curve onfigure 3 is the average performancethroughthe maze gparatus of 100 individua animats. In
this experiment o = 0.5, = 0.2and A = 0.25. Each goup d animats is effedively “cloned”, and so the first
animats in ead group tkehave identicdly until some cndtion changes, similarly the second and so on. Thus
groups 2 and 3track one another until trial 11, urtil the experimental conditions vary between the groups. Note
the steady learning curve described by Group 1(“Continuots reward”), and the abrupt change in behaviour for
Group 2 (“No reward urtil trial 11”) to nea optimal performance (9 stepsitrial) oncereward isintroduced.
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Figure 3: Results of the SRSE L atent L earning Experiment

3.3 Latent Learning - Discussion

Latent leaning prenomena have been widely investigated under a range of possble andtions (Thislethwaite,
1951). Not every investigation hes siccesully demonstrated the dfed. However, several commentators have
observed that any valid demonstration d latent learning must be deemed a strong chall enge to the conventional
view of reinforcement leaning by external reward. Considerable cae is needed to define and control the
parameters to successully and repeaably observe latent leaning.

In the Dynamic Expedancy Model, as implemented by the program SRS/E, reinforcement leaning by
corrobaration takes place & every step, regardlessof the state of the animat’s motivation a the avail ability of a
“goa” condition to satisfy that motivationa state. -Hypothesis formation takes placewhenever the novelty or
unexpeded conditions arise, at arate determined by the leaning probability rate, A.

During the first trial ead animat in group 1 explores the mazeusing a random walk strategy. On eath
subsequent trial individua animats will aauire sufficient p-hypotheses to buld an effedive DPM, at first
partial, but eventually spanning between start to end location. In some caes this route between start and end
will be viathe shortest route. In the remaining cases the path will be one of the other two, longer, routes. Once
avaenced peth is established the animat will continue to use it in preferenceto exploring for new and posshbly
better (but possbly worse) routes while it remains continually valenced. Whilst we may only conjedure that
the mechanism giving rise to these phenomena in the Dynamic Expedancy Model aso appliesto animals, such
wilful “overtasking” is a pathdogicd case for the Dynamic Expedancy Model, and may aso be for animals
and humans. In anormal course of events the motivation will be sated orcethe godl is achieved and the animat
begin to pusue some other goal from the goal list or revert to an explicitly exploratory strategy. In dang so
new p-hypotheses will be formulated and existing ores corrobarated to provide adifferent, and perhaps more
effedive, DPM when the original task is returned to at alater time.

The rate & which individuals achieve an effedive DPM varies considerably, some doing so almost
immediately, some taking many trials. The shape of the leaning curve for group ore, figure 3, is a dired
consequence of averaging these different individual leaning sequences. The slope of the Group 1leaning
curveis primarily controlled by A, becoming shallower as A is reduced. Perhaps surprisingly, the reinforcement
values o and B (egns. 2) have little dfed on the leaning rate, but rather primarily determine which peth the



animat will seled throughthe DPM, when there is a choice The SRS/E algorithm has been extensively tested
with various values for A (Witkowski, 1997) and the value used here (0.25 was seleded to match the ealier
findings. No doubt Tolman and Honzik’s experimental design choices were based on their extensive
knowledge of the natural leaning rates exhibited by rats in these kinds of apparatus.

By fredy using the randam walk strategy to explore the mazeurtil trial 12 group 2animats build a more
complete set of p-hypotheses and corrobarate them more thorougHy before being cdled upon to build the
DPM and switch to valenced behaviour. As a consequence they demonstrate an apparently dispropational shift
in performance when motivation is applied, becaise more individuals have locaed the optimal path (97% for
group 2as opposed to 87% for group 1 at this paint) before valenced behaviour from the DPM isinvoked.

The mnditions used in the animal and those used in the animat experiments are not identicd, ead is
adapted to the properties of the subjed under test. However, the esential demonstration o the latent leaning
phenomena is clealy seen in bah, the use of the log scde on the “steps/trial” axis of figure 3 is largely
cosmetic and compensates for the longer path traversals encourtered in the emulation. Tolman and Honzik
reportedly employed a maze onstructed from 14 ‘T’-shaped choice paints. In ead case the am of the ‘T’
being Hocked to form a ‘cul’, the other choice continuing toward the end locaion. One way doas were fitted
between segments in this mazeto prevent the animal returning along its previous path. Performance in the
maze ould be measured as the number of “errors’ (turns into the blocked arms) made in traversing from start
to finish. In the enulation results presented here the threepath mazeof figure 2 is adopted, with noadditional
restrictions to the diredion the roba may make within the confines of the maze

With the darity of hindsight it is easy to seethat it is the existence of shorter and longer paths which
bemme fixed as a result of the goal-seeking, coupded to careful management of reward and motivation,
explains the particular crossover effed between the performance in groups 1 and 2. The latent leaning
phenomena has been tested uwsing the Dynamic Expedancy Model with several designs of experimental
apparatus, and has been foundto be reliably repedable.

Closer inspedion d figure 1 reveds two additional phenomena worthy of comment. First, bath group 2
(“noreward urtil day 11") and goup 3 (“control”) show some performance improvement even when noreward
is presented. It may be that the animals foundthe ad of being removed from the end location and returned to
their cages in some way “rewarding’, perhaps through some prior association with the availability of foodin
their norma acommodation. Tolman and Honzik left the subjed animals in the end location for some time &
the conclusion d ead tria in an attempt to overcome this patential experimental difficulty. It might also be
that rats have anatural disposition to ignare short, blocked paths (which, given their ancestral habitats, would
nat be unreasonable); or be related to a more generalised “curiosity” penchant, which is frequently observed in
mammals and Hases them to explore novel situations. No such mechanisms are incorporated in the Dynamic
Expedancy Model andthe dfed isnot apparent in figure 3.

Seoond, group 2 (figure 1, no reward urtil day 11) demonstrates a mnsistent level of errors even after the
reward regime is established. It may, of course, be that rats have poa memory or recdl; but it may arise & a
consequence of a broader inherent behavioura strategy to chedk previously leaned knowledge to spedficdly
chedk for better solutions. This interpretation is a manifestation d the exploration-exploitation tradeoff, which
is an integral comporent of conventional reinforcement leaning algorithms. With the Dynamic Expedancy
Model “exploration” and “exploitation” are kept largely separate due to the explicit alternation between innate
and valenced adivities, athoughleaning, bdh by the aedion o new p-hypotheses and the arroboration o
existing ores, may occur at any time. Preliminary investigations in which an element of exploration is
reintroduced in valenced behaviour indicate that the disruption to the existing valenced solution ouweighs the
advantage gained by the extra oppatunity to lean better strategies. It may be that further investigation will
reved an overal effedive balance No exploration hHas used in the results siown in figure 3 during valenced
behaviour.

4 Combining Reinfor cement with Motivation

Latent learning experiments demonstrate that both in animals and, with the Dynamic Expedancy Modedl, in
animats or robds there can be reinforcement leaning withou external reward. However, it is clea that
external reward is an important fador in shaping animat behaviour. It would be idle to suggest the animat
shoud always perform leaning for its own sake, learning must for the most part be biased towards the needs
and motivations of the animat, as has been consistently demonstrated to be the cae in natural leaning studies.
This bias towards leaning behaviours diredly related to the animat’s motivators (its goals) is achieved in
the Dynamic Expedancy Model in a process referred to as valence level pre-bias. The model separates the
quality of an olservation from its usefulness where @mnventional reinforcement leaning agorithms do nd.



The arroboration measure, Cy,, for ead p-hypaothesisis cadculated as before, rightly refleding its viability asa
predictive expedancy. Instead the probability that aruleis creaed (A) is varied, predisposing the dgorithm to
creae potentially useful p-hypotheses. A new measure, the effective learning probability rate ('), is derived
from A and the best (lowest) valencelevel recorded for eadh sign. A’ is subsequently used in preferenceto A to
determine whether a new p-hypothesis will be formed, when oppatunities arise to use ather of the p-
hypathesis creaion methods previously described. p-Hypotheses credion is therefore biased acwrding to the
extent to which their comporent signs were implicated in previously valenced paths. Figure 4 presents
experimenta results that show the significant performance gains in leaning that may be demonstrated when
internal reinforcement and motivation are wmbined in this manner. Biasing p-hypathesis formation in this
manner concentrates leaning resource towards those signs which have previously been implicated in a
Dynamic Policy Map and all ows an effedive DPM to be formed more quickly.

An dternative gproach to the external reinforcement isale is to increese the dfedive value of the
reinforcement measure, o, whenever external reward is applied, magnifying the éfea of internal corrobarative
reinforcement. The dfead of thistadic isto favour use of these p-hypotheses for seledion from the DPM as the
effedive st estimate, Cs (eqn. 4, is lowered. As a side-effed these “rewarded” p-hypotheses will be
favoured in all subsequent constructions of the DPM, whether or not that p-hypothesesisindeed relevant to the
top-goa currently being pusued. It may well be that animals do indeed combine these dfeds, it is lessclea
whether thisis desirable in the cae of an animat or roba controll er.
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Figure 4: The Effed of ValenceL evel Pre-bias (VLPB)
5 Robot Behaviour Shaping — an Application Domain for the Dynamic Expedancy M odel

Althouch much o the design o the Dynamic Expedancy Modd is derived from experiments in animal
leaning and behaviour, and its implementation by the techniques of machine learning, it is expeded that it will
find applicdion in the aeaof co-operative working ketween human and robot, the behaviour shaping domain.
In this domain the human operator guides or commands the robd remotely, using joysticks or other forms of
inpu, determining the resporses the robot will use. This overrides the pre-programmed o default behaviours
previously described. The roba still receves the stream of input tokens and signs from its sensors and will
crede and corroborate U-hypatheses in the normal way. The leaning mechanism is insensitive to the source of
signs and responses.

At any point the human operator may seled any sign asagoal, causing a DPM to be aeaed. If the operator
is stisfied that this represents an appropriate murse of adion he or she relinquishes control to the model urtil
the task is completed. At any paint the operator may interrupt the valenced behaviour of the roba to shape
future behaviours without rewmurse to ndions of overt external reward o purishment. In this way the
experience of the roba, from which it leans, is channelled by the adions of the operator avoiding the need for
explicit programming and overcoming the (probably wasteful) effort inherent in randam exploration. In
defining gaals the operator may further focus roba learning to useful aress.



6 Concluding Remarks

This paper has described the Dynamic Expectancy Model, a design for an animat or robat controll er that adopts
and adapts two core ideas from the field of reinforcement learning. First that “reward” enhances the likelihood
that adions or behaviours are seleded reactively from a policy map, which is constructed iteratively by
propagating the dfeds of external reward. It differs radicdly from the prevailing model of reinforcement
leaningin two significant ways:

1. “Reward” is primarily generated internaly by the orrobaation o predictive expedancies (“p-
hypotheses’), rather than as an impaosed or external inpu.

2. A pdicy map (the Dynamic Policy Map) is creaed as reguired from the p-hypotheses only when a spedfic
task motivates the system (the top-goal). When the top-goal is stisfied the DPM is discarded, if the top-
goal changes a new DPM spedfic to that new god is creaed. The change in overt behaviour shifts
immediately from one pdlicy to the next.

The latent leaning procedure described in the paper serves to highlight the differences between internal
reinforcement by corrobaation o expedancies, and external reinforcement by reward. The Dynamic
Expedancy Model also derives much from models of “intermediate level cogntion” (Bedker, 1973; Mott,
1981, Drescher, 1991) and attempts a synthesis of the best feaures from the ogntive ad
reinforcement/readive points of view. The Dynamic Expedancy Model and SRS/E are described in greder
detail in Witkowski (1997, which also reports an extensive series of experiments and trials with the system,
including the latent learning procedure described here.
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