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Abstract

Unsupervised leaning and supervised remote teleoperator control for robots may seem an wnlikely
combination. This paper argues that the cmbination holds advantages for both parties. The operator would
like to “instruct” the robat without any spedal effort, and then be ale to hand over some or all of the tasks
to be performed without loss of overall supervisory control. In return, the leaning algorithm receaves a
continuous gream of exemplar data relevant to the tasks it might later be asked to perform. We consider an
unsupervised learning method, the Dynamic Expedancy Model, and a teleoperator “architedure” offering
just such a serendipitous combination.

1 Introduction

This paper describes the Dynamic Expedancy Model (DEM), which combines an unsupervised leaning
component with a mechanism to creae “Policy Maps’ for adion seledion dynamicdly from this leaned
information as tasks arise or task priorities change. Action seledion and leaning models based on
Reinforcement Leaning ([18], [20], [21], [5] for a broader survey) propagate the effeds of occasiona
reward badkward to rank sense-ad pairings in the form of a “policy map” according to iteratively
developed estimates of future reward. Classfier Systems ([3]) also adopt the notion of propagating the
effects of occasional reward, using a “bucket-brigade” method, and combine behavior seledion with a
genetic dgorithm approach to creae new classifier seledion elements. Action selection may be pre-
defined, with no little or no leaning component ([9], and [19] for a useful review).

Unsupervised leaning is achieved in the Dynamic Expedancy Model by exploiting some interesting
properties of prediction. Prediction is used to drive the leaning processin two ways. First, the occurrence
of unpredicted events allows the system to determine when new predictive rules (“p-hypotheses’) should
be formed - strategic learning. Subsequent the eff ectiveness of these p-hypotheses at making predictions
allows the system to determine their quality without reference to any other source of reward or external
verification - tactical learning. When set agoal the DEM automaticaly computes and maintains a Dynamic
Policy Map (DPM). It may then seled adions readively acording to a airrent percaved situation and a
computed “best estimate” of the remaining effort required to achieve the airrent goal. The DEM develops
the schema based or constructivist view ([4], for example) and dffers from reinforcement learning and
bucket-brigade based methods in two important ways. First, “reinforcement” is generated internally, based
on predictions - the system leans in the ésence of imposed “reward”. Second, the policy map is computed
“on-demand” from learned rules, spedfic to a desired outcome. It is therefore @le to adapt its readive
adion seledion behavior rapidly to changing and widely varying circumstances.

In operation the Dynamic Expedancy Model builds and maintains a number of “list” data-structures.
Sedion 2 defines the threeprincipal lists, the Hypothesis List, the Sign List and the Action List. Sedions 3
and 4 introduce predictions and the Prediction List, and describe how prediction is used to crede p-
hypotheses and verify them. Sedions 5 and 6 introduce goals and the Goal List, and describe the processof
setting tasks and building a Dynamic Policy Map, from which adions may be selected to control a robot
autonomously. Sedion 7 ill ustrates unsupervised leaning and pdicy map construction with a concise
example. The remainder of the paper then considers issues of “skill-transfer” ([6]), in the context of the
Dynamic Expedancy Model, that arise when a human operator works co-operatively with a roba. The
paper further argues that significant advantages will acaue to bah operator and leaning program as a
dired result of this cooperation. Previous reseach in this area([2], [7], [8], [12], [15]) demonstrates that
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skill transfer through learning is both possble and that it can deaease the time required to compl ete tasks.
Although the Dynamic Expedancy Mode takes a radicdly different approach to leaning from these
examples, many of the problems and issues to be aldressed are shared.

A note on ndation. Each of the five lists is denoted by a single, upper case, cdligraphic letter (#
(Hypothesis), S (Sign), A (Action), P (Prediction) and G (Goal)). Individual elements are denoted by lower
case letters in the same font (W & oy p and grrespedively). Sub-sets of lists, and individual elements that
must be identified acoss $eps or cycles are indicated by superscripts (e.g9. $¥). The symbol ‘0’ may be
read as “member of”, ‘(1" as“union of” and ‘n’ as “intersedion of”. The wnnedive ‘[T is best interpreted
as “concurrent with” in this context. Other symbadls are explained as they are encountered.

2 p-Hypotheses, Signsand Actions - Making Predictions

“Knowledge” is acaimulated within the Dynamic Expedancy Model as many individual and independent
three-part predictions, triples referred to as p-hypotheses. They are so named because eab p-hypothesisis
atestable “micro observation” about the roba and its world that can be aeaed, verified and used by the
Model. These predictions are encapsulated into context - adion - outcome triples. All p-hypotheses known
to the DEM at any time ae retained in the Hypothesis List (abbreviated to #€). The form of the p-
hypothesis (ly WO H) is.

h: y’DwJ % (egn. 1)

Ead p-hypothesis encapsulates a “prediction”, which can be rea as “performing the adion avin the

context of § predicts the occurrence of the condition &’ at time t in the future.” This paper builds on the
conjedure that the proper interpretation of this triple is that of a prediction, and that the strength of the
connedion (“ -") should depend only on the predictive performance of the unit. A conventional view
would hold that the strength of the cnnedion should be related to any goa or task spedfic “desirabili ty”
of §’. By adopting the predictive view strength changes can be made internally, just by testing whether the
predicted event did or did not occur, independently of reward o reliance on an external agent to indicae
corredness This leaves the p-hypothesis uncommitted to any particular goal; leaning is not task
dependent. Strength changes can be gplied immediately the prediction is verified, and always attributed to
the spedfic p-hypothesis that made the prediction.

The ontext (&) and outcome (&) terms in egn. 1 are Sgns drawn from the Sign List (abbreviated S,

thus ¢ 0 S, ¢’ 0 S). Signs bath define and detedt situations that can be reaognised by the Model. Signs are
compound items, conjunctions of elemental sensory items (“Tokens’). Thus Signs are derived from, and
form the interfaceto the sensor apparatus available to a physicd roba. At ead cycle in the execution of
the dgorithm ead Sign is either deteded or is absent and so evaluates to active (the condition defined by
the mnjunction of Tokensis met) or inactive (the conditions are not met) for that cycle. All adive Signs for
a g/cle ae held on the Active Sign List $*, a subset of S. The first time aToken is encountered the DEM
automaticdly creaes a Sign (containing only that Token) and adds it to the Sign List. New Signs are dso
appended to a working list $™. This list drives the structural leaning process The (structural) leaning
medanism in turn provides a mechanism to successively refine predictions avail able to the roba by adding
Tokens to the mntext Sign conjunction. Tokens, Signs and adions have no a-priori meaning to the leaning
medhanism in the Model, and may be left anonymous or named arbitraril y to suit operator or user.
Asaspedal caseindividual Tokens (and hencetheir derived Signs) will equate direcly to an observable
“State”, a unique situation detected reliably by the Sign. A Sign may also equate to a “partially observed
state” (P.O. State), a unique situation incompletely deteded by the Sign. Equally, a Sign may just represent
a mlledion of sensory conditions avail able to the roba, from which it must creae predictions of varying
reliability and repeaability. This notion of “State” is useful when considering roba navigation tasks. The
roba wishesto be ale to recognise particular locaions repeaably and so form reliable prediction based on
the (movement) adions it makes. Partially observed locaions lead to unreliable predictions about
movements. In other situations (skill aaquisition, for instance) this notion of “state™ is lessapplicable. In

! Even this notion of “State” ignores the temporal comporent (this place now). Similarly, adding Tokens to a Sign
makes it more restrictive, deleting them lessrestrictive. It is, of course, exadly these astradions that make the Sign a
useful representation.



these drcumstances we exped the formation of many “candidate” p-hypotheses to be aeaed, verified and
discarded while aviablelist is being formed.

Actions, (a; w0 A, the Action List) define the adivities the roba may perform. As Signs defined the
interfaceto the sensory apparatus, adions conned the DEM to physicd roba aduators. Seleded adions
are placal onto the A* (adive) sub-list. Every adion av has associated with it an action cost. The adion
cost measure indicaes the relative effort that will be required to complete the adion. Action costs may be
expressed in any units (such as elapsed time or energy expended) that may be determined and consistently
applied acdossall the dements of A. The adion cost measure will be used in the “cost estimation” process
for goa direded adion seledion. The DEM aso maintains a memory of recent adivations and their
asociated timings for both Signs (from $*) and adions (from A¥). Information held on these activation
tracesis used by the structural leaning component to construct new p-hypotheses.

A p-hypothesis is deemed adive (and so placed on H* whenever bath its context Sign (§) and its
adion (@) are ative simultaneously, (¢ 0 S* 0 a0 A*). A new prediction p is creaed and added to the
Prediction List P for every instance of an adivated p-hypothesis. Note in particular that this mechanism is
invoked for all p-hypotheses that med these aiteria and that a prediction records three items. First the
identity of the Sign predicted (& from the adive p-hypothesis). Second the time (derived from t, egn. 1,
and the arrent time) that the Sign is predicted to occur and third the identity of the p-hypothesis that made
the prediction. Elements of the Prediction List are adive (and so placed on P* when the time element
recorded matches the current time. The presence of adive predictions drives the corroboration process

3 Corr oboration - Tactical Learning

The predictive aility for ead p-hypathesis is recrded in a numeric variable, the corroboration measure
(Cy)- For eath adive prediction, the rrobaation measure of the p-hypothesis responsible for the
prediction (whose identity was recorded at the time of making the prediction) is modified ac@rding to:

Cm = Cm + C((l _Cm) (eqn 2)

where the prediction was successful (that is, when & O S*, & being the Sign recorded at the time of
making the prediction), and
Cn=Cn- B(Cy) (eqn. 3)
where the prediction was unsuccessful. Active predictions are discarded from P oncethis step is complete.
The paositive reinforcement rate, a (0 < a < 1), defines the rate & which successful predictions will
strengthen C,,.. Similarly, the extinction rate, B (0 < B < 1), defines the rate & which C,, will be weakened
by failed predictions. Where no prediction was made the value of C,, remains unchanged. Seguences of

successful (or unsuccessful) predictions give rise to the familiar negatively accéerating learning curve, the
values being normalized such that C,,, rises asymptoticdly toward 1.0 (or fallstoward 0.0).

4 p-Hypothesis Acquisition - Structural Learning

Prediction, or rather the failure to predict an event, drives the structura leaning component of the DEM,
which is resporsible for forming new p-hypotheses. The oppatunity to creade new p-hypotheses is
indicaed by appeaancefor the first time of a previously unknown (“novel”) Sign or by the gopeaanceof a
known but unpredicted (“unexpeded”) Sign. New, unknown, Signs trigger the creation by novelty method,
recdl that the first occurrence of a previously unknown Signis recorded in $™ spedficaly to invoke this
learning method. The gpeaance of an unpredicted, but previously known, Sign invokes the creation by
unexpected event method. Unexpeded Signs are deteded by comparing the adive Prediction List to the
adive Sign List and applying the method to the unpredicted residue (S* - (P* n $%).

In either method a new p-hypothesis is constructed from the novel or unpredicted Signas‘§’”, and a
Sign (&) and adion () drawn respedively from the recorded adivation traceof values in the Sign and
Action Lists. The timing relationship (t in egn. 1) is derived from their relative paositions in the respedive
memory traces. Note that the structural learning mechanism is independent of the source of the Signs and
adions it will employ. Riolo [16] and Shen [17] have described broadly similar strategies for “rule”
credion triggered by “surprise” events.



To limit the rate & which new p-hypotheses are aeaed the user may spedfy a learning probability
rate, A, which determines the probabili ty with which a new p-hypothesis will be formed given one of these
opportunities to doso. The Dynamic Expedancy Model aso defines methods for differentiating partially
eff ective p-hypotheses (by adding Tokens to the existing context Sign), and removing ineffedive ones. The
requirements for such additi onal processs are mnsidered further in [23)].

5 TheAction Selection M echanism

At each execution cycle the roba must have some adion to perform. Normally, the Dynamic Expedancy
Model operates in two dstinct modes for adion seledion (1) Goal directed selection, (2) Exploratory
selection; for the purposes of this paper a third adion seledion option is introduced, (3) Guided selection.
Whenever goal direded adion seledion is s€leded, the dgorithm attempts to construct a Dynamic Policy
Map (DPM) from which it may seled an adion. The @nstruction and use of the DPM is described later.

Where no goal is %t the system seleds adions in exploratory mode. If no exploratory mode is defined,
or it is disabled, then the roba will seled no adions but wait for guided seledion from the operator. In the
current implementation, exploratory seledion is made on arandom basis. Regardless of how the adion was
seleded the leaning medhanism continually monitors the adivities of the robat, and corroborates existing
p-hypatheses and creaes new ones acording to the learning strategies described.

Goals - ingtructions to the system to seled adions with resped to some purpose - are held on the Goal
List (@). Individual goas are drawn from the Sign List. Pladng a Sign on the Goal List is a signal to the
roba that it should be motivated to seled adions that cause that Sign to become adivated (i.e. appea on
S$¥. Each goal Signon G is assgned a priority. The goal with the highest priority at any time is referred to
as the top-goal. Once agoa Sign has been adivated (i.e. it appeas on §%), it is deemed satisfied and
removed automaticaly from the Goal List. The next highest priority goal beammes top-goal, or the Goal
List beacomes empty.

Purposive goals are, by definition, largely domain spedfic - they serve some purpose. The Dynamic
Expedancy Model provides two distinct routes to setting goals. (1) Goals may be programmed into or be
inherent to the robat, or (2) they may be imposed externally by diredly manipulating G. The former route
equates diredly to our intuitive notion of primary reinforcer. Some things, such as food for a hungry
animal, or water for a thirsty one, inherently motivate becaise they are “programmed” to do so. In the
mobil e roba context the detedion of a“battery low” Sign may cause an “on_charge” Signto be placed on
the Goal List, posshbly with a priority related to the extent of battery discharge. The latter route provides an
operator with a method with which to manipulate the goal-driven behaviour of the robat diredly.

6 Building the Dynamic Policy Map

Whenever atop-goal is avail able, the DEM will attempt to create aDynamic Policy Map (DPM) to form a
sequence of links from every other Signin S to the Sign currently set astop-goal. The DPM is conveniently
represented as a graph where @ntext Signs asociated with individual p-hypotheses represent the nodes
and adions embedded within individual p-hypotheses the acs. The DPM is creaed by a process of
spreading activation ([9], [22]) from the top-goal. The method wsed to construct the DPM is a modified
form of the standard breadth-first graph search/construction algorithm ([14]). Each arc has asociated with
it a cost estimate, C,, value. This cost estimate is computed from the given adion cost of @ and the C,,
(egns. 2 and 3) value defined ealier:

Ce — adion_cost(a) / Cp, (ean. 4)

Consider a situation where C,,, is smply p(number of successful predictionsjtotal predictions made) by a
p-hypathesis - the probability that the p-hypothesis predicts corredly. The st estimate value C, is then
reasonably interpreted as the total estimated cost for the average number of attempts that must be made
with the given p-hypothesis to achieve the transition. A similar interpretation may be placead on the case for
C shownin egn. 4, with the proviso that the “averages’ are now biased towards recent experiences.

Each node (Sign) in the graph will aaquire avalence depth, v, indicaing the number of arcs, n, that
must be traversed to read the top-goal “node”. The top-goal has a valence depth of zero, the § Sign of any
u-hypathesis that leads diredly to the goal (i.e. where §’’ = top-goal) a valence depth of 1, and so on. The
policy value, P,, of any node § at some depth n in the DPM is then expressed as a summation of individual
cost estimates ((C,)") at different valence depths on the least cost path by:



PAs) « min (Z (€)) (eqn. 5)

The policy value for ead Sign § implicated in the DPM is computed by adding the st estimate for its

transiti on to the minimum cost of the path to its §’’ node. If alower cost path is encountered the spreading
adivation isre-adivated for that node to minimise path costs at higher valencelevels.

Construction of the Dynamic Policy Map is complete when there ae no further p-hypatheses that can
be implicated, and no further path cost minimisation can occur. Following construction of the DPM the
DEM has an estimate of the total “cost” to attain the top-goal for every § implicated in the map. Once
DPM construction is complete, the DEM may simply seled the adion assciated with (min(Py(s’ 0 %) in
the p-hypothesis containing that §’ and route it to the roba.

If a aurrently adive Signisincluded as anodeinthe DPM (DPM n §%, the adion avincluded in the p-
hypaothesis arc asociated with the Sign node with the lowest P, (egn. 5) is sleded. This s the first adion
of a potentially long sequence of adions with the lowest overal estimated cost to achieve the top-goal.
Where thereis no intersedion between the set of adive Signs and nodes on the DPM, an exploratory adion
is ®leded, or the roba may wait for guidance from the operator. These new adions will either (1) reat
the goal diredly, (2) lead to a situation where a ation selection from the DPM may continue, or (3) cause
new p-hypotheses to be aeaed, which in turn expands sope of the DPM. The DPM is recomputed
frequently, whenever goals change, new p-hypotheses are formed o existing ones have undergone
sufficient corroboration to indicate that a different solution path may be preferable.

The DPM is not a plan; it is a mapping between sensory conditions and “best” (as defined by the
sequence of lowest palicy values) adion to take in each case. It does not define apath from start to finish;
rather it is a charaderisation of the Signs known to the system acarding to an estimated cost from that
Sign to the top-goal. In use it has the form of areadive look-up table, “if thisisthe aurrent situation, then
seled this adion”. In this resped, it is gmilar to the poicy map constructed by some dasss of
reinforcement leaning algorithms, notably those using Q-leaning ([18], [20], [21]). The DEM is
profoundly different in that the padlicy is computed (and re-computed) frequently and quickly, relative to a
spedfic goal, rather than as an iteratively formed pdicy estimating future discounted and anonymous
rewards.

While not a “plan” in the conventional senseg, it is possible to construct a policy path from the DPM, a
summary of the “best estimate” path through the graph from the arrent situation to the desired goal. A
policy path appeas rather similar to a“plan”, indicating the adions that would be taken and the “estimated
cost” to read the top-goal at eadt step.

7 An Example

To ill ustrate the two esential of the properties of the DEM algorithm, unsupervised leaning and pdicy
map generation, figure 1 shows a simulated roba leaning task for navigation. The roba may recognise
some 74 individual locations on a grid within the environment. These equate diredly to individual Signs
(and, in this instance, to “states’). The robat is supplied with adions to traverse between locaions. These
experimental conditions, but not the adual layout, acarately refled those used by Sutton [18]. We note
that, in simulation, ead adion takes, on average, 2.66 seands. Thisis used as the adion cost. Initially the
roba is allowed 2000exploratory (randomly seleded) adions. No goal is %t nor any other form of reward
provided during this period, neverthelessa Sign List and a arpus of p-hypotheses is constructed in the
Hypothesis List by the novelty and unexpeded event methods, and subsequently corrobarated. Random
exploration is inefficient in this environment, the roba tending to becme “trapped” in “rooms’ for
extended periods, but this number of adions ensures that every locdion is visited more than once In a
situation with operator intervention the roba may be guided around the environment dramaticadly reducing
the overall exploration time.

Immediately following this period d exploration the location “A” is established as top-goal. The DEM
computes the Dynamic Policy Map visualised in Figure 1a. Column heights indicae the Policy Value (the
minimum total cost estimate) from that Sign/location (their paosition) to the current goal Sign/location. The
graphs do not indicate the ation assciated with ead Sign. The adion is slected from the pdlicy map
acording to the minimum cost path. After so much exploration, the task is leant well. The Policy Values
shown in the Dynamic Policy Map correspond closely to aur intuition of the “cost gradient”, flowing from



“room” edges, through “doars’, along the central “corridor” etc. In most robaic goplications there is no
clea mapping of cost estimate to place ad satisfactory visualisation is harder to achieve (but the policy
path provides a partial indicaion). Next locaion “B” is made top-goal, and the DPM immediately adopts
the Policy Value mnfiguration of Figure 1b. Figure 1c shows the DPM Policy Vaues for locaion “C”. The
spreading adivation algorithm described here is fast, the DPM in these examples being computed in “red-
time” (<10mS on a 166MHz Pentium P5 running Linux). Witkowski [23] describes an extensive series of
investigations using the DEM under a variety of leaning conditions, imposed noise axd varying
environments.
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8 Applyingthe DEM to Robot Teleoperation

Roba teleoperation is used extensively in the nuclea and chemicd industries where the operating
environment poses dired physicd danger, and in offshore and pipeline industries and space &ploration
where human access is highly restricted, particularly hazadous or aautely expensive ([11], [24]).
Teleoperation is finding applicaion in humanitarian tasks such as bomb disposal and mine deaance with
their clea dangers ([13]). Increasingly it is being considered for applications in the agricultural, security
and construction industries where, athough not overtly hazadous, socio-economic arguments can be made
in favour of the aloption of teleoperation.

Early teleoperator robots provided direa coupling between human operator and robot with dired visual
feedbadk, through a hazad resistant viewing window or via CCTV images. Increasingly computers and
additional instrumentation have been incorporated to provide amore natural control interfaceto reduce the
operator stressand difficulty associated with managing so many degrees of freedom and so gredly increase
productivity and effediveness Additional problems arise & the distance between operator and robot
increases, and where the robat is mobile. In part, these relate to the provision of communications between
the operator and the roba. Clealy where acable or fibre optic connedion may be maintained between base
station and roba high data rates may be maintained reliably. In some important applicaions, where
remotely operated mobil e vehicles must be sent into emergency situations the cale itself becomes a serious
liability. In these situations the cdle may bemme entanged on obstades or severed. Alternative
communicaions methods, such as radio data links, give rise to ather problems, including restricted
bandwidth and tendency to signal dropaut or loss due to signal path ocdusion. Particularly demanding
applicaions, such as remote space &ploration, highlight all these problems, restricted bandwidth due to
strict power constraints, priority to mission (rather than control) data, tendency to data interruption and,
additionally, long delaysin the “control loop’.



It may seem incongruous to attempt to apply an ostensibly unsupervised learning method to address
problems of supervised roba operation, but the cmbination brings advantages to bah. For the operator the
roba may eventualy be dlowed to recommend adions appropriate to the tasks being performed, thereby
sharing and so reducing operator effort loading. Under certain circumstances (such as long communicaions
delays), it may further be gpropriate to communicae with the roba in terms of task “goals’, rather than
individual adions. Where aommunicationsisinterrupted or lost, the roba might be tasked to continue with
its mission goals unsupervised. In turn the leaning algorithm is presented with a stream of exemplar Signs
and Actions which are relevant to the tasks it will subsequently perform. At various time the operator may
also pick certain Signsto ad as goals. Only when the operator eleds to assert those goals will the Dynamic
Expedancy Model creae aDynamic Policy Map and produce candidate adions for the robat.

As Barnes and Counsell [1] have pointed out “it can be very disconcerting for an operator to redise
suddenly that a roba is apparently ignoring his instructions and instead executing its own set of
commands!” To avoid the disadvantages of inappropriate or unexpeded lapses into autonomy we exploit
some properties of the DEM:

1) Leaning of p-hypotheses and goal-direded adion seledion generation are independent (though

inter-related) processes.

2) Exploratory selection behaviours can be inhibited.

3) Both tadicd and strategic leaning takes place ontinuously regardlessof the source of Signs and

Actions.
4) Unless a top-goa is explicitly established by the operator (or mission goals are enabled) the
algorithm will not creae aDynamic Policy Map and so be ale to propose adions.
Figure 2 shows an architecure for shared control. To the right is the remote vehicle, with locd computer
resource to: (1) input sensor information and pre-processit into a stream of Signs, (2) accet the adion
stream and present it to the aduators and (3) runthe DEM controller. To the right is a representation of the
operator workstation. It has apparently standard components, screens to present sensor information to the
operator and a antrol panel alowing the operator to seled robot adions. Between them are shown a
number of data paths, which may be subjed to bandwidth restriction and/or delay. Note the arangements
made for sensing and control information to be distributed and shared between roba, DEM controller and
the operator. The sensor stream is lit, following its conversion at the Sign level, one wpy of the stream
(“S2') being sent to the DEM algorithm and one (* S1’) to the operator station.
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Figure 2: Architecturefor Shared Control

The adion command pathway is more interesting. Path ‘A1’ isthe normal connedion from operator and
roba. Path ‘A2 routes the adion output of the DEM cortroller to the operator workstation, alowing the
operator to intercept and, if necessary, override any actions initiated by the cntroller. The path ‘A3’ feals
the adual command sent to the roba into the DEM controller. This ensures that the learning mechanism
uses adual commands in order to update the @rrea p-hypotheses and lean valid predictions. When the
DEM controller is ading normally (“stand alone”) the seleded adion would be routed dredly to the



learning component). A “routing switch” at ‘A4’ alows adions sleded by the ntroller to be sent diredly
to the robat. The operator may adivate this switch if autonomous adivity is required, or it may be dosed
automaticdly if the ommunications link beacmes inoperative. In this latter casg, it is appropriate to ensure
the Goal List was pre-loaded with mission goals to initiate cnstruction of the DPM and seledion of
purposive adions. Goal settingis treated as a type of adion that the operator can make?. Goals are extraded
from the adion stream and direded to the Goal List in the DEM controller (path ‘AS’).

The adion stream path represented by ‘A1’ and ‘A2’ throws up a particularly intriguing application for
programmable “ haptic” (forcerefleding) input devices, such as joysticks®. Conventionally these ae used to
provide the operator with a sensation of the force or resistance encountered at the robaic efedor. The
posshility presented here is to use the force mmponent to indicae “intention”, rather than physicd
feadbadk. Normally the joystick is used to seled adions from a screen of options. Attempts to select invalid
adions can be programmed to present considerable resistance, attempts to seled poatentialy problematic
adions sgnaled by programming an imposed vibration on the grip as the option is approached. When the
DEM controller is ®€leding adions, the operator may monitor the adions proposed both on the screens and
by programmed movement of the joystick. However, if events appea to be taking an unsatisfactory turn he
can apply a little extra force to overcome the resistance axd so override the adion. Clealy there ae a
number of HCI related issues to be ansidered, as well as how genuine force feedbadk information may be
merged with the “intention” feedbadk. It also seems likely that this option will only be suited to terrestrial
applicaions or “training” sesdons where the time delay component is minimal.

In operation, then, the DEM controller is garted, the various Lists empty. With exploratory adion
seledion disabled and no goals avail able to the @ntroller, the roba just awaits operator adion seledion.
Whenever the operator seleds an adion a stream of adion and Sign change events enters the DEM
controller. Newly encountered Signs and adions are registered into their respedive Lists. Novel or
unpredicted Signs trigger the p-hypothesis creaion methods, and the Hypothesis List is established.
Whenever known “context-adion” situations are encountered individual p-hypotheses are adivated, make
their predictions and have their confidence measures grengthened or weakened acarding to the eventual
outcome through tadica leaning. So far, the operator has only been aware of a roba that reads to his
commands. The DEM controller has, during this time, been both aaquiring and corroborating a substantial
List of p-hypotheses.

By going about his everyday business remotely controlling the roba, the operator has focussd the
leaning of the DEM into those aess relevant to the tasks the roba may later be cdled on to perform
autonomously. In contrast, allowingthe controller to perform an exploration of such alarge seach spaceby
random exploration (the default exploratory strategy) invites a potentially caastrophic combinatorial
problem. It also sidesteps a host of safety problems related to a robot making strange ad unpredictable
adions. Strategies have been developed that can significantly improve exploration performance in large
feaure spaces. Prioritized sweeping [10], for example, but these redly represent no substitute for the
advantages of guided exploration afforded by operator control.

At any point the operator may eled to designate any of the available Signsasagoal. Thiswill cause the
DEM controller to form a Dynamic Policy Map, and, if at least one of the currently adive Signs interseds
the policy map, it will recommend an adion. If the mntroller can make no recommendation the operator
continues to dred the roba towards the desired goal untii DPM and S* overlap. The operator can override
the antroller’s choice or alow it to continue. In dedding whether to intervene the operator can insped the
“policy path” to the goal and judge if it seems plausible. By nat intervening at all the operator in effect
hands over the roba to autonomous control and need only arrange to monitor and replenish the Goal List
from time to time.

9 Summary

This paper has looked at the Dynamic Expedancy Model, which combines an unsupervised leaning
algorithm with a method for readive adion seledion when presented with spedfic task goals. We then
propose a“DEM controller” for roba control that works in cooperation with a human operator in a
teleoperation environment and suggest that the combination brings advantages to bah. We ae @ncerned
that that the operator should suffer no “nasty surprises’ with the roba making unexpeded adions

2 Thisis convenient here, but there e more esoteric reasons why goal setting should be treaed as a type of adion.
3 Until recently these were expensive, high predsion items. Now reasonably engineeed consumer units are chegp and
readily avail able & accessories for the computer games market, and interfaced via astandard MIDI port.



autonomoudly. In the first stage, then, the operator sees and uses a purely passive roba; but the roba is
observing eat adion and its outcome and making predictions internally. In the second stage, the operator
may share his task goals with the DEM controller, and the roba will propase candidate adions from the
Dynamic Policy Map formed. The operator may monitor these and override them at will. In the third stage
the operator may communicae to the roba in terms of task goals, and permit fully autonomous operation.
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