Chapter 2

2. Theoriesof Learning

Leaning in animals and humans has been intensively studied in the scientific
manner since the beginning of this century. Notwithstanding the quantity and
quality of research undertaken during this period radicdly new theories describing
the nature of the leaning processin animals have gpeaed relatively infrequently.
Thefirst part of this chapter will concentrate on the major theoreticd stances of the
20" century. In particular the classical conditioning paradigm developed by
Russan acalemician Ivan P. Pavlov (18431936); reinforcement theories, initialy
postulated by Edward L. Thorndike (18741949; and the operant conditioning
paradigm, established by B.F. Skinner (19041990. The second part of the dhapter
concentrates on the agnitive viewpoint originally developed by Edward C.
Tolman (18861959. There ae many comprehensive reviews of natural leaning,
Hal (1966, Bolles (1979, Bower and Hilgard (1981, Schwartz (1989,
Lieberman (1990 and Hergenhahn and Olson (1993, to cite aseledion. Bower
and Hilgard's classc “Theories of Leaning’, now in its fifth edition since first
publication in 194§ is used as a primary source for this work. Keasdey (1996 has
prepared summaries of some 50 “learning theories’, although many of these refer
to gpedfic leaning phenomena in humans or to theories of educaion and
instruction.

Given the quantity of experimental data acemulated supporting ead of the
various approades to leaning it is well-nigh impossble to totally discount their
relevance, yet ead will effedively explain or predict only a limited range of
experimentally obtained data. Indeed ead position will have been modified, often
several times, in the light of new results. In the context of the “biologicdly
inspired” animat these existing theories and experimental studies provide the
underlying concepts and results used to guide design dedsions. Emphasis will be
placeal on determining the role played by any particular phenomenon in influencing
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or determining the overall behaviour of the animat - a “systems approad"’, rather
than a focus on exact duplication or representation of every phenomenon.

A pardlel and more recent approac to the understanding of learning has arisen as
“madine leaning”, which attempts to synthesise, describe and analyse leaning
phenomena & a cmputational or algorithmic process (Carbonell, 199Q Langley,
1996 for reviews and summaries). There has been only limited crossfertili sation of
ideas and the two approades, natural and artificial, have tended to remain largely
distinct. Neverthelessthe computer provides an effedive platform on which to test
ideas and theories related to natural learning.

This chapter will discuss computational models of leaning germane to the
development of a learning model later in this work. Each of the computational
modelsin the first part of the dhapter is broadly recgnisable & having a “stimulus-
response” or “behaviourist” format, models that seled adions on the basis of
prevailing input stimuli. The basis of future doices being mediated by a (typicdly
externally) applied reward or error indicaion. Three main approadies will be
considered in some detail, the “reinforcement leaning” model, the “classfier
system” model and the “conredionist” or “artificial neura network” (ANN)
model. The cmmputer models of leaning described in the second pert of the
chapter clearly owe their origins to the cognitive standpoint.

2.1. Classical Conditioning and Associationism

Classical conditioning pairs an arbitrary sensory stimulus, such as the sound of a
bell, to an existing reflex adion inherent in the subjed animal, such as the blink of
an eyelid when a puff of air is direded into the e/e. The phenomenon was first
described by Ivan Paviov during the 1920s, and the experimental procedure is
encgpsulated by the ealiest descriptions provided by Paviov. Dogs slivate in
response to the smell or taste of mea powder. Salivation is the unconditioned
reflex (UR), instigated by appeaance of the unconditioned stimulus (US), the mea
powder. Normally the sound of a bell does not cause the animal to salivate. If a bell
is unded almost smultaneoudly with presentation of the mea powder over a
number of trials, it is subsequently found that the sound of the bell aone will cause
salivation. The sound has becomeoaditioned stimulus (CS).
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Pavliov and his co-workers gudied the phenomenon extensively. By surgicaly
introducing a fistula into the dog’s throat, saliva may be drained into a cdibrated
phial and production measured dredly as an indicaion of response strength.
Taking care to ensure that extraneous sensory signals are excluded, the strength of
asociation adopts a distinctive aurve. Initial asociation trials dow little response,
followed by a period duing which the aciation gains effed rapidly, finaly
reading an asymptotic level, possbly due to the production capadty of the gland.
Eadh tria takes the form of one or more pairings of US and CS to establish the
asociation, followed by one or more presentations of the CS aone to test the
strength of the dfed. Several additional feaures of the phenomena ae
noteworthy. If, subsequent to establishing an asciation, the CS is presented
without further CS/US pairings the dfed diminishes over following trids, a
procedure known aexperimental extinction.

The animal’ s response to the CS may be manipulated in a number of ways. The CR
will typicdly be evoked to a CS similar, but not identicd, to that used for the initial
conditioning; for instance, tones of a similar but different frequency. This grea of
CS stimuli may be refined by randomly presenting positive trials, CS+, where the
asociation is present, and the CS tone is at the desired centre point frequency with
unasciated CS- trials where the tone is not at the desired frequency. After a
suitable number of trials the subjed animal indeead responds to the CS+, but not the
CS- dtimuli. The procedure is known as differentiation, and has been used in
various forms to determine the sensory aauity of various gedes. Smilarly the
spread may be broadened by a complementary process of generalisation. It has
further been found that the speed and strength with which the conditioned
asciation may be formed is criticdly dependant on the timing relationship
between presentation of the CS and US. It is aimost universally noted that the CS
must precede the US for the anditioned association to develop. This time may be
in the order of severa hundred milliseconds, but the optimal interval depends on
the nature of the association and the spedes under test. This observation hes lead
some observers to comment as to an anticipatory or predictive nature of the
phenomenon (Bartand Sutton1982).
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Clasgcd conditioning has been extensively reseached. Razan (1971 indicaes
that he has identified “tens of thousands of ... published experiments and
discussions of Paviov launched research and thought,” and provides a
bibliography of some 1,500 titles of (primarily) Rusgan and American reseach. It
is clea that the phenomenon is widespread and highly repliceble. Bower and
Hilgard (1981 p58 have cmmented “almost anything that moves, squirts or
wiggles could be conditioned if a response from it can be reliably and repeatably
evoked by a controllable unconditioned stimulus.” Rescorla (1988 argues that
Pavlovian conditioning still has much to offer in our understanding of the learning
of relationship between events, rather than as a smple onredion to the
unconditioned response. It is, however, clea that pure aciationism of this form
provides limited opportunity to explain the majority of animal learning phenomena.

Several effedive models of classcd conditioning have been produced. Grey Walter
(Walter, 1953 constructed an eledronic model (machina docilis) from thermionic
valves that produced a quite reasonable smulation of the phenomenon. The unit
was aso designed to integrate with hs ingenious freeroving, light-seeking
automata machina speculatrix; also constructed from miniature values, relays and
motors. Barto and Sutton (1982 and Klopf (1988 have produced computer
simulations of single neurone models cgpable of simulating a wide range of
experimentally observed conditioning effeds. Scutt (1994 describes a smple
adaptive light seeking vehicle based on a classical conditioning learning strategy.

2.2. Reinforcement Learning

Reinforcement learning stands as one of the most enduring models of the learning
process First described by Edward L. Thorndike (18741949 as the law of effect.
This model of leaning arose from Thorndike's observations of ca behaviour in its
attemptsto escape from a cage goparatus incorporating a lever the cda may operate
to open an exit hatch. Cats read as if to escgpoe on being enclosed in this manner.
Thorndike noted that at first the ca would exhibit a wide range of behaviours
including attempting to squeezethrough any opening, clawing, biting and striking
at anything loose or shaky3. Eventually one of these adions by the animal operates

Sparaphrased from Thorndik&911)
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the lever and it can escgpe. When placel in the goparatus on successve occasions
the animal would typicdly escgpe sooner and eventualy, after many trials, lean to
operate the lever immediately.

These observations introduced several ideas. First was that of leaning by trial and
error; the subjed makes adions essentially at random until some “satisfacory”
outcome is encountered. Seand was that leaning appeaed to be an incremental
process performance improves gradudly with pradice Third was that of
reinforcement, the probability that the animal will repea some adion isincreased if
it has in the past been following dredly by a “reinforcing” or “rewarding”
outcome. The more frequently the reinforcing outcome, the higher the probabili ty,
strength or frequency that the prior behaviour will be seleded. It rapidly became
apparent that some outcomes were inherently reinforcing, such as presenting food
to a hungry animal, while others were not. Equaly, the removal of an adverse
condition (such as being trapped in a cage) might be & effedive areinforcer aswas
being presented with food when hungry. The presentation of a wholly adverse
outcome (aversion or punishment schedules), such as the gplicaion of eledric
shock, leads to rather less predictable results. Reinforcement leaning dffers
substantially from that of clasgcd conditioning in that it is contingent upon the
arrival of a reinforcing “reward”, whereas classcd conditioning only depends on
contiguity of stimuli. Reinforced behaviours may aso be subjed to differentiation
and extinction under appropriate experimental conditions.

Such rmotions of reinforcement leaning formed an ided complement to the
behaviourist schoal of psychology, established by John B. Watson (18781958
during the first decales of this century, and in particular the SR (stimulus-
response) school of behaviourists. In its most extreme form SR behaviourism
postulates that all behaviour can be explained in terms of adions sleded on the
basis of current stimuli impinging on the organism. Leaning reduced to smple
strengthening or weégkening of connedions between stimulus and response is
therefore very attradive. SR behaviourism, aong with the necessary
modifications, has been very influential throughout much of this century and finds
current expresson in the ideas of Rodney Brooks (intelli gence without reason) and
Philip Agre (readive aents). Richard Sutton haes been adive in promoting
computer models of reinforcement learning, of which more in the next section.
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It soon becane gparent that many fadors affeded the amount and rate of
leaning. Clark L. Hull (18841952 attempted to identify and subsequently
quantify these fadors and the dfeds they may have. Hull's work is extensively
reviewed and analysed by Koch (1954, and summarised in Bower and Hilgard
(1981 Ch. 5). Hull’s model changed over time in response to new experimental
observations. Equation 2-1 illustrates (and it is only ill ustrative) some of the major
factors he identified and the manner in which they may be related.

Er = (HXxD)xVx O, - (s +1p) (egn2-1)

In Hull’s model net response strength, (E., is primarily related to “habit”, H, the
conredion established through reinforcement leaning between stimulus () and
response (), and to motivation or drive, D, refleding the arrent desirability of the
reinforcement outcome. A satiated rat will not necessarily perform adions resulting
in reinforcing food rewards. Habit connedion strength is built up over many
reinforcing trials, described by a negatively accéerating learning curve. V relates to
the “goodness of fit” between the evoking and training stimuli. An oscillatory
factor, O, provides temporary perturbations to response strength and is required
to explain the natural variation of behaviour experimentally observed. Extinction
phenomena ae expressed as an inhibition fador, (., which counterads the habit
strength (I, represents habituation due to response fatigue). Although Hull
performed extensive series of experiments to establish exad parameters for eah
term the formulation fell into disuse. This was partly due to a reduction of interest
in reinforcement leaning, and partly because Hull was eventualy obliged to
postulate more than 15 separate terms. As a nsequence this expresson of

reinforcement learning became too unwieldy for effective analysis.

The theories of Thorndike, Hull and the other SR behaviourists were
connedionist; a single link made between stimulus and response, strengthened and
wegkened over time acording to some schedule of reinforcement. It has beame
clea that the development of the S-R link neal neither be asmooth progresson
from wed& to strong, nor develop at equal rates between individual animals used in
a series of experimental trials. Generaly, the smooth leaning curve only becomes
apparent once the results from several individuals are averaged. Ead individual’s
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activity shows marked variation in performance, though invariably the task can be
completely learned. In some cases the animal attains apparently perfect task
performance in a single trial, an effect referred to as one-shot learning. William
Estes and his co-workers formulated a radically different approach, stimulus
sampling theory (Bower and Hilgard, 1981, Ch. 8). Stimulus sampling theory
provides a mechanism to account for one-shot learning observations and accounts
for the appearance of the negatively accelerating curve when many individual
learning trials are averaged. This approach subsequently developed into a more
general mathematical learning theory approach.

In the stimulus sampling formulation all connections between stimulus and
response were either absent or completely made. It also assumes that the individual
was subject to many individual stimuli. At any time some sub-set of these stimuli
would be active and so be subject to reinforcement. Therefore, at every reinforcing
trial some subset would be active. Given a limited set of stimuli available to the
animal, and a sampling regime that selected only a sub-set of the stimuli it is
relatively straightforward to demonstrate that, on average, the selected sub-set will
contain elements from the previously reinforced pairs with an increasing probability
which accurately mimics the negatively accelerating learning curves aready
observed. This theory neatly explains the variability in performance between
individual trials - chance determines whether the stimuli sub-set selected contains
many or few previously reinforced pairings. If the initial set of reinforced parings
exactly matches those intended by the experimenter, one-shot learning appears to
take place. The formulation may aso account for many of the other phenomena
associated with the reinforcement learning paradigm.

2.3. Computer Models of Reinforcement L earning

Recent years have shown a considerable revival in research interest in
reinforcement learning investigated as a form of machine learning (Sutton, 1992;
Kaelbling, 1994, 1996). Two specific problems have been the focus of this renewed
interest. First is the problem of delayed reward. This problem may be illustrated by
considering a game playing task in which the players repeatedly play and have the
task of improving their chances of winning. Reward is received at the conclusion of
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the game?#, credit for winning and debit for losing. During the game there is no
indication of whether a move was good or bad. Yet during the game the player
must make dedsions about the move to be made on the basis of the airrent game
Situation. In an ealy paper Minsky (1963 referred to this as the credit assignment
problem. If it is possble to acarately classfy the arrent game situation, it should
then be possble to assgn a weight or desirability to this current situation that best
caegorises the move that should be made to optimise the player’s overall chances
of successin the game taken as awhole. The second problem attrading attention is
how to reac if the situation cannot be deteded, fully recognised or acarately
classfied (Whitehead and Ballard, 1991 Chrisman, 1992 Lin and Mitchell, 1993
Whitehead and Lin1995; McCallum1995).

The solution to the former problem is criticd if reinforcement leaning is to
adequately explain how an animat may give the gpeaance of goa direded
behaviour in an ostensibly stimulus-response reinforcement paradigm. It is an
interesting problem in that it appeas to contradict the overwhelming body of
experimental evidence from natural leaning that indicaes that reinforcement by
reward (or averson by punishment) is only effedive if applied amost diredly
following the stimulus event. Sutton’s (1988 reinforcement system, the temporal
differences method (TD(L)), exploits changes in successve predictions, rather than
any overall error between an individual prediction and the outcome of a sequence
of events to adhieve the required dsassociation of adion now with later outcome.
Computation of changes of individual deasion weights following individual
predictive steps followed a variant of the well-established Widrow-Hoff rule
(Widrow and Hoff, 1960. Sutton (1991) identifies sveral additional well-
established strategies by which reinforcement may be asgned to modify a
behavioura policy, illustrated with examples drawn from madine leaning
algorithms dating back to the 1950's.

Reinforcement learning can be made more tradable if the overal animat task is
split into a number of smaller tasks. Mahadevan and Connell (1991) describe a

4 This is only to ill ustrate the problem, current game playing algorithms do not necessarily rely
on the techniques of reinforcement learning.
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robot controller based on reinforcement learning techniques, in which a simpled box
pushing task is decomposed into three sub-tasks, “find”, “push” and “unwedge”,
incorporated into a subsumption priority architecture. Learning in ead sub-task is
moderated by its own reward signal, “F-reward’, “P-reward” and “U-reward”.
Millan and Torras (1991) describe an algorithm for leaning to avoid obstadesin a
smulated 2-D environment using a reinforcement leaning method. Lin (1997)
emphasises the role of a teader in guiding reinforcement leaning for a smulated
mobile robot. As in the Mahadevan and Conrell approach there ae set
reinforcement signals applied for completion of various sub-tasks, for instance,
+1.0 if the robot successully negotiates a doorway, +0.5 if it succeels but also
collides with the door-post, but -0.5 if collison alone occurs. The door passng
task could be completed with or without a teader, but a docking task required the
teader's intervention to be succesdully leaned. Lin's agorithm overcame the
partitioning problem by recording past events in a trace using a process of
experience replay. Giszter (1994 describes an extension to Maes' adion seledion
network to allow a form of reinforcement leaning in a smulation of various frog
spina reflex behaviours. Maes and Brooks (1990 describe aleaning algorithm
applied to development of co-ordinated locomotion in the six-legged robot
Genghis. Much recent attention in the field of reinforcement leaning has focused
on the Q-learning technique developed by Christopher Watkins, and has utili sed the
Markov environment as an experimental platform - these two topics are mnsidered
in some detail next.

2.3.1. Markov Environments

Markov environments (Puterman, 1994 represent a highly stylised description of
an environment and are commonly employed in reinforcement leaning reseach. A
Markov environment is described in terms of four components:

S- a state-space, described by some set of individual states,

A - the actions possible in each stase

T - atrangition function describing the cnsequence of applying any adion
ain some stats

5 “Simple? It is this author’s experience that the box pushing task with a roba of the form
Mahadevan and Connell describe is far from straightforward.
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R - “reward”r obtained by entering some state

The markov property defines that transitions and outcomes depend only on the
current state and the adion; thus there is no neal to know the system's history.
This is a property of this particular model, not necessarily of any red process A
policy is a mapping of states and adions into rules for deading which adion to
take in any of the states. A stationary policy indicaes that the same adion will
result in the same transition between states on ead application, thus: T(x.a,) —
Y..1- The trangition defined by the adion a in state x at time t always results in the
state y at time t+1. It may be proved that an optimal strategy exists for the
seledion of adions in a stationary markov process (Ross 1983. This st of
conditions will be referred to later as a Finite Deterministic Markov State-Space
Environment (FDMSSE). A stochastic policy indicates that a transition will
transform between states on a probabilistic basis, thus: P, (a) = Pr(T(x,a) =),
which describes the probability that adion a will transform the aurrent state x to
some other state y. This st of conditions will be referred to later as a Finite
Stochastic Markov State-Space Environment (FSMSSE

2.4. Q-learning

Watkins (1989 describes Q-learning, a novel incremental dynamic programming
tedhnique by a Monte-Carlo method, and applies this technique to the animat
problem. Under well-defined conditions (the Markov assumptions) this method is
shown to converge to an optimal stationary deterministic policy solution (Watkins
and Dayan, 1992. The method concerns itself with determining a set of measures,
Q, for ead adion, a, in ead state, x. Quality-values, Q(x,a), indicae the overall
reward that might be expeded for taking adion a in state x. At the @nclusion of
the Q-leaning procedure an animat may seled an adion a in any state x acording
to the set of Q values and be as=ured that the adion represents a step on the (or an)
optimal path to maximise reward.
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2.4.1. Q-learning - Description of Process

For ead step the animat takes some adion a available to it in the arrent state x
and may receve some reward r on completion of the step. The quality-value,
Q(x,a), can then be updated according to:

Q(x,8) <= (1 -0)Q(x.a) +our +ymax,,Q(y.b)) eqn.g-2)

The leaning rate (o, expressed as a fradion) determines the dfed of the aurrent
experiencerelative to past experiences on the leaning process The discount fadtor
(v, also expressed as a fradion) determines the relative importance of immediately
achievable rewards, as opposed to those which may be adieved at some point in
the future. For this procedure to converge to an optimal set of vaues, Q*(x,a),
ead adion a must be performed in every state x for which it is available an infinite
number of times. Up to this point the seledion criteria, Q(x,a), alowing the
seledion of an appropriate adion (a = max,_, Q(x,b)) remains an estimate of the
optimal strategy. To adiieve @nvergence the leaning rate o is siccessvely
reduced towards zero. Initial valuesQ@(ix,a) may be set arbitrarily, say at random.

Control must be maintained over the degree to which the animat has the
opportunity to explore its environment against pursuing the optimal known reward
path at any stage in the leaning process This is the exploration-exploitation
tradeoff. If a partially computed policy is adopted prematurely, exploration is
curtalled and leaning is compromised. The animat pursues paths based on habit
and the discovery of the optima path delayed. To tradeoff exploration to
exploitation Sutton hes proposed the use of a Boltzmann distribution to
increasingly bias the seledion of adions on the basis of Q in preference to an
exploratory strategy, say the seledion of random adions. The probability of
seleding the adion a refleding the aurrent maximum Q(x,a) as opposed to some
other possble adion is determined by the temperature wefficient T. As the
“temperature” is lowered towards zero the aiimat more frequently seleds the
policy action. TheBoltzmann (soft max) distribution employed is given by:
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P@ ="z eqn. 2-3)

In a pradicd demonstration of Q-leaning, Sutton (1990 defines the environment
as a matrix of states x in which the animat may make the transition to adjacent
states y by taking adions a. One state is defined as the goal g, and the animat will
recave one unit of reward r ead time it enters gate g. There is no other source of
reward. At the start of ead trial the animat is placed at a starting state in the
matrix. Thetrial is concluded oncethe animat enters the goal state and recaves the
reward. A new trial is begun with the animat again placed at the start. Learning
performanceis conveniently measured by the rate reward is acaumulated over time.
Initially, with a high value for T, the animat seleds essntially random, exploratory,
adions. Asleaning progresss the animat increasingly seleds adions based on the
learned policy it has creaed. Convergence is indicated when the animat aways
seleds the path that maximises reward acamulated in the long term. Sutton's
research and results are considered again in more detail later.

2.4.2. SomeLimitationsto Q-learning Strategies

One obvious limitation of the strategy is the large number of trials that must be
performed before the dfeds of leaning may propagate to states distant (in terms
of intervening states) from the reward state. Sutton (1990 proposed an aternative
algorithm, Dyna-Q, by which the animat records visits to states in a separate data
structure, and uses this to “rehearse” (in a process Sutton refers to as “planning”)
adionsto increase the gparent, or observed, speda of leaning. Peng and Willi ams
(1996 and Singh and Sutton (1996 both describe dgorithms which record
information about states visited in the recent past (“traces’), making them eligible
for leaning immediately whenever a reinforcing signal is encountered. Both
algorithms combine apeds of Q-leaning and reinforcement leaning with the
temporal differences method of Sutton (1988. Madin and Shavlik (1996 have
described a method by which advice from an external observer can be inserted
diredly into the Q-learner’s utility function to reduce the number of training trials
required and so speed learning.
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Once aeded the policy map is esentially “static”, changes to the shape of the
underlying state-space diagram are not readily refleded in the Q values. Sutton
(1990 describes the dfeds of an exploration bonus, which enables the animat to
continue some level of exploration throughout its existence The animat may then
take alvantage of shorter routes sould they appea, or aternative paths $ould the
existing one beame blocked. Arbitrary exploration of this form nmust affed the
optimality of the overall solution, and in turn compromise the aility of the
algorithm to generate mnvergent solutions. Moore and Atkeson (1993 describe a
smilar medhanism, prioritized sweeping, which provides for an extra system
parameter (r°") direding the system to explore aeas of the ewironment that are
currently underdeveloped - “optimismin the face of uncertainty.” Novel transitions
are seleded in preference to well-tried ones in the hope that a large, but as yet
undiscovered, reward state might be encountered. A separate system parameter
(Thyew) Guenches this optimism once the caculated confidence that the long term
estimate of reward for the state refleds the true value. These modificetions are
reported to give significant performance gains over both the original one-step Q-
learning algorithm and Sutton’s Dyna modifications.

A further limitation is presented by the nature of the goal state and the reward it
delivers. Severa states may deliver reward and reward may be introduced at any
step in the leaning process It may be that the animat might have many goals (as
discussd ealier), the adions required to pursue eab goal being dfferent, and the
nature of the reward recaved dependent on the desirability of the goal or goals
adive & the aurrent time. Tenenberg, Karlson and Whitehead (1993 describe a
modular Q-leaning architedure with many fixed size Q-leaning modules eah
responsible for adieving a spedfic goal; the fina adion presented to the
environment being seleded by an arbiter module. Humphrys (1995 describes a
system of many Q-leaners, eah ading as an independent agent, which must
compete to provide the final output adion for the animat. Competition between the
individual internal agents is mediated by an additional algorithreérning).

2.5. Classifier Systems

Classifier Systems (Booker, Goldberg and Holland, 1990 represent an elegant
approach to the cnstruction of stimulus-response atificial learning systems, which
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diredly address the problems of delayed reward. Figure 2-1 shows the main
component parts of a dassfier system. The condition-adion pairing in a dassfier
system is encgpsulated into a list of classfiers. Classfiers test the status of
messages recrded on a message list. Messages are dl encoded as fixed length kit
strings. Classfiers whose oondition part exadly matches one of the messages on
the message list may “post” their bit string message onto the message list. Some bit
positions in the message string are reserved to indicate the status of various input
sensors. Some positions will be written by the output messages of the dasgfiers.
Some messages will ad as output signals, to be direded to effedors. Each message
has a tag, typicaly a short prefix bit code, which reards the type of the message
being encoded. These tags mean that certain message will only be @nsidered by a
sub-set of those dassfiersthat match that spedfic tag bit pattern. The condition bt
string is composed of either 1's, or O'sor #s. A ‘1’ or a‘0’ in the condition part
diredly matchestoa‘l’ or ‘0’ inthe message, a‘# may match either a‘l or a‘0O’
- adon't care symbol. In thisway a dassfier condition may be required to match a
message in the message list exadly (where it is composed of only ‘1’'sand ‘0’s), or
it may generalise over many possble messages in the message list (where the
classifier condition contains ‘#'s).

Classifiers
condition message spec.
Output
interface
Input interface
CITTTTT T F—9
—
to
from Message list environment

environment
STEP 1: All messages tested against all conditions

STEP 2: Winning classifiers generate new messages

Figure 2-1: A Classifier System

after Bookeret al (1990, p. 240)
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Eadh classfier has associated with it a numeric quantity, the strength value of the
rule, which refleds the dassfier rule's “usefulness’ to the system as awhole. In a
system of any sizethe likelihood that a matching classfier' s message will be written
to the message list is in proportion to its drength value. Strength values are
updated by the reinforcement learning component of the system in proportion to
the cntribution the dassfier rule made in garnering any reward. The dgorithm for
apportioning credit amongst the various classfier rules, even though reward events
are sparse, is referred to as Itleket-brigade algorithm.

A clasdfier system operates with threebasic sub-systems, a performance dement, a
credit assgnment element and a discovery element. Heitkotter and Beasey (1999
provide a pseudo-code listing of the dassfier system leaning agorithm. The
performance déement is responsible for matching classfier conditions to the
message list, maintaining the message list by adding new classfier message
spedficaions and seleding externa output adions. The strength of ead classfier
rule that succesdully posts a message to the message list is reduced by a bid
amount. This bid amount is caculated on the basis of the airrent strength value
and the spedficity of the rule (the number of “don’t cares’ in the condition). The
strength of any classfier which kids but fails to post its message is left unchanged.
However, al the dassfiers that previously posted messages used by the winning
classfier subsequently recave an increase in strength based on the value of the
successful bid.

Clasgfiers which hid and post messages just prior to external reward are aedited
with strength increases diredly by the aedit assgnment element. Those which
enable these dasdfiers recave a“share” of this reward - and so on throughout the
system. The overal effed is to increase the strength of classfiers that are
consistently implicated in succesdul or rewarding adivities. In turn their greaer
strength increases the probability that they will be adivated, and so recave reward.
In this way the bucket-brigade dgorithm orders the usefulnessof al the dassfiers
in the system, and improves the external performance of the system. As with the Q-
learning algorithm, classfiers distribute their successto those which contributed to
it.
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The discovery element allows for the aedion of new classfier rules acording to a
genetic algorithm (Holland, 1975 Dawkins, 1986. This discovery component
takes the best members of the population of classfiers and modifies or recombines
them to creae offspring classfiers that may be better fitted to the environment and
task. The principal genetic method employed in classfier systems is that of the
genetic crossover, which randomly exchanges sleded segments between the pair
of parent classfiers to creae two new offspring clasgfiers. Mutation, in the form
of random inversion of elements in the bit string, may also be employed. To
maintain the size of the classifier list, the weakest classifiers may be discarded.

Wilson (1989, creaor of the term “animat”, was the first to diredly apply the
tedhniques of classfier systems to the animat problem. Ball (1994 describes an
animat control system combining a Kohonen feature map and conventiona
classfier system to creae a*“hybrid leaning system” (HLS). The Kohonen map
providing a self-organising element to pre-process ®nsory information into sub-
symbolic fedures passd to the dasgfier component. Similar maps have been
proposed as models of cerebral cortex function (asin Albus CMAC, q.v.) Dorigo
and Colombetti (1994 decompose the animat task into several clasgfier systemsin
the ALECSYS algorithm to demonstrate leaning and control in a small mobile
robot. Venturini (1994 describes the AGIL system. AGIL incorporates
modifications to the basic dassfier system format that explicitly balance the dfort
the animat will expend in exploration of its environment to that of exploiting its
learned knowledge. Riolo (1991) modifies the dassfier system format to alow a
form of lookahead planning. Dorigo and Bersini (1994 argue that classfier
systems and Q-leaning are esentialy similar methods of reinforcement leaning,
separated more by a reseach tradition than essential technicd differences. They
demonstrate that a mnsiderably smplified form of the dassfier system may be
treated as equivalent to a tabular fornQefearning.

2.6. Artificial Neural Networks

Artificial Neural Networks (connectionism) represent a distinct approadh to
modelling and creaing behaviour patterns. Much of the work in this areamay be
traced badk to an abstrad model of the neurone developed by McCulloch and Pitts
(1943. The hope is that these units in some way provide areasonable analogue of
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the internal function of the brain and nervous g/stem of animass. Figure 2-2
illustrates ome of the feaures of this type of model. The ceitral component of the
model is a summetion unit () that accepts sgnals from several sensory inputs (S;
.. Sy via weighted “synaptic” connedions (W; .. W,). Individual weights may be
continuously adjusted between some negative value and some positive value. A
threshold unit on the output side of the summation unit converts the output into a
binary response from the simulated neurone.
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Figure 2-2: A Simple Neurone Model

An ealy implementation of the neural network approacd as a smulation on a seria
computer, the Perceptron, was provided by Rosenblatt (1962. Rosenbatt’s
Perceptron augmented the basic neurone model with an additiona layer of
association units that randomly conneded ead of the input points (S, .. S,) to the
sensory units via fixed postively (+1) or negatively (-1) weighted connedions.
Rosenblatt defined a procedure to update the weights when the output response of
the unit differed from the desired one, as computed by an error comparator. The
Perceptron leaning procedure computed an adjustment to the set of weights
implicated in an erroneous dedsion by an amount just sufficient to corred the

6 Leading to a early surge of optimism within the Machine Intelligence ®mmunity that perhaps
networks of simple units, initially conneded at random and subsequently subjeded to simple
learning regimes would lead to complex self-organised behaviour. The ideais gill seductive, but
in the intervening half century has proved troublesome to attain in practice.
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dedsion. This method has subsequently been criticised for not stabilising if there is
no set of weight values that corredly partitions the dedsion space Severa other
procedures for leaning by weight adjustment have been described (Nilson, 1965
Hinton, 1990. More fundamental shortcomings of the cnnedionist approach
were described by Minsky and Papert (1969, who argued that there were
significant classes of reaognition problems that this architecdure wuld inherently
not discriminate. Examples included the exclusve-OR function and various
conneded and dsconneded figures. Reseach into Neural Networks went into
dedine for some yeas until revived by Geoffrey Hinton and others in the mid-
1980’s.

A neura network with multiple-layers of adjustably weighted “neurones’
overcomes many of the aiticisms levelled by Minsky and Papert, but introduces
problems of how the various individual weights in the “hidden” layers might be
adjusted. Figure 2-3 illustrates the achitedure of a multi-layer artificial neura
network. Rumelhart, Hinton and Williams (1986 describe the backpropagation
algorithm, a method by which the dfeds of undesired classficaions may be used
to adjust weights distributed aacossmany layers. The badkpropagation algorithm is
essentially atwo-stage aomputation. In the first stage the adivation of every unit in
the network is cdculated. In the seand stage an error derivative (3E) is computed
a the output layer and subsequently distributed to adjust the weights on
intermediate hidden layers.
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The badkpropagation algorithm has been applied with some successto a range of
tasks. Hinton (1986 describes a system for the discovery of “semantic feaures’ in
data and Sgnowski and Rosenberg (1987 a system for converting text into
speed. Jochem, Pomerleau and Thorpe (1993 describe two systems ALVINN and
MANIAC, multi-layer neural controllers for road following in a mobile vehicle. The
ALVINN system comprised 960input units (a30 x 32 “retina”), 4 hidden units and
50 output units. The MANIAC system employed the same input and output
arrangement but incorporated additional hidden units (a total of 16) in two layers,
giving improved road following performance under a range of conditions.
Pomerleau (1994 describes a neural network to control a walking robot. Chesters
and Hayes (1994 describe experiments employing a cnnedionist model to
investigate the dfeds of adding context memory signals to control a small mobile
robot. Nehmzow and McGonigle (1994 describe their use of a supervised teading
procedure to train the Edinburgh R2 robot in a variety of wall following and
obstade avoidance tasks. Gausser and Zrehen (1994 describe the use of Khepera
mobile robots in research to investigate building a neural topological map.

Conredionism is evidently an S-R approad; a set of sensory data presented at the
input units is trandated into a set of output responses. It differs from the
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reinforcement approad in that an error signa is propagated to adjust many
weights. In reinforcement leaning a desired (or undesired) signal is typicdly used
to adjust adivity units gedficaly implicaed in the behaviour choice As a positive
consequence of this, artificial neural networks are often considered to be robust in
the face of a noisy or disrupted input data vedor. Neura network models
discussed thus far have dl concentrated on supposed properties of colledions of a
smple axd simplified neurone. Hinton (199Q p. 209 points out that the
badpropagation agorithm is rather implausible & a biologicd model, as there is
“no evidence that synapses can be used in the reverse direction.” Other writers
have taken more cae to link computer models of neural function to reseach
findings in the aeas of neuroanatomy and neurophysiology. Albus (19817), for
instance, proposed a model based on the observed structure of the brain. Albus
Cerebellar Model Architedure Computer (CMAC) postulates a table driven look-
up mechanism to map many sensory inputs to many motor outputs.

2.7. Operant Conditioning

The theories and models described so far are daraderised by the stimulus-
response (S-R) approadh. An adion is primarily seleded on the basis of incoming
sensory information. Once the strength value of a nnedion is computed,
information about the drcumstances leading to the reward or reinforcement on
which the value is based is generally discarded. B.F. (Burrhus Frederic) Skinner
(19041990 proposed a radicdly different medhanism, that of instrumental or
operant conditioning. In the operant conditioning model responses are not
“elicited” by sensory conditions, but “emitted” by the animal. Reinforcement is
therefore between response and reward, not between sensory condition and
reward. The adion is described as the “operant” or “instrument” by which reward
is obtained. Reward may only be forthcoming in some of the many situations in
which the adion can be taken. In this case it is referred to as a discriminated
operant, the various circumstances being distinguished by sensory conditions.

Skinner and his followers adopted a purely behaviourist standpoint and have used

their ideas to propose explanations for a wide range of human psychologicd
concepts auch as “self, self-control, awareness, thinking, problem-solving,
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composing, will -power, ... represson andrationdization”7 which might otherwise
be aldresed in a more nebulous “mentalistic” manner. Skinner did not regea
respondent behaviour or classcd conditioning as valid phenomena, just their
central importance Many largely retrospedive and comprehensive reviews of
Skinner’s contribution are to be found, including Verplanck (1954, and Catania
and Harnadq1988).

Skinner applied his ideas to a wide range of aress, such as educdion, behavioural
and social control, and psychiatry. Of particular interest to the aurrent work are the
experimental techniques developed by Skinner to investigate operant conditioning.
In an apparatus, now amost universaly referred to as the Skinner box, certain
learning phenomena in animals may be investigated under highly controlled and
repeaable cnditions. In a typicad Skinner box apparatus the subjed animal may
operate alever to dbtain a reward, say a small food pellet. The equipment may be
sound-proofed to exclude extraneous sgnals and dfferent arrangements can be
adopted to suit different species of subject animal.

Typicdly the subjed will be prepared to operate the lever to obtain the reward
before the start of an experiment. Once the subjed is conditioned in this manner
various regimes can be established to record effeds such as  gimulus
differentiation, experimental extinction, the dfeds of adverse stimuli (*punishment
schedules’), and the dfeds of different schedules of reinforcement. Progressof the
learned response may be automaticaly rearded in a tracethat shows the number
(and/or strength) of the emitted response in relation to the frequency of reward.
Figure 3-1 in the next chapter ill ustrates some results of this form and a number of
the experimental designs used in chapter six are influenced by these procedures.

For al the experimental evidence acamulated and effort expended in attempting to
apply their findings, Skinner and his followers did not place & over-emphasis on
theorising about the medanisms that might be involved. As a @nsequence,
perhaps, few formal models of operant conditioning have been developed. One
such model, the Associative Control Process(ACP) model (Baird and Klopf, 1993
Klopf, Morgan and Weaver, 1993 develops the two fador theorem of Mowrer

7 Quoted from Bower and Hilgard (1981, p. 170)

43



(Mowrer, 1959. The ACP model reproduces a variety of animal leaning results
from both classcd and operant conditioning. Schmajuk (1994 presents a two-part
model incorporating both classcd and operant conditioning modules emulating
escape and avoidance learning behaviour.

2.8. Cognitive Models of L earning, Tolman and Expectancy Theory

The majority of models of learning discussed in this chapter so far - both retural
and as computer models, follow the premise that observable behaviour, the
“response” is primarily mediated by the gppeaance of stimuli. Learning is therefore
reduced to strengthening or wedkening the cnnedion between possble stimulus
sets paired to one of a number of available responses. Both the reinforcement and
classfier system computer models described extend this concept to allow credit (or
blame) associated with a reinforcement signal to be distributed to ealier events
with the am of optimising or maximising overall reward, as receved reinforcement
signal, which may be obtained. The aciationism of classcd conditioning is a
clea exception, and operant conditioning also takes a distinct, aternative
approach.

While forms of stimulus-response (S-R) behaviourism were highly influential for
much of the first half of the twentieth century, it becane dea that the predictions
they made were inadequate to explain al of animal leaning and much of human
learning and behaviour. An alternative view, developed by Edward Chance Tolman
(18861959 and others, was that behaviour was primarily mediated by the
Situation which was to be adieved, rather than the prevailing situation (as in S-R
theory) or the adion that would be taken (as postulated by operant conditioning
studies). This was termed the cognitive vienpoint. Toates (1994 has pointed out
that the term “cognitive” now encompasses a wide range of theories and
approadhes to Psychology and Artificial Intelligence He notes that texts on
“Cognitive Psychology” will often incorporate descriptions of the behaviourist
standpoint with little comment as to the historicd divisons once so strongly
argued.

Tolman's keystone work “Purposive Behavior in Animals and Men” (Tolman,
1932 described a series of experimental observations and laid out the foundations
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of expectancy theory. Much of the experimental evidence presented was derived
using rats in maze like experimental apparatus. It has been moted that while
Tolman’ s theoreticd position changed little over the yeas, his use of vocabulary to
describe ancepts and processes within the theory underwent a continuous ries of
changes and shifts. Tolman was a prolific author, with some 70 papers published
during a distinguished carea. Tolman's position is retrospedively described in an
analysis by MadCorquodale and Meehl (19549 and again, in a more accssble
form, by Bower and Hilgard (1981, Ch. 11).

One significant asped of Tolman’s theorising was to identify a number of situations
that were, and continue to be, particularly difficult to satisfadorily explain in purely
behaviourist-reinforcement terms. Bower and Hilgard (1981, pp. 330-342) review
this evidence in some detail. Two particular phenomena, latent learning and place
learning, illustrate these aguments. In latent learning Tolman argued that as
reinforcement leaning requires a reward at the nclusion of the behaviour
sequence to establish its effediveness then, if leaning could be demonstrated in
the @sence of reinforcement, behaviourist-reinforcement theories would be shown
inadequate. Tolman convincingly demonstrated learning in rats in the @sence of
reinforcement. Consequently his expedancy theory, which can acount for the
phenomena, was supported.

Similarly stimulus-response theory maintains that every response is triggered by
some stimulus. Tolman argued that if the experimental animal could be placel in
circumstances where different responses were gopropriate in apparently identicd
stimulus conditions then stimulus-response theories would be again demonstrated
inadequate. Tolman and others sibsequently successully demonstrated that animal
subjeds can indeed make different responses under apparently identica sensory
conditions. Such conditions include manipulation of the motivational state of the
animal (hunger, thirst, etc.); or by introducing obstructions into a spedfic maze
apparatus, forcing the response & different route dhoice points. Several variants on
the placeleaning experiments are described by Bower and Hilgard. All represent
significant challenges to the behaviourist viewpoint. Sedions 6.6 and 6.7 in chapter
six replicae dassc experimental procedures for latent leaning and placeleaning
respectively.
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2.9. MacCorquodale and Meehl's Expectancy Postulates

For al the dualenges that Tolman and expedancy theory present to the
behaviourists it was not without problems. Perhaps the most persistent criticism of
the gproad was that the model was purely descriptive. The ladk of formalised and
explicit theoretica constructs heavily constrained the predictive power and hence
usefulness of ealy expedancy models. Reagnising this MacCorquodale and
Meehl (1953 proposed a set of 12 expectancy postulates in an attempt to provide
atestable and quantifiable basis for expedancy theory. MadCorquodale and Meenl
redefined Tolman's notion of a Sign-Gestalt Expedancy (henceforth expectancy)
as a three part “basic cognitive unit” of the form:

S->R—S (basic expectancy)

The aldition of an “S,” component over a stimulus-response model provides for a
form of instrumental or operant modus ponens, an implicaion of an outcome
condition (S,) caused by the adion R, rather than purely indicated as desirable by
the presence of the mndition S;. This is largely equivalent in structure to the
notion of the three-term contingency “stimulus - response - consequence”, used by
Catania (1989 to express the fully discriminated Skinnerian operant class of
discriminated stimulus, response and contingent outcome of reward or punishment.
With the esentia differencethat it is the identity of the outcome that is recorded in
expedancy theory, not just a measure of its desirability or quality as is recrded in
the operant, or reinforcement learning approaches.

MacCorquodale axd Medl’'s twelve epedancy postulates refer to eight
underlying processes, namely “mnemonization”, “extinction”, “generalizaion”,
“inference”, “need”, “cahexis’, “valence” and “adivation”. Postulate 1, the
mnemonization process refers to an increment in “strength” of the expedancy
where the omponent parts S;, R; and S, are in close and ordered temporal
contiguity. This increment is described by a negatively accéerating function, where
the function acceeration rate is determined by the valence (q.v., a measure of
usefulnessor desirability) of the S, component and the asymptote of the strength
determined by the relative frequency or probability that S, follows the sequence S;
— R;. Postulate 2, the extinction process refers to a deaement in strength where
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the sequence S; — R; is not terminated by the expectandumg S,. It will be agued
later that the relative frequency of contiguity, the function rate and the valence
level are better considered as sparate and dstinct values and should not be
convolved into a single “strength” parameter. MacCorquodale and Meehl did not
propose an explicit or quantifiable mathematicd formulation for either of these
postulates.

Postulate 3, primary generalization, alows for sharing of expedancy strengths
where two expedancies $are R; and S, components and their S; components
“resemble” one another. Postulates 4 and 5, inference and generalized inference,
refer to proceses by which temporal contiguity (S,S*) between a known
expedandum S, and another sign stimulus S* increases or deaeases the strength
of the expedancies saring elements, or in which elements are “similar”, aceording
to the degree of tempora adjacency and frequency of occurrence A different
approach to the evaluation of expedancies will be proposed later, which
considerably diminishes the importance placeal on these postulated medianisms of
generalisation and inference. As before MadCorquodale and Meenl did not proffer
any suggestions as to the nature of “similarity” or “resemblance”, or how they may
be evaluated, between components in these shared expectancies.

Cathexis?, postulate 11, refers to the strength of connedion between a stimulus
sign S* and a drive, motivation or goal state. Need strength, postulate 10,
describes the degree to which the subjed is to be influenced by the cahedic
situation. The valence, postulate 9, of a sign S* is then defined by the product of
the need (D) and cahexis (C*) attached to that sign (D x C*). It is perhaps
interesting to note, with hindsight, the pivotal role of innate medanisms to control
and balance motivation and behaviour (such as those being described by Tinbergen
a about the same time) appeas to have been largely unrecognised.
MadCorquodale and Meenl were therefore unable to propose dfedive medhanisms
for these postulated processes.

8From the gerundive form “... to be expected”
9(OED) Cathexis. n (Psych.) Concentration of mental energy in one cannd, [f. Gk kathexis
retention]
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Secondary cathexis, postulate 6, alows for the induction of cahexis to an
expedandum S,, where a ontiguity S,S* exists and S* has valence Induced
elicitor-cathexis, postulate 7, allows cathexis to be induced to an S; component of
an expedancy where its expedandum has arealy aajuired valence, to an extent
proportiona to that acquired valence and the prevailing mnemonizaion strength of
the expedancy. Tolman's (1932 p. 176) descriptions clealy indicae the notion of
ameans-end-field (later cognitive map, Tolman, 1948 by chaining expedancies in
this manner10. Postulate 8, confirmed elicitor-cathexis, provides for additional
strengthening of the expedancy where the sequence it describes is confirmed, and
S, has valence.

Finaly, in a processof activation, postulate 12, the ad¢ion R, is evoked acmrding
to a reaction potential determined by a multiplicative function of expedancy
strength and valence, when in the presence of the dicitor S;. MacCorquodale and
Meenl recognised that their postulate system for an expedancy theory was
“incomplete, tentative and certainly nonsufficient,” but were ale to present some
hand-worked examples to illustrate their model.

2.10. Computational Models of L ow-level Cognitive Theories

Further development of expedancy theory, as with other psychologica models, has
depended on the use of computer based formalisations. Information processng
models of cognitive processes impad theoreticd development in severa ways.
Firstly, the model must be mmplete to the extent that an agorithmic process can
be alequately defined for ead esentia element or component in the model.
Seoondly, ead of these essntial elements must be sufficiently defined to permit
the aedion of program code. Thirdly, they are testable and may be subjeded to
experimental regimes to determine their performance under controlled and
repedable oconditions. In some instances their performance may subsequently be
compared with results obtained by experiment with, and observation of, natura
systems.

10 The term “cognitive map” has more recently tended to be interpreted more literally, internal
“maps” of spatial locations or terrain layout (Meyerd Guillot,1991, for a compact review).
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Threesuch models are presented in the next sedions of this chapter, leading to the
development of a novel Dynamic Expedancy Model. None of these models make
dired reference to Tolman or expedancy theory, being described as “sensory-
motor” or “intermediate-level” cognitive models, but the debt owed is nevertheless
clea to see Each model adopts a schema representation??. The three models are
“JCM”, described by Joseph Bedker (Bedker, 197Q 1973; “ALP’, described by
David Mott (Mott, 1981, Bond and Mott, 1981); and a model of the ealy stages of
Piagetian development described by Gary Drescher (Drescher, 1987, 1991). Both
Bedker and Drescher eleded to discussor demonstrate their work using smulated
environments, while Mott was able to demonstrate simple leaning tasks utilising a
real mobile robot.

2.11. Becker's JCM Model

Bedker's JCM model of intermediate level sensory-motor cognitive behaviour
adopted a “stimulus - adion - stimulus’ representation. Figure 2-4 ill ustrates the
structure of the “schema”, the primary form of information storage in the model.
Many schemata ae recorded by the system in a Long Term Memory (LTM).
Sensory and input information enters the system via an “input register” into a
limited capadty Short Term Memory (STM). STM ads as a FIFO buffer, and will
contain a small number, say six or so, items. As new items enter STM via the input
register older items are lost, or they may be regycled. Individua elements of
information, as entered into STM and recorded within schemata, are referred to as
kernels. In Bedker’s representation ead kernel takes the form of a predicae with
arguments, for instance:

<colorchange right bottom black red>

The predicae in this case refers to a sensory effed (a olour change from bladc to
red) in one of the sensory locaions (right bottom cdl in a smple 3 by 3 cdl “eye”
viewing a gredly smplified smulated blocksworld environment). Kernels may be
defined as gatic sensory, indicaing an absolute sensory value, differential sensory,

11pjural “schemata”, “schema” or “schemas”, following the preference of the original authors.
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indicating a dange of sensor value, a motor or efferent command, or a request to
interrogate a sensor.

Kernel Criterion Little Arrow Confidence
Node Criterion Little Arrow Criterion Charge
Node Dummy Node Cost
Big Arrow l
Yy —~ A

[<a® b'>% =2<c® d%° = <e® f'>°] 07, 4 23

Kernel Kernel Kernel Weights
N\ J
Event Event
\ \/ - / W
Left Sde Right Side
N\ J
Schema

Figure 2-4: A JCM Schema

from Becker (1973), p. 410

Once geded and retained in LTM individual schema left hand sides are matched to
the arrent contents of the STM. Schemata with a high degree of match posit that
the events defined on their right hand side will appea in STM at some point in the
future. Schemata have apredictive role. The overal schema confidence weight is
adjusted acwrding to the validity of this prediction. Each kernel in a schema and
eadt predicate and argument in ead kernel has asciated with it a aiterion value.
Criterion values indicae the relevance or importance of the cmponent part to
which they are attached.

Individual kernels are ordered, with the ordering indicated by the little arow
construct (“—"). The “little arow criterion” recrds how significant the ordering
indicaed by thelittle arow is to the overall successof schema goplicaion. The big
arrow (“=") construct delimits the matching event to the predicted event. Bedker
describes analogic-matching, a cmplex agorithm by which individual criterion
weights are aljusted acording to the dfediveness of the schema in making
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succesdul predictions. The “charge” weight associated with ead schema indicates
the desirability of the right hand side & a system goal. The greder the dharge value
the greder the desrability of obtaining kernels into STM that will alow the
complete matching of the schema. Kernels in partially matched schema may be
established as sib-goals in Bedker’s method. Note that the st weight associated
with the schema refers primarily to the “cognitive @mst”, the cwmputational effort
required to make the match between LTM and STM, rather than a @st of
performing the action embedded in the schema.

JCM was never implemented, partially, it might be suspeded, as a result of the
complexity inherent in the analogic-matching process and the @nsequentia
difficulties in devising stable dgorithms to manage dl the different criterion and
schema weights. Nevertheless Bedker's ICM design introduced a number of
processes that were to be alopted later, notably in Mott’s ALP system. Primary
amongst these is the idea of schema aeaion by the process of STM to LTM
encoding. A pattern of kernels being extraded from the input STM and
reformulated as a LTM schema, which may in turn be verified by a predictive
matching process.

Bedker also promoted the idea of schema refinement through the processes of
differentiation and specialization. In differentiation kernels are removed because
their acaumulated criterion values indicae they are irrelevant to the dfed of the
schema (as indicated by a small or zero criterion value). Negative aiterion values
indicate that the dsence of the kernel is essntial for the dfedive matching of the
schema. Speadlization is invoked to refine schemata where an intermediate
confidence weight indicates an incomplete spedficaion of the mnditions for its
application defined by the left hand side kernels. Speaalization is adhieved in JCM
by the addition of further kernels on the left hand side of the schema.

2.12. Mott’'s ALP Model

Mott’s ALP system considerably refined and implemented an intermediate level
sensory-motor cognitive model and applied the result to developing behavioursin a
small mobile robot. Mott retained the central representation of schema recorded in
along term memory, with a limited cgpadty STM. STM retains the input register,
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but eat time dot may contain multiple kernels for matching into LTM schema.
This modificaion overcame a dependence on a mplex sensory attention
medanism to identify and seled items for entry to STM. Ciriticdly, Mott reduced
the complexity of the kernel, dispensing with the predicae and argument form. In
ALP kernels are ather derived dredly from a sensor condition, the sensory kernel,
or they represent an efferent adion, the motor kernel. The little arow notation,
retained from JCM, now represented the passng of exadly one exeaution cycle,
thereby reducing the “analogic-matching” process to manageeble proportions.
Mott overcame the problem of goa motivation inherent in JCM by introducing two
new (sensory) motivational kernels, <HIGH>S and <LOW>S, respedively
representing a cndition that the robot should seek and a condition it should avoid.
At a low level some oonditions, such as “battery very low”, are asciated with
motivational kernel (in this casd OW>S).

ALP retained Beker's M medanisms for creding new schema by STM to
LTM encoding, triggered by the gpeaance in STM of novel kernels. Schema
validation, differentiation and spedalisation remain substantialy as in JCM. Goal
management is however substantialy different. ALP is able to use schema to form
chains of predictions about possble future events. When either a <LOW>S or
<HIGH>S kerndl is predicted this is treded as a goal definition, and a god tree
can be formulated to either avoid the undesirable predicted event, or to attain
desirable ones. Paradoxicaly the system would not read to the dired appeaance
of a motivational kernel, only its predicted occurrence Schema may be dained to
form a goal solution, and actions selected to control the robot.

ALP was implemented in the POP-2 programming language and ran on an ICL
1900 series mainframe in an interadive mode. ALP was heavily processor bound.
The robot used was controlled by a locd PDP-11 mini-computer, which padaged
sensory information from the robot for onward transmisson to the mainframe and
interpreted commands sent from the mainframe. ALP was an essentially ad-hoc
system that demonstrated the aquisition of some simple robot behaviours by the
learning process Its effediveness as a behavioural system was sverely restricted
by the rapid lossof schema cnfidencein future events in the predictive chains and
goa trees. Chains were limited to six goa cycles or three predictions. These
restrictions in part arose due to the method of computing these possble outcomes,

52



and in part to the uncertainty inherent in the experimental environment provided by
the robot test-bed.

2.13. Drescher’'s Model

Drescher’s model further smplified the notion of a schema The @ntext of a
schema being reduced to a smple @njunction of sensory primary items
(Drescher’s term for a kernel), or their negation. All timing information was
abandoned. Figure 2-5 illustrates the form of the schema Drescher used a
simplified smulated hand-eye m-ordination environment, similar in concept to that
proposed by Bedker, but with a larger number of states that may be visited. None
of the tasks investigated required information about prior states and this limited
form of context definition was adequate for the environment chosen. In these
circumstances a Short Term Memory is redundant and was not used in the model.

context: action: result:

HandInFrontOfMouth i ) MouthFeelsTouch
HandBackward

Figure 2-5: A Schema in Drescher’s Cognitive Model

from Drescher (1991), p. 9

Drescher describes the compasite action, chains of individual schema defined with
resped to some goal state forming what is esentialy a sub-routine that might
substitute & the “adion” of a single schema. Figure 2-6 ill ustrates the form of the
composite adion. Drescher also describes a process by which individual schema
are onsidered as synthetic items, the whole schema being used as a record of a
recent event in an attempt to simulBtaget’'snotion ofobject permanence
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Figure 2-6: A Composite Action

from Drescher (1991), p. 91

Drescher employed a radicdly different approach to the generation of schema from
the STM to LTM encoding used by JCM or ALP, the marginal attribution
process Figure 2-7 illustrates the stages in creaing schemas of arbitrary
complexity by this process In step one “bare schema” are aedaed, one for ead of
the primitive acions available to the system (notated by Drescher as* /a/ ”). Bare
schema have empty context and result dots. The system is then run for a period
with adions being seleded at random, a trial and error period. Exploration of a
new environment by a naive system is a feaure of the JCM and ALP systems also.
During this period of exploration ead schema has associated with it an additional
structure, the extended result, which acaumulates outcomes applicable to the new
schema.

At some point, after sufficient exploration has been completed, a set of new
schemas are “spun off”. Thisis giown as gep two. In this example the new schema
“\ax” is creaed from the extended result. Many new schemas could be formed at
this point. As eat new schema has no context information it is considered to be
“unreliable” and it is given an extended context structure, step three This gructure
acaimulates arecord of items adive & the new schema is used in a manner similar
to the extended result. Following another suitable period of adivity, items are
seleded from the extended context for inclusion into the new schema’s context,
“plalx” in the example. This process may be repeded as often as required to
further refine the context of the prototype schemas, step four.
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extended
result

extended
context
Step 4:
extended
context

Figure2-7: TheMarginal Attribution Process

Prepared from a description in Drescher (1991)

This marginal attribution method for schema leaning is inordinately inefficient, as
evidenced by the extensve @mputational resources required to exeaute the
procedure in the smulated environment described (Drescher, 1991 p. 141).
Furthermore, Drescher provides little due &s to its effediveness beyond indicating
the neeal to incorporate alditional medanisms to limit the aeaion of redundant
schemas, theedundant attribution process.

2.14. Other Related Work

Jones (1977 describes a computer model of new-born infant suckling behaviour.
Riolo (1997 presents a three term model (CFSC2) based on clasdgfier systems
concepts. An additional form of the dassfier rule (the “e#/t#" rule type) alowed
the system to describe transitions between either adual or hypotheticd states. The
system might therefore determine expeded reward on the basis of look-aheal
cycles. The CFSC2 model was used to demonstrate the latent learning
phenomena. Bonarini (1994 describes a three part operator exploiting fuzzy logic.
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Shen (1993 1994 describes the LIVE system that creaes, utilises and refines new
GPS style operators from succesful and failed prediction sequences while
performing problem solving tasks in its environment. LIV E models its environment
using a set of prediction rules, triples in the form <condition adion prediction>.
Shen's grstem employs a number of heuristics in the aedion of new prediction
rules, and subsequently may revise them (through a process of “Complementary
Discrimination Leaning”). Prediction failures trigger the system to seach for
differences between the aurrent falled instance, and stored instances of succesgul
predictions using the same rule. The rule revision agorithm is noise intolerant, but
has been demonstrated on a number of recgnised tasks, including the Towers of
Hanoi.
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