
 Proc. TIMR 99 “Towards Intelli gent Mobile Robots” , Bristol 1999.
Technical Report Series, Department of Computer Science, Manchester University, ISSN 1361 - 6161.
Report Number UMCS-99-3-1. http://www.cs.man.ac.uk/cstechrep/titles99.html

Applying Unsupervised Learning and Action Selection to Robot
Teleoperation

Mark Witkowski
Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine
Exhibition Road

London SW7 2BT
m.witkowski@ic.ac.uk

26.3.99

Abstract

Unsupervised learning and supervised remote teleoperator control for robots may seem an unlikely
combination. This paper argues that the combination holds advantages for both parties. The operator would
like to “ instruct” the robot without any special effort, and then be able to hand over some or all of the tasks
to be performed without loss of overall supervisory control. In return, the learning algorithm receives a
continuous stream of exemplar data relevant to the tasks it might later be asked to perform. We consider an
unsupervised learning method, the Dynamic Expectancy Model, and a teleoperator “architecture” offering
just such a serendipitous combination.

1 Introduction

This paper describes the Dynamic Expectancy Model (DEM), which combines an unsupervised learning
component with a mechanism to create “Policy Maps” for action selection dynamically from this learned
information as tasks arise or task priorities change. Action selection and learning models based on
Reinforcement Learning ([18], [20], [21], [5] for a broader survey) propagate the effects of occasional
reward backward to rank sense-act pairings in the form of a “policy map” according to iteratively
developed estimates of future reward. Classifier Systems ([3]) also adopt the notion of propagating the
effects of occasional reward, using a “bucket-brigade” method, and combine behavior selection with a
genetic algorithm approach to create new classifier selection elements. Action selection may be pre-
defined, with no lit tle or no learning component ([9], and [19] for a useful review).

Unsupervised learning is achieved in the Dynamic Expectancy Model by exploiting some interesting
properties of prediction. Prediction is used to drive the learning process in two ways. First, the occurrence
of unpredicted events allows the system to determine when new predictive rules (“µ-hypotheses”) should
be formed - strategic learning. Subsequent the effectiveness of these µ-hypotheses at making predictions
allows the system to determine their quali ty without reference to any other source of reward or external
verification - tactical learning. When set a goal the DEM automatically computes and maintains a Dynamic
Policy Map (DPM). It may then select actions reactively according to a current perceived situation and a
computed “best estimate” of the remaining effort required to achieve the current goal. The DEM develops
the schema based or constructivist view ([4], for example) and differs from reinforcement learning and
bucket-brigade based methods in two important ways. First, “ reinforcement” is generated internally, based
on predictions - the system learns in the absence of imposed “reward” . Second, the policy map is computed
“on-demand” from learned rules, specific to a desired outcome. It is therefore able to adapt its reactive
action selection behavior rapidly to changing and widely varying circumstances.

In operation the Dynamic Expectancy Model builds and maintains a number of “ list” data-structures.
Section 2 defines the three principal l ists, the Hypothesis List, the Sign List and the Action List. Sections 3
and 4 introduce predictions and the Prediction List, and describe how prediction is used to create µ-
hypotheses and verify them. Sections 5 and 6 introduce goals and the Goal List, and describe the process of
setting tasks and building a Dynamic Policy Map, from which actions may be selected to control a robot
autonomously. Section 7 ill ustrates unsupervised learning and policy map construction with a concise
example. The remainder of the paper then considers issues of “skil l-transfer” ([6]), in the context of the
Dynamic Expectancy Model, that arise when a human operator works co-operatively with a robot. The
paper further argues that significant advantages will accrue to both operator and learning program as a
direct result of this cooperation. Previous research in this area ([2], [7], [8], [12], [15]) demonstrates that

skill transfer through learning is both possible and that it can decrease the time required to complete tasks.
Although the Dynamic Expectancy Model takes a radically different approach to learning from these
examples, many of the problems and issues to be addressed are shared.

A note on notation. Each of the five lists is denoted by a single, upper case, calli graphic letter (
� �

(Hypothesis), � � (Sign), � � (Action), � � (Prediction) and � � (Goal)). Individual elements are denoted by lower
case letters in the same font (� � , � � , � � , � � and 	 	 respectively). Sub-sets of lists, and individual elements that
must be identified across steps or cycles are indicated by superscripts (e.g. ��
��
). The symbol ‘∈’ may be
read as “member of” , ‘∪’ as “union of” and ‘∩’ as “ intersection of” . The connective ‘∧’ is best interpreted
as “concurrent with” in this context. Other symbols are explained as they are encountered.

2 µ-Hypotheses, Signs and Actions - Making Predictions

“Knowledge” is accumulated within the Dynamic Expectancy Model as many individual and independent
three-part predictions, triples referred to as µ-hypotheses. They are so named because each µ-hypothesis is
a testable “micro observation” about the robot and its world that can be created, verified and used by the
Model. These predictions are encapsulated into context - action - outcome triples. All µ-hypotheses known
to the DEM at any time are retained in the Hypothesis List (abbreviated to

� �
). The form of the µ-

hypothesis (� � , � � ∈
� �

) is:

 � � : ���� ∧ � � →
t
 �������� (eqn. 1)

Each µ-hypothesis encapsulates a “prediction” , which can be read as “performing the action � � in the
context of ���� predicts the occurrence of the condition �������� at time t in the future.” This paper builds on the
conjecture that the proper interpretation of this triple is that of a prediction, and that the strength of the
connection (“→”) should depend only on the predictive performance of the unit. A conventional view
would hold that the strength of the connection should be related to any goal or task specific “desirabili ty”
of �������� . By adopting the predictive view strength changes can be made internally, just by testing whether the
predicted event did or did not occur, independently of reward or reliance on an external agent to indicate
correctness. This leaves the µ-hypothesis uncommitted to any particular goal; learning is not task
dependent. Strength changes can be applied immediately the prediction is verified, and always attributed to
the specific µ-hypothesis that made the prediction.

The context (����) and outcome (��������) terms in eqn. 1 are Signs drawn from the Sign List (abbreviated � � ,
thus ���� ∈ � � , �������� ∈ � �). Signs both define and detect situations that can be recognised by the Model. Signs are
compound items, conjunctions of elemental sensory items (“Tokens”). Thus Signs are derived from, and
form the interface to the sensor apparatus available to a physical robot. At each cycle in the execution of
the algorithm each Sign is either detected or is absent and so evaluates to active (the condition defined by
the conjunction of Tokens is met) or inactive (the conditions are not met) for that cycle. All active Signs for
a cycle are held on the Active Sign List ��
��
 , a subset of � � . The first time a Token is encountered the DEM
automatically creates a Sign (containing only that Token) and adds it to the Sign List. New Signs are also
appended to a working list � � new. This list drives the structural learning process. The (structural) learning
mechanism in turn provides a mechanism to successively refine predictions available to the robot by adding
Tokens to the context Sign conjunction. Tokens, Signs and actions have no a-priori meaning to the learning
mechanism in the Model, and may be left anonymous or named arbitrarily to suit operator or user.

As a special case individual Tokens (and hence their derived Signs) will equate directly to an observable
“State”, a unique situation detected reliably by the Sign. A Sign may also equate to a “partiall y observed
state” (P.O. State), a unique situation incompletely detected by the Sign. Equally, a Sign may just represent
a collection of sensory conditions available to the robot, from which it must create predictions of varying
reliabili ty and repeatabili ty. This notion of “State” is useful when considering robot navigation tasks. The
robot wishes to be able to recognise particular locations repeatably and so form reliable prediction based on
the (movement) actions it makes. Partially observed locations lead to unreliable predictions about
movements. In other situations (skill acquisition, for instance) this notion of “state1” is less applicable. In

1 Even this notion of “State” ignores the temporal component (this place, now). Similarly, adding Tokens to a Sign
makes it more restrictive, deleting them less restrictive. It is, of course, exactly these abstractions that make the Sign a
useful representation.

these circumstances we expect the formation of many “candidate” µ-hypotheses to be created, verified and
discarded while a viable list is being formed.

Actions, (� � , � � ∈
� �

, the Action List) define the activities the robot may perform. As Signs defined the
interface to the sensory apparatus, actions connect the DEM to physical robot actuators. Selected actions
are placed onto the

������
 (active) sub-list. Every action � � has associated with it an action cost. The action

cost measure indicates the relative effort that will be required to complete the action. Action costs may be
expressed in any units (such as elapsed time or energy expended) that may be determined and consistently
applied across all the elements of

� �
. The action cost measure will be used in the “cost estimation” process

for goal directed action selection. The DEM also maintains a memory of recent activations and their
associated timings for both Signs (from � � � �) and actions (from

������
). Information held on these activation

traces is used by the structural learning component to construct new µ-hypotheses.
 A µ-hypothesis is deemed active (and so placed on � �� �

) whenever both its context Sign (������) and its
action (� �) are active simultaneously, (������ ∈ � � � � ∧ � � ∈

������
). A new prediction 	 	 is created and added to the

Prediction List

 for every instance of an activated µ-hypothesis. Note in particular that this mechanism is
invoked for all µ-hypotheses that meet these criteria and that a prediction records three items. First the
identity of the Sign predicted (���������� from the active µ-hypothesis). Second the time (derived from t, eqn. 1,
and the current time) that the Sign is predicted to occur and third the identity of the µ-hypothesis that made
the prediction. Elements of the Prediction List are active (and so placed on
 �
 �) when the time element
recorded matches the current time. The presence of active predictions drives the corroboration process.

3 Corr oboration - Tactical Learning

The predictive abili ty for each µ-hypothesis is recorded in a numeric variable, the corroboration measure
(Cm). For each active prediction, the corroboration measure of the µ-hypothesis responsible for the
prediction (whose identity was recorded at the time of making the prediction) is modified according to:

Cm = Cm + α(1 – Cm) (eqn. 2)

where the prediction was successful (that is, when � � p ∈ � � � � , � � p being the Sign recorded at the time of
making the prediction), and

Cm = Cm - β(Cm) (eqn. 3)

where the prediction was unsuccessful. Active predictions are discarded from

 once this step is complete.

The positive reinforcement rate, α (0 ≤ α ≤ 1), defines the rate at which successful predictions will

strengthen Cm. Similarly, the extinction rate, β (0 ≤ β ≤ 1), defines the rate at which Cm wil l be weakened
by failed predictions. Where no prediction was made the value of Cm remains unchanged. Sequences of
successful (or unsuccessful) predictions give rise to the familiar negatively accelerating learning curve, the
values being normalized such that Cm rises asymptotically toward 1.0 (or falls toward 0.0).

4 µ-Hypothesis Acquisition - Structural Learning

Prediction, or rather the failure to predict an event, drives the structural learning component of the DEM,
which is responsible for forming new µ-hypotheses. The opportunity to create new µ-hypotheses is
indicated by appearance for the first time of a previously unknown (“novel”) Sign or by the appearance of a
known but unpredicted (“unexpected”) Sign. New, unknown, Signs trigger the creation by novelty method,
recall that the first occurrence of a previously unknown Sign is recorded in � � new specifically to invoke this
learning method. The appearance of an unpredicted, but previously known, Sign invokes the creation by
unexpected event method. Unexpected Signs are detected by comparing the active Prediction List to the
active Sign List and applying the method to the unpredicted residue (� �� � - (
 �
 � ∩ � �� �)).

In either method a new µ-hypothesis is constructed from the novel or unpredicted Sign as ‘ ���������� ’ , and a
Sign (������) and action (� �) drawn respectively from the recorded activation trace of values in the Sign and
Action Lists. The timing relationship (t in eqn. 1) is derived from their relative positions in the respective
memory traces. Note that the structural learning mechanism is independent of the source of the Signs and
actions it will employ. Riolo [16] and Shen [17] have described broadly similar strategies for “ rule”
creation triggered by “surprise” events.

To limit the rate at which new µ-hypotheses are created the user may specify a learning probability
rate, λ, which determines the probabili ty with which a new µ-hypothesis will be formed given one of these
opportunities to do so. The Dynamic Expectancy Model also defines methods for differentiating partially
effective µ-hypotheses (by adding Tokens to the existing context Sign), and removing ineffective ones. The
requirements for such additional processes are considered further in [23].

5 The Action Selection Mechanism

At each execution cycle the robot must have some action to perform. Normally, the Dynamic Expectancy
Model operates in two distinct modes for action selection (1) Goal directed selection, (2) Exploratory
selection; for the purposes of this paper a third action selection option is introduced, (3) Guided selection.
Whenever goal directed action selection is selected, the algorithm attempts to construct a Dynamic Policy
Map (DPM) from which it may select an action. The construction and use of the DPM is described later.

Where no goal is set the system selects actions in exploratory mode. If no exploratory mode is defined,
or it is disabled, then the robot will select no actions but wait for guided selection from the operator. In the
current implementation, exploratory selection is made on a random basis. Regardless of how the action was
selected the learning mechanism continually monitors the activities of the robot, and corroborates existing
µ-hypotheses and creates new ones according to the learning strategies described.

Goals - instructions to the system to select actions with respect to some purpose - are held on the Goal
List (

� �
). Individual goals are drawn from the Sign List. Placing a Sign on the Goal List is a signal to the

robot that it should be motivated to select actions that cause that Sign to become activated (i.e. appear on������
). Each goal Sign on

� �
 is assigned a priority. The goal with the highest priority at any time is referred to

as the top-goal. Once a goal Sign has been activated (i.e. it appears on
������

), it is deemed satisfied and
removed automatically from the Goal List. The next highest priority goal becomes top-goal, or the Goal
List becomes empty.

Purposive goals are, by definition, largely domain specific - they serve some purpose. The Dynamic
Expectancy Model provides two distinct routes to setting goals. (1) Goals may be programmed into or be
inherent to the robot, or (2) they may be imposed externally by directly manipulating

� �
. The former route

equates directly to our intuitive notion of primary reinforcer. Some things, such as food for a hungry
animal, or water for a thirsty one, inherently motivate because they are “programmed” to do so. In the
mobile robot context the detection of a “battery_low” Sign may cause an “on_charge” Sign to be placed on
the Goal List, possibly with a priority related to the extent of battery discharge. The latter route provides an
operator with a method with which to manipulate the goal-driven behaviour of the robot directly.

6 Building the Dynamic Policy Map

Whenever a top-goal is available, the DEM will attempt to create a Dynamic Policy Map (DPM) to form a
sequence of links from every other Sign in

� �
 to the Sign currently set as top-goal. The DPM is conveniently

represented as a graph where context Signs associated with individual µ-hypotheses represent the nodes
and actions embedded within individual µ-hypotheses the arcs. The DPM is created by a process of
spreading activation ([9], [22]) from the top-goal. The method used to construct the DPM is a modified
form of the standard breadth-first graph search/construction algorithm ([14]). Each arc has associated with
it a cost estimate, Ce, value. This cost estimate is computed from the given action cost of � � and the Cm

(eqns. 2 and 3) value defined earlier:

Ce ← action_cost(� �) / Cm (eqn. 4)

Consider a situation where Cm is simply p(number of successful predictions|total predictions made) by a
µ-hypothesis - the probabilit y that the µ-hypothesis predicts correctly. The cost estimate value Ce is then
reasonably interpreted as the total estimated cost for the average number of attempts that must be made
with the given µ-hypothesis to achieve the transition. A similar interpretation may be placed on the case for
Cm shown in eqn. 4, with the proviso that the “averages” are now biased towards recent experiences.

Each node (Sign) in the graph will acquire a valence depth, v, indicating the number of arcs, n, that
must be traversed to reach the top-goal “node”. The top-goal has a valence depth of zero, the ������ Sign of any
µ-hypothesis that leads directly to the goal (i.e. where ���������� = top-goal) a valence depth of 1, and so on. The
policy value, Pv, of any node ������ at some depth n in the DPM is then expressed as a summation of individual
cost estimates ((Ce)

v) at different valence depths on the least cost path by:

Pv(
������) ← min (∑

=

=

nv

v 1

(Ce)
v) (eqn. 5)

The policy value for each Sign ������ implicated in the DPM is computed by adding the cost estimate for its
transition to the minimum cost of the path to its ���������� node. If a lower cost path is encountered the spreading
activation is re-activated for that node to minimise path costs at higher valence levels.

Construction of the Dynamic Policy Map is complete when there are no further µ-hypotheses that can
be implicated, and no further path cost minimisation can occur. Following construction of the DPM the
DEM has an estimate of the total “cost” to attain the top-goal for every ������ implicated in the map. Once
DPM construction is complete, the DEM may simply select the action associated with (min(Pv(

������ ∈ ������)) in
the µ-hypothesis containing that ������ and route it to the robot.

If a currently active Sign is included as a node in the DPM (DPM ∩ ������), the action � � included in the µ-
hypothesis arc associated with the Sign node with the lowest Pv (eqn. 5) is selected. This is the first action
of a potentially long sequence of actions with the lowest overall estimated cost to achieve the top-goal.
Where there is no intersection between the set of active Signs and nodes on the DPM, an exploratory action
is selected, or the robot may wait for guidance from the operator. These new actions will either (1) reach
the goal directly, (2) lead to a situation where a action selection from the DPM may continue, or (3) cause
new µ-hypotheses to be created, which in turn expands scope of the DPM. The DPM is recomputed
frequently, whenever goals change, new µ-hypotheses are formed or existing ones have undergone
sufficient corroboration to indicate that a different solution path may be preferable.

 The DPM is not a plan; it is a mapping between sensory conditions and “best” (as defined by the
sequence of lowest policy values) action to take in each case. It does not define a path from start to finish;
rather it is a characterisation of the Signs known to the system according to an estimated cost from that
Sign to the top-goal. In use it has the form of a reactive look-up table, “ if this is the current situation, then
select this action” . In this respect, it is similar to the policy map constructed by some classes of
reinforcement learning algorithms, notably those using Q-learning ([18], [20], [21]). The DEM is
profoundly different in that the policy is computed (and re-computed) frequently and quickly, relative to a
specific goal, rather than as an iteratively formed policy estimating future discounted and anonymous
rewards.

While not a “plan” in the conventional sense, it is possible to construct a policy path from the DPM, a
summary of the “best estimate” path through the graph from the current situation to the desired goal. A
policy path appears rather similar to a “plan” , indicating the actions that would be taken and the “estimated
cost” to reach the top-goal at each step.

7 An Example

To ill ustrate the two essential of the properties of the DEM algorithm, unsupervised learning and policy
map generation, figure 1 shows a simulated robot learning task for navigation. The robot may recognise
some 74 individual locations on a grid within the environment. These equate directly to individual Signs
(and, in this instance, to “states”). The robot is supplied with actions to traverse between locations. These
experimental conditions, but not the actual layout, accurately reflect those used by Sutton [18]. We note
that, in simulation, each action takes, on average, 2.66 seconds. This is used as the action cost. Initially the
robot is allowed 2000 exploratory (randomly selected) actions. No goal is set nor any other form of reward
provided during this period, nevertheless a Sign List and a corpus of µ-hypotheses is constructed in the
Hypothesis List by the novelty and unexpected event methods, and subsequently corroborated. Random
exploration is inefficient in this environment, the robot tending to become “ trapped” in “rooms” for
extended periods, but this number of actions ensures that every location is visited more than once. In a
situation with operator intervention the robot may be guided around the environment dramaticall y reducing
the overall exploration time.

Immediately following this period of exploration the location “A” is established as top-goal. The DEM
computes the Dynamic Policy Map visualised in Figure 1a. Column heights indicate the Policy Value (the
minimum total cost estimate) from that Sign/location (their position) to the current goal Sign/location. The
graphs do not indicate the action associated with each Sign. The action is selected from the policy map
according to the minimum cost path. After so much exploration, the task is learnt well . The Policy Values
shown in the Dynamic Policy Map correspond closely to our intuition of the “cost gradient” , flowing from

“ room” edges, through “doors” , along the central “corridor” etc. In most robotic applications there is no
clear mapping of cost estimate to place and satisfactory visualisation is harder to achieve (but the policy
path provides a partial indication). Next location “B” is made top-goal, and the DPM immediately adopts
the Policy Value configuration of Figure 1b. Figure 1c shows the DPM Policy Values for location “C” . The
spreading activation algorithm described here is fast, the DPM in these examples being computed in “real-
time” (<10mS on a 166MHz Pentium P5 running Linux). Witkowski [23] describes an extensive series of
investigations using the DEM under a variety of learning conditions, imposed noise and varying
environments.

0

3

6

9 12

0

4

0
10
20
30
40
50

60

 P

v(
lo

ca
ti

o
n

)

0

3

6

9 12

0

4

0
10
20
30
40
50

60

P

v(
lo

ca
ti

o
n

)

0

3

6

9

12

0

4

0
10
20
30
40
50

60

a: DPM to goal location “A”

b: DPM to goal location “B”

c: DPM to goal location “C”
A B C

A

B

C

Notes:
1) α = 0.5, β = 0.2, λ = 1.0
2) Action cost = 2.66
3) Wall locations shown 0.0

12

0

0

7

Front

R
ig

ht
Front Front

Front

L
eft

7

0

Left

0

7
Left

0

7

Ri
gh

t

Figure 1: Robot Task and Dynamic Policy Maps for Different Goal Locations

8 Applying the DEM to Robot Teleoperation

Robot teleoperation is used extensively in the nuclear and chemical industries where the operating
environment poses direct physical danger, and in offshore and pipeline industries and space exploration
where human access is highly restricted, particularly hazardous or acutely expensive ([11], [24]).
Teleoperation is finding application in humanitarian tasks such as bomb disposal and mine clearance with
their clear dangers ([13]). Increasingly it is being considered for applications in the agricultural, security
and construction industries where, although not overtly hazardous, socio-economic arguments can be made
in favour of the adoption of teleoperation.

Early teleoperator robots provided direct coupling between human operator and robot with direct visual
feedback, through a hazard resistant viewing window or via CCTV images. Increasingly computers and
additional instrumentation have been incorporated to provide a more natural control interface to reduce the
operator stress and difficulty associated with managing so many degrees of freedom and so greatly increase
productivity and effectiveness. Additional problems arise as the distance between operator and robot
increases, and where the robot is mobile. In part, these relate to the provision of communications between
the operator and the robot. Clearly where a cable or fibre optic connection may be maintained between base
station and robot high data rates may be maintained reliably. In some important applications, where
remotely operated mobile vehicles must be sent into emergency situations the cable itself becomes a serious
liabili ty. In these situations the cable may become entangled on obstacles or severed. Alternative
communications methods, such as radio data links, give rise to other problems, including restricted
bandwidth and tendency to signal dropout or loss due to signal path occlusion. Particularly demanding
applications, such as remote space exploration, highlight all these problems, restricted bandwidth due to
strict power constraints, priority to mission (rather than control) data, tendency to data interruption and,
additionally, long delays in the “control loop” .

It may seem incongruous to attempt to apply an ostensibly unsupervised learning method to address
problems of supervised robot operation, but the combination brings advantages to both. For the operator the
robot may eventuall y be allowed to recommend actions appropriate to the tasks being performed, thereby
sharing and so reducing operator effort loading. Under certain circumstances (such as long communications
delays), it may further be appropriate to communicate with the robot in terms of task “goals” , rather than
individual actions. Where communications is interrupted or lost, the robot might be tasked to continue with
its mission goals unsupervised. In turn the learning algorithm is presented with a stream of exemplar Signs
and Actions which are relevant to the tasks it will subsequently perform. At various time the operator may
also pick certain Signs to act as goals. Only when the operator elects to assert those goals will the Dynamic
Expectancy Model create a Dynamic Policy Map and produce candidate actions for the robot.

As Barnes and Counsell [1] have pointed out “ it can be very disconcerting for an operator to realise
suddenly that a robot is apparently ignoring his instructions and instead executing its own set of
commands!” To avoid the disadvantages of inappropriate or unexpected lapses into autonomy we exploit
some properties of the DEM:

1) Learning of µ-hypotheses and goal-directed action selection generation are independent (though
inter-related) processes.

2) Exploratory selection behaviours can be inhibited.
3) Both tactical and strategic learning takes place continuously regardless of the source of Signs and

Actions.
4) Unless a top-goal is explicitly established by the operator (or mission goals are enabled) the

algorithm will not create a Dynamic Policy Map and so be able to propose actions.
Figure 2 shows an architecture for shared control. To the right is the remote vehicle, with local computer
resource to: (1) input sensor information and pre-process it into a stream of Signs, (2) accept the action
stream and present it to the actuators and (3) run the DEM controller. To the right is a representation of the
operator workstation. It has apparently standard components, screens to present sensor information to the
operator and a control panel allowing the operator to select robot actions. Between them are shown a
number of data paths, which may be subject to bandwidth restriction and/or delay. Note the arrangements
made for sensing and control information to be distributed and shared between robot, DEM controller and
the operator. The sensor stream is split , following its conversion at the Sign level, one copy of the stream
(‘S2’) being sent to the DEM algorithm and one (‘S1’) to the operator station.

� �� �

� �

DPM

� ���� � � � �

“Haptic” interface

Sense and Action Displays

Command Panel

A2

A1

� �

S1

S1
Sensor
Information
from Robot

S2A2

Actions
to Robot

�	��	�

A5
add

goals

A3

A1

DPM
selected
actions

Robot
Actions

A4 - Routing switch
Communications
channel

DEM Controller

Operator Workstation

Figure 2: Architecture for Shared Control

The action command pathway is more interesting. Path ‘A1’ is the normal connection from operator and
robot. Path ‘A2’ routes the action output of the DEM controller to the operator workstation, allowing the
operator to intercept and, if necessary, override any actions initiated by the controller. The path ‘A3’ f eeds
the actual command sent to the robot into the DEM controller. This ensures that the learning mechanism
uses actual commands in order to update the correct µ-hypotheses and learn valid predictions. When the
DEM controller is acting normally (“stand alone”) the selected action would be routed directly to the

learning component). A “routing switch” at ‘A4’ allows actions selected by the controller to be sent directly
to the robot. The operator may activate this switch if autonomous activity is required, or it may be closed
automatically if the communications link becomes inoperative. In this latter case, it is appropriate to ensure
the Goal List was pre-loaded with mission goals to initiate construction of the DPM and selection of
purposive actions. Goal setting is treated as a type of action that the operator can make2. Goals are extracted
from the action stream and directed to the Goal List in the DEM controller (path ‘A5’).

The action stream path represented by ‘A1’ and ‘A2’ throws up a particularly intriguing application for
programmable “haptic” (force reflecting) input devices, such as joysticks3. Conventionall y these are used to
provide the operator with a sensation of the force or resistance encountered at the robotic effector. The
possibili ty presented here is to use the force component to indicate “ intention” , rather than physical
feedback. Normally the joystick is used to select actions from a screen of options. Attempts to select invalid
actions can be programmed to present considerable resistance, attempts to select potentially problematic
actions signaled by programming an imposed vibration on the grip as the option is approached. When the
DEM controller is selecting actions, the operator may monitor the actions proposed both on the screens and
by programmed movement of the joystick. However, if events appear to be taking an unsatisfactory turn he
can apply a littl e extra force to overcome the resistance and so override the action. Clearly there are a
number of HCI related issues to be considered, as well as how genuine force feedback information may be
merged with the “intention” feedback. It also seems likely that this option will only be suited to terrestrial
applications or “ training” sessions where the time delay component is minimal.

In operation, then, the DEM controller is started, the various Lists empty. With exploratory action
selection disabled and no goals available to the controller, the robot just awaits operator action selection.
Whenever the operator selects an action a stream of action and Sign change events enters the DEM
controller. Newly encountered Signs and actions are registered into their respective Lists. Novel or
unpredicted Signs trigger the µ-hypothesis creation methods, and the Hypothesis List is established.
Whenever known “context-action” situations are encountered individual µ-hypotheses are activated, make
their predictions and have their confidence measures strengthened or weakened according to the eventual
outcome through tactical learning. So far, the operator has only been aware of a robot that reacts to his
commands. The DEM controller has, during this time, been both acquiring and corroborating a substantial
List of µ-hypotheses.

By going about his everyday business remotely controlli ng the robot, the operator has focussed the
learning of the DEM into those areas relevant to the tasks the robot may later be called on to perform
autonomously. In contrast, allowing the controller to perform an exploration of such a large search space by
random exploration (the default exploratory strategy) invites a potentially catastrophic combinatorial
problem. It also sidesteps a host of safety problems related to a robot making strange and unpredictable
actions. Strategies have been developed that can significantly improve exploration performance in large
feature spaces. Prioritized sweeping [10], for example, but these really represent no substitute for the
advantages of guided exploration afforded by operator control.

At any point the operator may elect to designate any of the available Signs as a goal. This will cause the
DEM controller to form a Dynamic Policy Map, and, if at least one of the currently active Signs intersects
the policy map, it will recommend an action. If the controller can make no recommendation the operator
continues to direct the robot towards the desired goal until DPM and

������
 overlap. The operator can override

the controller’s choice or allow it to continue. In deciding whether to intervene the operator can inspect the
“policy path” to the goal and judge if it seems plausible. By not intervening at all the operator in effect
hands over the robot to autonomous control and need only arrange to monitor and replenish the Goal List
from time to time.

9 Summary

This paper has looked at the Dynamic Expectancy Model, which combines an unsupervised learning
algorithm with a method for reactive action selection when presented with specific task goals. We then
propose a “DEM controller” for robot control that works in cooperation with a human operator in a
teleoperation environment and suggest that the combination brings advantages to both. We are concerned
that that the operator should suffer no “nasty surprises” with the robot making unexpected actions

2 This is convenient here, but there are more esoteric reasons why goal setting should be treated as a type of action.
3 Until recently these were expensive, high precision items. Now reasonably engineered consumer units are cheap and
readily available as accessories for the computer games market, and interfaced via a standard MIDI port.

autonomously. In the first stage, then, the operator sees and uses a purely passive robot; but the robot is
observing each action and its outcome and making predictions internally. In the second stage, the operator
may share his task goals with the DEM controller, and the robot will propose candidate actions from the
Dynamic Policy Map formed. The operator may monitor these and override them at will . In the third stage
the operator may communicate to the robot in terms of task goals, and permit fully autonomous operation.

References

[1] Barnes and Counsell (1998) “Haptic Communication for Telerobotic Applications” , Proc. 29th Int.
Symp. on Robotics, “Advanced Robotics: Beyond 2000” , N.E.C., UK

[2] Bratko, I., Urbancic, T. and Sammut, C. (1995) “Behavioural Cloning: Phenomena, Results, and
Problems” , Proc. 5th IFAC Symposium on Automated Systems Based on Human Skill , pp. 143-149

[3]Booker, L.B., Goldberg, D.E. and Holland, J.H (1990) “Classifier Systems and Genetic Algorithms”, in: Carbonell ,
J.G. (Ed.) Machine Learning: Paradigms and Methods, The MIT Press, pp. 235-282

[4] Drescher, G.L. (1991) “Made-up Minds: A Constructivist Approach to Artificial Intell igence”, The MIT Press,
Cambridge, MA

[5] Kaelbling, L.P., Littman, M.L. and Moore, A.W. (1996) “Reinforcement Learning: A Survey” , Journal
of Artificial Intelligence Research, 4, pp. 237-285

[6] Kaiser, M. (1997) “Transfer of Elementary Skills via Human-Robot Interaction” , Adaptive Behavior, 5-
3/4, pp. 249-280

[7] Lin, L-J (1991) “Programming Robots Using Reinforcement Learning and Teaching” , in: Proceedings
of the American Association for Artificial Intell igence (AAAI-91), pp. 781-786

[8] Maclin, R. and Shavlik, J.W. (1996) “Creating Advice-taking Reinforcement Learners” , Machine
Learning, 22, pp. 251-282

[9] Maes, P. (1991) A Bottom-up Mechanism for Behavior Selection in an Artificial Creature, 1st Int. Conf.
on Simulation of Adaptive Behavior 238-246

[10] Moore, A.W. and Atkeson, C.G. (1993) “Prioritized Sweeping: Reinforcement Learning with Less
Data and Less Time”, Machine Learning, 13, pp. 103-130

[11] Nasa (1998) “Nasa Space Telerobotics Program”, http://ranier.oact.hq.nasa.gov/telerobotics.html
[12] Nehmzow, U. and McGonigle, B. (1994) “Achieving Rapid Adaptions in Robots by Means of External

Tuition” , Proc. 3rd Int. Conf. on Simulation of Adaptive Behavior, pp. 301-308
[13] Nicoud, J-D. (1997) “Vehicles and Robots for Humanitarian Demining” , Industrial Robot, 24-2, pp.

164-168
[14] Nilsson, N.J. (1980) “Principles of Artificial Intell igence”, N.Y.: Springer-Verlag
[15] Pomerleau, D.A. (1991) “Eff icient Training of Artificial Neural Networks for Autonomous

Navigation” , Neural Computation, 3, pp. 88-97
[16] Riolo, R.L (1991) “Lookahead Planning and Latent Learning in a Classifier System”, 1st Int. Conf. on

Simulation of Adaptive Behavior, pp. 316-326
[17] Shen, W-M. (1994) Autonomous Learning from the Environment, Computer Science Press, New York
[18] Sutton, R.S. (1990) “ Integrated Architectures for Learning, Planning, and Reacting Based on

Approximating Dynamic Programming” , in Proc. 7th Int. Conf. on Machine Learning, pp. 216-224
[19] Tyrrell , T. (1993) “Computational Mechanisms for Action Selection” , University of Edinburgh, (Ph.D. thesis)
[20] Watkins, C.J.C.H. (1989) “Learning from Delayed Rewards” , King’s College, Cambridge University

(Ph.D. thesis)
[21] Watkins, C.J.C.H. and Dayan, P. (1992) “Technical Note: Q-learning” , Machine Learning, Vol. 8, pp.

279-292
[22] Witkowski, C.M. (1983) “A Parallel Processor Algorithm for Robot Route Planning” , Proc. 8th IJCAI,
pp. 827-829
[23] Witkowski, C.M. (1997) “Schemes for Learning and Behaviour: A New Expectancy Model” , Ph.D.

Thesis, Department of Computer Science, Queen Mary Westfield College, University of London,
February 1997, 257pp

[24] Woodshole (1998) Woodshole Deep Submergence Laboratory (1998) “WHOI DSL Subsea Vehicles” ,
http://www.dsl.whoi.edu/DSL/DSLvehicles.html

