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Chapter 3

3. A New Dynamic Expectancy Model

This chapter seeks to define and develop a new Dynamic Expectancy Model. This

Dynamic Expectancy Model extends MacCorquodale and Meehl’s original

expectancy theory formulation to provide a workable and so testable

implementation. It may be seen as part of the current trend to identifying existing

“thought experiments” from the literature, reconstructing them as computer

simulations and so re-evaluating and reviewing their premises and predictions by

experiment and analysis in a manner that was previously impossible. The Dynamic

Expectancy Model builds on the intermediate level cognitive models described by

Becker (1973), Mott (1981) and Drescher (1991). It also draws on mechanisms

and processes from a range of other sources, notably the accumulated work on

innate behaviours and capabili ties (Tinbergen, 1951; Brooks, 1986; and Maes,

1991, among others) and the notion of a policy map drawn from reinforcement

learning methods (Sutton, 1990; Watkins, 1989).

The Dynamic Expectancy Model eschews mechanisms exclusively detected in

human infant or adult subjects, but serves rather to address issues arising from

work relating to the understanding and modelli ng of animal behaviour. In particular

this new model identifies and addresses some of the limitations and shortcomings

of behaviourist theories relating to learning and behaviour in lower animals, which

were considered in previous chapters. The new model focuses on the idea that all

animals (of whatever level of complexity) are essentially autonomous individuals,

which may behave, learn and reason within the capabili ties ultimately determined

by their innate definition, the ethogram. This individuality does not imply that those

individuals exist independently of other members of the same or other species.

Many are dependent on parental care, naturally exist and co-operate in packs or

communities composed of distinct individuals, exist in symbiotic or antagonistic

relationships, or must attract a mate to reproduce.
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The intermediate-level cognitive models of Becker, Mott and Drescher seek to

emulate the developmental process of the human infant. Each was influenced to

varying extents by the work of the Swiss child developmental psychologist Jean

Piaget (1896-1980). Drescher (1991, Ch. 2) provides a description of the first six

stages of infant development according to Piaget’s observations. One fundamental

problem with this approach is the rapidity with which normal human infant

development proceeds. These intermediate-level cognitive models lack the power

to account for the considerable increases in the child’s performance and abili ty.

Moreover, there is still li ttle agreement as to whether some, most, or all of this

observable improvement is primarily due to a learning or to a maturation process in

which innate abili ties are activated in an essentially constant order. These models

may therefore be taken as simplifications of other cognitive-organisational theories

of learning (Bower and Hilgard, 1981, Ch. 13) which are obliged to postulate a

wide range of mechanisms to account for the diversity of human adult abili ties.

Tolman and expectancy theory takes a constructivist view, adopting mechanisms

required to model and explain behaviour and abili ty of non-human animals, though

he later attempted to expand the model to encompass many aspects of human

behaviour.

3.1. The Animat as Discovery Engine - The Thesis

In the Dynamic Expectancy Model animats may be viewed as machines for

devising hypotheses, conducting experiments and subsequently using the

knowledge they have gained to perform useful behaviours. In this learning model

the animat implements a low level version of a “scientific discovery process.” A

critical feature is the creation and verification of self-testing experiments, derived

from simple hypotheses created directly from observations in the environment.

Each hypothesis describes and encapsulates a simple experiment. Each experiment

takes the form of an expectancy or prediction that is either fulfill ed, so

corroborating the effectiveness of the hypothesis, or is not fulfill ed. From time to

time goals, activities required of the animat, will arise. By constructing a graph like

structure from the hypotheses it has discovered during its lifespan and then

determining an intersection of this graph with current circumstances, the animat

may determine appropriate actions to satisfy those goals. Part of the innate

structure of the animat provides the rules by which this discovery process
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proceeds. Part imbues the animat with sufficient behaviour to set goals and to

initiate and continue all these activities until learned behaviour may take over from

the innate. Above all the animat must survive long enough to create hypotheses and

conduct experiments.

Where Popper (1959, and see section 3.2.5 later in this chapter) describes a

Hypothetico-Deductive approach, the Dynamic Expectancy Model adopts a

Hypothetico-Corroborative stance. No mechanism for the construction of more

complex models is incorporated into the Dynamic Expectancy Model. In order to

distinguish hypotheses in the Dynamic Expectancy Model from those proposed by

Popper, they will be referred to as � -hypotheses (“micro-hypotheses”), similarly

experiments as � -experiments (“micro-experiments”). The construction and

verification of low-level observation based � -hypotheses would appear a useful

pre-cursor to the independent development of any systematic theoretical model,

whose structure is not wholly or primarily dependent on an originator12.

3.2. The Expectancy Unit as Hypothesis

In the Dynamic Expectancy Model the expectancy, and so the basic unit of

learning, takes the form of the predictive � -hypothesis. This has critical

implications. First and foremost of these implications is that each expectancy unit

now contains the means to perform a self-contained test and so confirm or deny its

own validity. In turn this implies the learning process is no longer dependant on

external or reward signals to guide the process. Behaviour to seek goals is made

independent of learning activity required to accumulate the knowledge, which may

in turn be applied in performing goal directed behaviour. This section describes and

discusses a number of “postulates” that define the operation of the expectancy unit

as predictive hypothesis.

                                               
12 Originator, the individual or process responsible for the creation of the animat and its
ethogram.
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3.2.1. The Hypothesis Postulates

Definition H0: The � � -hypothesis. Each � -hypothesis records an assumed transition

between two detectable sensory patterns (signs “s1” and “s2” , q.v.) indicated or

caused by an action (“r1”) available to the animat system.

Postulate H1: Prediction. Prediction forms the basis of self-testabili ty. Each � -

hypothesis encapsulates an expectation that predicts the occurrence (or

appearance) of the consequent sign (“s2”) at a specific time following the

appearance (or occurrence) of the context sign (“s1”) and the action (“r1”).

Postulate H2: � � -Experimentation. � -Experimentation is the mechanism by which

predictive self-testabili ty is achieved. Every � -hypothesis is tested at every

opportunity. A separate prediction relating to the consequent sign “s2” is created

each and every instance where the context sign “s1” and response “r1” occur in the

relationship defined in that � -hypothesis. Each such prediction is termed a � -

experiment. The conduct of � -experiments is insensitive as to why the triggering

conditions “s1” and “r1” arose.

Postulate H3: Corroboration. Corroboration is one method by which the

predictive abili ty of a � -hypothesis is recorded. The quality of a � -hypothesis is

determined solely by its abili ty to accurately predict its consequent sign. The

corroboration measure is defined as the ratio of the total number of predictions

made by the � -hypothesis to the number of correct predictions made, as verified

post-priori. Any � -hypothesis that has always given rise to a verified prediction will

have a corroboration measure of 1.0. Any other � -hypothesis will have a

confidence or “corroboration” measure (Ch) of zero or greater, but less than one.

Ch therefore reflects the probability of a valid prediction, thus:

Ch = p(s2 |t s1+r1)        (eqn. 3-1)

The use of the “ t” symbol acts as a reminder of the temporal relationship that exists

between the expectandum “s2” and the context. As this expression gives no

indication of sample size, the corroboration measure is not in itself an indication of

the usefulness, rarity or reliability of the prediction.
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Postulate H4: Reinforcement. Reinforcement is a second method by which the

predictive abili ty of a � -hypothesis is recorded. In this context “reinforcement”

substitutes for MacCorquodale and Meehl’s use of the term mnemonization. In a

measure related to corroboration, each successful verified prediction reinforces

confidence in a � -hypothesis. Conversely every unsuccessful prediction

extinguishes confidence in that � -hypothesis. The effect of each verification is

discounted as further predictions are made. The reinforcement measure (Rh) is

changed by the quantity:

�
Rhp+1 = � (1 - Rhp)        (eqn. 3-2)

following each instance of a successful prediction (p), and

�
Rhp+1 = - � (Rhp)        (eqn. 3-3)

following each unsuccessful prediction. Under constant conditions these

relationships give rise to the widely observed “negatively accelerating” form of the

learning curve. The two proper fractions the reinforcement rate ( � ) and the

extinction rate ( � ) respectively define a “ learning rate” for successful and

unsuccessful prediction situations. They control the rate at which the influence of

past predictions will be discounted. These parameters shall be normalised such that

the Rh value of a � -hypothesis that makes persistently successful predictions tends

to 1.0, the Rh value of a � -hypothesis that persistently makes unsuccessful

predictions tends to 0.0. The positive reinforcement rate need not be equal to the

negative extinction rate.

Mnemonization for expectancies in the MacCorquodale and Meehl postulates are

fundamentally based on the notion of temporal adjacency and contiguity. This was

inherited from decades of experimental observation that has repeatedly noted that

learning phenomena are invariably stronger for events that are closely related in the

temporal domain. This is entirely consistent with the provisions of the Dynamic

Expectancy Model. Temporally adjacent predictions are tested first. The time-scale

being extended only in circumstances where unsatisfactory predictive performance

is determined over the shorter period.
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Postulate H5: Creation. Creation is the method by which the animat extends the

set of � -hypotheses. � -Hypotheses exist to predict future occurrences of signs; it is

therefore reasonable to suppose that new � -hypotheses might be created under two

specific circumstances. First, every sign shall have at least one � -hypothesis capable

of predicting it. Novel signs (ones not previously recognised by the system) shall

trigger a rule creation process, postulate H5-1, novel event. The consequence

(“s2”) for this new � -hypothesis will be the novel sign. The context and action

drawn from the set of recent signs and actions recorded by the system. By a

process of timebase shifting the current, novel, sign will be shifted to be a future

prediction, with a corresponding shift in the relative time relationship to the other

components selected for the new � -hypothesis.

In the second creation circumstance, known signs are detected without a

corresponding prediction, postulate H5-2, unexpected event. A new � -hypothesis

may be created, using the same mechanism as for novel signs to cover the

unexpected event. Shen (1994) and Riolo (1991) both describe broadly similar

strategies for “rule” creation triggered by “surprise” events. Kamin (1969) has

investigated the role of predictabili ty and surprise in various classical conditioning

procedures using rats.

Postulate H6: Differentiation. Differentiation is the mechanism by which the

animat may refine its existing set of � -hypotheses. Differentiation adds extra

conditions to the context of an existing � -hypothesis, reducing the range of

circumstances under which that � -hypothesis will be applicable. Differentiation may

be appropriate to enhance � -hypotheses that have stabili sed, or stagnated, at some

intermediate corroborative measure value. � -Hypotheses should not be subject to

differentiation until they have reached an appropriate level of testing (their

“maturity” ). Maturity is a measure of the degree of corroboration of a � -

hypothesis. It is otherwise independent of the age of a � -hypothesis. It is expected

that the differentiation process will create new, separate � -hypotheses that are

derived from the existing ones. Both old and new � -hypotheses are retained and

may then “compete” to determine which offers the best predictive ability.
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Postulate H7: Forgetting. Forgetting is the mechanism by which the animat may

discard � -hypotheses found ineffective from the set of � -hypotheses held. A � -

hypothesis might be deleted when it can be determined that it makes no significant

contribution to the abilities of the animat. This point can be difficult to ascertain.

Evidence from animal learning studies indicates that learned behaviours may be

retained even after considerable periods of extinction. Experimental evidence from

the implementation of the model described later will point to the value of not

prematurely deleting � -hypothesis, even though their corroborative measures fall to

very low levels. Where a sign is predicted by many � -hypotheses there may be

good cause to remove the least effective. It is presumed that the last remaining � -

hypothesis relating to a specific consequent sign will not be removed; on the basis

that some predictive ability, however poor, is better than none at all. Even if it was

to be removed, a new � -hypothesis would be created (by H5-2, unexpected event)

on the first re-appearance of the consequent sign of the deleted � -hypothesis. As no

record is retained of the forgotten � -hypothesis, any new � -hypothesis created may

be the same as one previously removed.

3.2.2. Initial Conditions for the � � -Hypothesis Set

The ethogram may be programmed to contain pre-determined � -hypotheses, which

will be used, corroborated, differentiated and forgotten as any other � -hypothesis

available to the animat. Equally the set of � -hypotheses available to the animat may

be empty at the time of parturition13, the set being populated and maintained by

actions defined by the various postulates described.

3.2.3. Concluding Conditions for the � � -Hypothesis Set

The animat is assumed to have a limited lifespan, but only by analogy with natural

animals; there is no explicitly defined concluding or terminating condition defined

in the Dynamic Expectancy Model. Learning by � -hypothesis creation may slow

and finally cease in the event that no new signs are encountered by the system, and

when the existing signs are adequate to predict every appearance of each sign.

These conditions may be encountered in the special environment defined by the

                                               
13 Parturition, the moment the animat becomes a free-standing individual, dependent on the
definition contained within the ethogram; analogous, perhaps, to the birth of an animal.
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finite deterministic Markov state space environment (FDMSSE). Under these

specific conditions, once every state has been visited at least once, then there will

be no further � -hypothesis creation on the basis of novelty (H5-1). Once every

transition has been attempted in each state no new rules will be created on the basis

of unpredicted appearance (H5-2). At this point there is a � -hypothesis to

accurately predict the next state, so that the conditions required to invoke � -

hypothesis differentiation (H6) and forgetting (H7) do not arise. Corroboration

(H3/H4) does not cease under these conditions, neither does the option to

recommence � -hypothesis creation, differentiation or forgetting should the

underlying structure of the environment change for any reason. It has been

assumed that the animat has, inherent in its ethogram, some strategy that will

eventually allow it to visit all states by all transition options. This may be by

selecting actions at random.

A similar argument may be advanced in the case of the finite stochastic Markov

state space environment (FSMSSE). As in the FDMSSE situation, learning by

creation (H5-1) will cease once each state has been visited. Once each transition

has been made, including all those derived from the additional probabili stic nature

of the environment, creation by unpredicted event (H5-2) will cease. After an

extended period of exploration in the environment the corroborative measure (H3)

of each � -hypothesis will tend to the true probabili ty of the associated transition,

although this will only ever be an estimate of the true probabili ty. As before, should

the structure of the state space change (new states or new transitions) new � -

hypotheses will be created to accommodate those changes.

Should the relative distribution of transition probabili ties change, both the

corroborative (H3) and reinforcement (H4) measures will change to reflect this as

further exploration takes place. The corroborative measure reflects the overall

“ lifespan” situation. Under these circumstances the reinforcement measure has the

potential to provide a better working estimate. Due to the probabili stic nature of

the transitions none of the � -hypotheses will achieve full corroboration. When the

initial set of � -hypotheses reaches the required level of maturity the differentiation

process (H6) will become activated. New � -hypotheses formed are subsequently

tested in competition with their prototypes. Under the FSMSSE model conditions

new context signs will be created by concatenation of additional states drawn from
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recorded past states (only one state is indicated at the current time). Given that the

definition of the FSMSSE restricts the information bearing content for the choice

to the current state, it may be taken that all such � -hypotheses created by

differentiation will , in the limit, be less effective than their parent prototypes. It is

therefore an unfortunate consequence of the basic assumptions of the FSMSSE

that differentiation will continue throughout the animat’s lifecycle, without

materially improving its behavioural performance. On the other hand its effect will

not be catastrophic, the majority of the behaviour being mediated by the better

corroborated initial set of � -hypotheses.

Note that neither in the postulates, nor in either of these discussion cases

(FDMSSE and FSMSSE) has any reference been made to the provision of an

external source of reinforcement.

In general, the Markov state space environment may be considered a poor model

of the natural environment. The fundamental assumption that the information

required to select the best action to take is, or can be, described by the current

sensory pattern remains, at best, contentious. Equally the idea that some

combination of sensations will completely and uniquely describe a “state” that is

constant over time and so may be returned to on numerous occasions fails to

reflect our notion or experience of the natural world. Nevertheless, the FDMSSE

and FSMSSE environments represent a well defined and extensively studied

formalisation. They represent a convenient, repeatable and controlled test

environment in which to conduct experiments to determine the properties and

performance of a learning system. As these environments have been utili sed by

other authors, the Markov description represents a point of comparison between

alternative theories of learning. Later sections in this work will return to the utili ty

of the Markov environment as a test environment, and to comparisons with other

research that has used these environments.

3.2.4. Hypothesis Based Models of Learning

An early suggestion that rats exploring maze test environments use a form of

hypothesis was proposed by Krechevsky (1933). The term was later adopted

briefly by Tolman (1938) as a description of his basic expectancy unit, although in
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his later writings the term “field-expectancy” is preferred. Restle (1962) provides a

mathematical formalisation in which “hypotheses” (assumed or untested patterns of

responses to cue stimuli) are sampled from a fixed size population by different

means. In Restle’s model, hypotheses were either always correct (“C”), always

wrong (“W”), or inconclusive (“I” ), sometimes wrong, sometimes correct. Restle

further proposed three selection strategies. Strategy (1) in which one hypothesis

was selected and tested, then another, and so on (the single-hypothesis

assumption). In strategy (2) all available hypotheses are selected for testing. In

strategy (3) samples from the total population of available strategies are selected

for testing (the sub-set sampling assumption). Restle was able to demonstrate that

(under defined conditions) these three strategies are essentially equivalent - the

“indifference to sample size” theorem.

Levine (1970) conducted a series of experiments with human subjects, designed to

identify which strategy was used by the subjects. Subjects were asked to sort cards

according to four easily discriminated elements (size, form, brightness and

position). On some trials the subjects were given an indication, “right” or “wrong”,

about their choice so that they may form one or more “hypotheses” about their

selection choice (which may guide their future decisions). Interspersed with these

indicated trials the subjects made unguided choices. Such blind-trials allow the

experimenter to infer the hypotheses in use by the subject. These studies concluded

that subjects repeated a hypothesis indicated as correct, and discarded a hypothesis

indicated as incorrect. More significantly, many of the subjects appeared to be

sampling several hypotheses at each stage, the sub-set sampling assumption, as

indicated by the number of trials prior to perfect performance. In a related set of

experiments the latency time for the choice was measured over successive trials.

These experiments demonstrated a fall in decision time as possible, but ineffective,

hypotheses were discarded. Decision latency time remained constant following the

“solution trial” . More recent studies (Klahr, 1994) indicate that the hypothesis

generation strategy used by human subjects is dependent on age and educational

level. These results may call into question the appropriateness of applying data

derived from human subjects directly to autonomous learning in animals or

animats.
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The emphasis of Kruchevsky’s work was that rats explored their environments in a

methodical, rather than random, trial-and-error, way. The basic assumption driving

both Restle’s and Levine’s research was that hypotheses are selected and retained

or rejected from a finite, known, set. In Levine’s procedure subjects were apprised

of the set size before the trials began. The Dynamic Expectancy Model makes no

assumption about pre-existing sets of hypotheses. Hypotheses are generated and

tested as the opportunity arises. In turn this gives rise to other possible � -

hypothesis creation (postulate H5) strategies. Implicit in the description so far is

the idea that the animat initially creates a single, minimally simple hypothesis for

each situation, tests that hypothesis for some while, and subsequently may need to

refine or replace it. An alternative strategy might be to create a group of � -

hypotheses, utili sing both the spatial and temporal aspects of the trace, and

subsequently aggressively reject or delete all those from this sub-set that are not

corroborated on subsequent trials, an “over-sampling” assumption. Under this

assumption it may be appropriate that learned � -hypotheses do not affect the

behavioural repertoire until this initial selection phase is complete, leading to a flat

section just prior to the main learning curve14.

3.2.5. The Role of the Hypothesis in the Discovery Process

This thesis presents animal learning as a process of discovery. As part of the

arguments leading to his development of the central thesis in his classic and seminal

work into the nature of the scientific process, his “Logic of Scientific Discovery” ,

the eminent Austrian born philosopher Sir Karl Popper (1902-1994) identified

many essential properties of the hypothesis and its role in a self-sustaining

discovery process encapsulated in a set of “methodological rules” (Popper, 1959).

In this view of the discovery process “scientific truth” is determined by the creation

of hypotheses, which are tested from the phenomena they predict. In turn

experiments are devised to determine the validity of the prediction. This is a form

of modus tolens15, where theories from which hypotheses were properly derived

are discarded when the hypotheses are falsified by experiment. While Popper

                                               
14Kleitman & Crisler (1927) present data showing a similar effect under classical conditioning
conditions.
15If t, some theory, implies p, some conclusion (say a logicall y derived hypothesis), then the
falsifying inference “((t→p).¬p)→¬t” requires us to reject t if we find p false.
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decisively rejects inductive logic (“theory from examples”), he provides scant clue

in these early writings as to how he considers theories themselves are to be

formulated. Later authors active in the field of the philosophy of science have

extended this model, and provided alternative views, of the scientific discovery

process. Berkson and Wettersten (1984) have attempted to apply the principles of

Popper’s Logic of Discovery to the psychology of learning.

The “Logic of Scientific Discovery” (LSD) contains many insightful observations

about the nature of the discovery process. A number of these observations,

pertinent to expectancy theory and particularly relating to the nature of the

hypothesis and experiments are considered now. Hypotheses that have more

general applicabili ty, those giving rise to a smaller range of derived “statements”

and so have a higher “empirical content” , have decreasing opportunity to escape

falsification (LSD, s31). It is therefore incumbent on the discovery process to

propose the simplest theories and hypotheses that are testable and so falsifiable,

though simplicity itself is not a substitute for falsifiabili ty. Hypotheses that are not

testable (“undecidable” or “meta-physical” ) or those which are trivially true16

(“tautologous”) are to be discarded. Selection of the fittest systems of hypotheses

should be as a result of the “ fiercest struggle for survival” (LSD, s.6). Even if

inadequate such systems of hypotheses should persist until falsified or replaced by

one better able to be tested and found more fit.

Experiments are derived from, and test, hypotheses. Experiments must therefore

encapsulate a complete description of the conditions under which the phenomena

under test will be reproducible. Any conditions not included in the experimental

procedure being considered irrelevant. In Popper’s view a hypothesis may at best

be corroborated, or otherwise falsified, and consequently the hypothesis and

therefore the theory from which it was derived should be refined or refuted. In

practice Popper recognises that there may be valid exceptions to the strict

application of this approach, such as when the hypothesis fails due to incomplete

specification, or where verifying observations have reached the limits of available

experimental technique. In Popper’s model of the scientific method hypotheses are

                                               
16It has subsequently become apparent that practical logic based systems which ignore the
triviall y true or apparently commonplace are prone to particularly gross omissions of reasoning
(the “common-sense” component).
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deduced from theories (the Hypothetico-Deductive approach). In the Dynamic

Expectancy Model hypotheses are generated directly from observations and tested

(the Hypothetico-Corroborative approach). In both schemes testing of hypotheses

is a continuous process, the “scientific game” one without end. We may decide to

suspend testing a hypothesis temporarily, but “he who decides ... that scientific

statements do not call for any further test, and that can be regarded as finally

verified, retires from the game” (LSD, s10).

Experiments are repeated so that we may “convince ourselves that we are not

dealing with a mere isolated coincidence” (LSD, s.8). Popper refers to such

coincidences as occult occurrences, repeated testing validates or rejects the

phenomenon. A similar effect has been noted by experimental psychologists in

animals, a behaviour based on a single rewarding circumstance, which persists even

though the outcome is not repeated. This effect is usually referred to as

superstitious learning, characterised as the elicitation of ritualistic or stereotyped

behaviour under non-contingent “reward” schedules. Skinner (1948) describes an

experimental schedule demonstrating the phenomenon in pigeons. Blackman (1974,

Ch. 2) reviews “superstitious” behaviours in an operant conditioning context. This

effect is apparently distinct from superstitious behaviour in humans, based on

mystic or other beliefs (Jahoda, 1969).

3.3. Tokens, Signs and Symbols

Signs are specifically a combination of one or more elementary sensory units. They

recognise a condition that may itself be composed of more than one sensory mode.

In the Dynamic Expectancy Model these individual elements are referred to as

tokens. Tokens perform the initial conversion of data from external transducers or

sensors into symbolic form. Sensors abound in nature and it is not intended to

further review the scope or extent of animal senses here. Similarly there have been

significant advances in artificial transducers that may be incorporated into robotic

devices. In the present model tokens will be represented as two-state symbols,

indicating the presence or absence of the condition detected. This is a limitation

that may need to be addressed in the future. The values of past tokens are recorded

in an activation trace, specifically to allow temporal discrimination. By referring
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to elements in the activation trace behaviours may be related to past events, as well

as those which are current.

3.3.1. The Sign and Token Postulates

Definition T0: Token. A token is a symbol relating to a basic unit of sensory input.

A token indicates the instantaneous output from a detector. In the present model a

token is either active or inactive, reflecting one of two possible detector states.

Tokens are time tagged. They may represent the state of the detector at the current

time or provide a record of the state of each detector at given times from the recent

past (the “activation trace”). Older token records are discarded. Tokens may be

attached to transducers to detect physical aspects relating to the animat and its

environment. Tokens may also detect information processing activities within the

animat.

Definition S0: Sign. A sign encapsulates a combination of conditions. These

encapsulated conditions completely define the context (“s1”) and the predicted

outcome (“s2”) for individual � -experiments (postulate H2). A sign is a

conjunction of tokens. Individual tokens may be negated (active to inactive, and

vice-versa), providing an inhibitory connection. A token retains its time tag when

incorporated into a sign.

Postulate T1: Tokenisation. Tokenisation is the process by which output from

detectors is converted to an internal symbolic form. Such a token symbol may be

considered as having a value associated with it that reflects the current (or past)

output of the detector. The current token value changes according to the output of

the detector.

Postulate S1: Encapsulation. Encapsulation is the process by which individual

tokens are combined into a single sign. New signs are added to the system during
� -hypothesis differentiation (postulate H6).

Postulates T2 and S2: Activation. A token is considered “active” when the

detector to which it relates is emitting the output relating to the tokenisation

process. Similarly a sign is considered “active” when all i ts component tokens are
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(or were, in the case of time tagged tokens) active, taking into account any

negations. Both tokens and signs may be considered as “tests” on the conditions

they detect.

3.3.2. Initial Conditions for the Token and Sign Sets

The ethogram will define an initial set of tokens, and ensure they are attached to

transducer and detector outputs. A single detector may be associated with several

tokens, relating perhaps to different degrees or levels of output. The ethogram will

also define any signal processing or transformations to be applied to detector

output prior to tokenisation. The initial set of signs will contain one sign for each

initial token, unnegated and reflecting the current value of the token. New tokens

and signs may be added to the system during the lifespan. Tokens may be defined

as active when the state of a transducer changes, either from off to on, or from on

to off, or under both conditions. In the experimental conditions described in

chapters five and six this effect is inherent in the nature of the environment and

simulated transducers. Other environments, real or artificial, may call for specific

signal processing to achieve these conditions.

3.3.3. Supporting Evidence for Signs and Tokens

There is a wide diversity of afferent and sensory mechanisms found in nature, and a

substantial body of recent research into sensor and transducer systems for artificial

animals and robots. This section addresses some of the issues, and presents a

sample of sensory strategies to be found in nature. Above all i t is clear that sensory

sub-systems are far from amorphous, general purpose, elements. Nature abounds

with well-documented examples of perceptual mechanisms tuned to the

behavioural and learning requirements of their host animal. For instance, Tinbergen

(1951, chap. 2) describes how the release strength of the food begging reaction

varies in newly hatched herring gull chicks when presented a range of differently

coloured model representations of the adult bill . Among many additional carefully

observed and documented examples he also reports on the elicitation of the escape

response in many species of bird when presented with silhouette profiles of

predatory birds, while not reacting to silhouettes of other, non-predatory, species.
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Arbib and his colleagues (Liaw and Arbib, 1993; Arbib and Cobas, 1990) have

modelled the response of various frog and toad species to the threat posed by large

looming objects as possible predators and the opportunity offered by small moving

objects as potential prey. Additional neurological evidence that identifiable cells (or

structures of cells) respond to external stimuli has been provided by the work of

Hubel and Wiesel (1962), who reported that individual cells in the visual cortex

become active when highly specific patterns are presented in the visual field of

experimental animal subjects. Schölkopf and Mallot (1995) consider the

experimental evidence for place cells, located in the rat hypothalamus, which fire

(demonstrate significantly higher rates of electrical activity) when the rat is

physically located in specific places.

Tokens, kernels (JCM and ALP) and primitive items (Drescher) are all abstractions

from the totality of possible information that will be present at the time the token

item is generated. The same is true in nature. The herring gull chick fails to note

that the model bill i s not a significant feature. The adult bird that the predator

silhouette presents no threat - being made of wood and paint. On a different

evolutionary path development of the innate releaser indicating this predator

danger might be more specific, responding additionally to wing beat patterns, or

hovering, swooping or other flight characteristics specific to the predator species.

Foner and Maes (1994) point out that many current computer representations of

input stimuli only take account of the current situation. This would also appear to

be true for the majority of machine learning induction systems. Foner and Maes

describe extensions to Drescher’s original scheme to allow a one cycle record. This

in turn allows extensions to the algorithm to focus attention on phenomena that

change. Coincidentally there is also a significant body of evidence for single

neurones that demonstrate firing activity specifically with respect to stimulus

change.

The evidence for a Short Term Memory (STM) phenomena, employed in both JCM

and ALP primarily rests with human nonsense syllable recall tasks. The evidence

for an activation trace surmised from the apparent abili ty of various animal species

to perform temporal stimulus differentiation. Recent reports implicate the

substantia nigra brain area as a timing element capable of generating “metronome”

like pulses in the milli second to minute range to other parts of the brain (Highfield,
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1996). This is a distinct phenomenon to the daily circadian rhythm (Lofts, 1970),

which has been demonstrated to influence both physiological and behavioural

aspects in a wide variety of species. There is extensive neurophysiological evidence

that firing activation can continue after removal of a stimulus at the single neuronal

level (an integration effect), though it is not obvious that these phenomena have

significant or direct bearing on either the notion of STM or of the activation trace.

The encapsulation of multiple atomic conditions (the tokens) into the single

symbolically identified ‘sign’ (the sign-gestalt) allows for an efficient and compact

definition of the context-action-consequence triplet representation. Processing

transducer and sensor data and hence the derivation of the input token is a critical

issue for animat originators. Drescher’s primary items essentially unambiguously

detect a state of the environment that is relevant to the algorithm; the position of

the fovea, the location of the simulated hand and so on. By contrast the sensors on

the robot used by Mott’s ALP system provided highly ambiguous and incomplete

information. The same pattern of kernels was generated over a wide range of

circumstances. The use of binary representations for light level, for instance, gave

ALP little opportunity to determine the true consequences of its actions. In the

experiments to be described in chapter six the creation of tokens is tightly coupled

to the design of the environment.

3.4. Actions and Reification

The action and reification postulates define the efferent sub-system, which enables

the animat to control actuators and so directly affect its environment. External

actions, those which impinge on the environment, may be monitored by direct

observation. Internal actions, such as those which affect the “physiology” of the

animat, may only become apparent through measurement or by inference.

3.4.1. The Action Postulates

Definition A0: Action. An action is the basic unit of efferent event available to the

animat. In the converse process to tokenisation, the animat may convert certain

internal symbols into actions that directly impinge upon, and may change, the state

of the animat or its environment. In keeping with tradition the terms “action” and
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“response” will be used essentially equivalently in this context throughout the

thesis17.

Postulate A1: Reification18. Reification is the process by which internal symbols

are converted into detectable manifestations, for instance physical actions by the

animat on the environment via its actuators. Such symbols may be delivered for

reification by many routes within the model.

Postulate A2: Action Cost. The performance of any action by the animat will be

presumed to consume resources otherwise available to the animat. Action costs

may be measured in terms of energy expenditure, time taken to completion, or any

other units that may be applied consistently within the confines of the ethogram,

and which are appropriate to the physical and mechanical design of the animat and

its actuators. Action costs are normalised to be 1.0 or greater, where 1.0 is taken

as the minimum cost of any of the actions available to the animat.

Postulate A3: Compound Actions. Compound actions represent larger sequences

of actions, which may be considered as a single tokenised item for reification. They

are formed from simple actions (postulate R1) by concatenation. Compound

actions formed in this way run to completion once initiated. The cost of a

compound action will be taken as the sum of its individual component actions.

3.4.2. Initial Conditions for Actions

The list or vocabulary of actions initially available to the animat is defined in the

ethogram. This vocabulary of actions will i nclude all simple and compound actions

and their associated costs. New actions may be added to the vocabulary during the

lifespan of the animat.

                                               
17 The action as “response” is a S-R behaviourist concept, it is therefore not entirely clear why the
term should have been retained by those who did not necessarily regard “actions” as “responses”.
18 (OED) reify v.t. Convert (person, abstract concept mentall y) into thing, materiali se; hence
~fication n. [f. L res thing + -I- + -FY]
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3.4.3. Supporting Evidence for an Action Vocabulary

The ethogram may define actions over a wide range of complexity, from simple

individual muscle or actuator motions (“molecular” in Tolman’s vocabulary, or

“characteristic” in McFarland and Sibly’s, 1975) to increasingly complex

combinations of actions which may be clearly recognised as a behavioural pattern

(“molar” in Tolman’s and “actions” or “activities” in McFarland and Sibly’s). Each

animal exhibits a vocabulary of “action patterns” , apparently as characteristic of its

species as is any physical attribute. The Dynamic Expectancy Model does not

divide actions into “appetitive” and “consummatory” , as in Tinbergen or Maes’

models. In the Dynamic Expectancy Model actions may indeed lead to the

satisfaction of a goal (q.v.), but goal satisfaction is rather a property of the goal

description, not of any particular action that may precede the satisfying event.

Several detailed studies developing catalogues of essentially unitary behaviour

“action patterns” in animals have been undertaken, for instance Shettleworth’s

work on the Golden Hamster (Shettleworth, 1975) or that of Reynolds’  (1976) on

the Rhesus Monkey. Shettleworth describes 24 mutually exclusive action patterns

displayed by hamsters under laboratory conditions. Reynolds’ work studied

monkeys in a social setting, though in captivity, to prepare an extensive vocabulary

of action patterns. Action patterns were described as either “postural” (68 distinct

actions in 11 groups, including “attack” , “threat” , “dominance expressions” ,

“submission” , “grooming” and “sex”) or “vocal” , cataloguing the sounds made by

his subjects. Reynolds provides comparisons with previous attempts at a

terminology and discusses the difficulties in arriving at a uniform and agreed

classification.

Mott’s ALP used a list of five molecular actions (“<FORW>M” , “<BACK>M” ,

“<LEFT>M” , “<RIGHT>M” and “<CRY>M” ), corresponding to the translational

and rotational movements available to the QMC Mk. IV robot. It is unclear what

role the “<CRY>M” action played in the experimental set-up described. Drescher’s

system employed 10 molecular actions, four controlli ng foviation (“eyef” , “eyeb” ,

“eyel” and “eyer” ), four controlli ng hand movements (“handf” , “handb” ,

“handl” and “handr” ), and hand open and close (“grasp” and “ungrasp” ). Many
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of the simulated and physical robot controllers based on classifier and

reinforcement principles define action sets of similar size and complexity.

3.5. Goal Definitions

Goals represent the trigger or cue for the animat to engage in performing outcome

directed behaviours.

3.5.1. The Goal Postulates

Definition G0: Goals. A goal establishes a condition within the animat causing the

animat to select behaviours appropriate to the achievement or “satisfaction” of that

goal. Goals are a special condition of a sign; goals are therefore always drawn from

the set of available signs.

Postulate G1: Goal Valence. From time to time the animat may assert any of the

signs available as a goal. Any sign asserted to act as a goal in this way is termed as

having valence (or be valenced). None, one or many signs may be valenced at any

one time. The converse condition, aversion, where the animat is required to avoid

certain stimulus conditions is considered later (section 7.5).

Postulate G2: Goal Priority. Each valenced goal is assigned a positive, non-zero

priority. This priority value indicates the relative importance to the animat of

achieving this particular goal, in the prevaili ng context of other behaviours and

goals. Goal priority is determined within the innate behavioural component of the

ethogram. In the current model only one goal is pursued at any time - the top-goal,

the goal with the highest priority.

Postulate G3: Goal Satisfaction. A valenced goal is deemed “satisfied” once the

conditions defined by the goal are encountered, when the sign that defines the goal

becomes activated (postulate S2). The priority of a satisfied goal is reduced to zero

and it ceases to be valenced. Where goal seeking behaviour is to take the form of

sustained maintenance of a goal state, the goal selection process must revalence the

goal following each satisfaction event.
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Postulate G4: Goal Extinction. In a situation where all possible paths to a goal are

unavailable, continued attempts to satisfy that goal will eventually become a threat

to the continued survival of the animat, by blocking out other behaviours and

needlessly consuming resources. Such a goal must be forcibly abandoned. This is

the goal extinction point. Goal extinction is closely related to the valence break-

point postulate (P6).

Postulate G5: Cathexis. Cathexis associates a known goal sign with some other

sign, following repeated simultaneous appearance. The association grows in

magnitude with successive pairings and wanes to extinction should the pairing

cease. This mechanism allows created signs to equivalence signs with innate goal

properties.

3.5.2. Goals, Starting Conditions and Discussion

Goals are defined within the ethogram, and a mechanism must be defined to enable

goals to be asserted whenever an appropriate circumstance arises. Current animat

models, based on animal studies, might indicate the appropriateness of goals

related to hunger, thirst, internal temperature control, external cleanliness, predator

avoidance, location of shelter, mating, and so on (after Tyrrell, 1993). Goal setting

and goal satisfaction need not be based on the same detectable phenomena. For

instance, food seeking behaviour may be initiated by the detection of lowered

blood sugar levels (or by changes in blood sugar controllers, such as insulin).

However, due to the delay in the digestive process, were feeding to cease only

when these levels were again elevated to a reasonable level the hapless creature

would be gorged to bursting point. It has been demonstrated that many cues may

be used to terminate feeding behaviour, the action of eating, the taste of sweet but

non-nutritious saccharin solution, or by artificial distension of the stomach (by an

inflated rubber balloon inserted into the gut). Clearly an overall balance must be

achieved between long-term and short-term signals to ensure that behaviour and

driving needs are matched.

Goals need not relate to physical requirements, and may be asserted by other

mechanisms. Maes (1991) describes “curiosity” as a goal type, related to

“exploratory” behaviours. Yet curiosity is rather the description of a process that
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involves exploratory or deliberate actions to elicit further information about goals.

Such goals may be activated on an arbitrary basis, or specifically to provide

additional maturity to a � -hypothesis, to disambiguate between contradictory � -

hypotheses, or to engage in the process of play19.

3.6. On Policies and Policy Maps

Whenever any goal is valenced (postulate G1) the Dynamic Expectancy Model

calls for the animat to construct a Dynamic Policy Map (DPM). As with a Q-

learning policy map, the DPM allows the animat to select an action based on an

estimate of least cost path to the current goal. The DPM is constructed from all the
� -hypotheses available to the system at the time of its construction. Unlike the

static policy map of Q-learning, commitment to any particular DPM structure and

values is not made until the point a goal becomes valenced (G2).

3.6.1. Policy Map Postulates

Definition P0: Dynamic Policy Map. The Dynamic Policy Map temporarily

assigns a measure of “effectiveness” to every sign known to the animat (the “policy

value”, q.v.) This effectiveness measure is an estimate of the effort that will need to

be expended in traversing from any current situation (as defined and detected by a

sign), to the goal sign with the highest given priority (postulate G2). The current

DPM is discarded when its goal is satisfied (G3). A new DPM is reconstructed

whenever a new top-goal is selected, or when either the set of � -hypotheses (H5,

H6 or H7), or their corroboration measures (H3 and H4) change significantly.

Postulate P1: Induced Valence. Any � -hypothesis whose consequence sign (“s2”)

is identical to the top-goal sign, or to any sign with valence (postulate G1), induces

valence into its context sign (“s1”).

                                               
19 Play (Dolhinow and Bishop, 1972; Hinde, 1970, pp. 356-359), has been widely observed in
animal behaviour, in particular in primates and humans and other mammalian and avian species.
Play is not observed in fish, amphibians and invertebrates. Play in animals is most often
encountered as incomplete or styli sed versions of recognisably adult behaviours, but it is not
triggered by normal motivational cues and is without the expected consummatory component.
There is a notable suppression of harmful aspects to the normal behaviour manifestation, such as
biting. It is also easil y interrupted by threat or hunger. Play is often associated with the
individual’s development in a social context, and as a way of gaining motor skill s. It may also
have an explicitly exploratory component.
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Postulate P2: Spreading Valence. Any � -hypothesis not already valenced, and

whose consequence sign (“s2”) matches a context sign of another � -hypothesis that

is valenced itself gains valence. Valence is induced (postulate P1) into the context

sign, the context sign of the newly valenced � -hypothesis may now act as a sub-

goal. Valence may therefore spread throughout the set of � -hypotheses and signs

until all � -hypotheses have acquired valence, or until no more � -hypotheses can be

reached by this process. The top-goal is defined as having a “valence level” of zero;

each level of induced valence increases the valence level by one.

Postulate P3: Cost Estimate. The cost estimate for using any action associated

with any � -hypothesis shall be the action cost (postulate A2) divided by the

corroboration measure (H3, eqn. 3-1). Thus if the � -hypothesis has always

successfully predicted the consequence its cost estimate (P3) will be equal to the

action cost. Where the corroboration measure indicates a less successful rule, the

cost estimate rises. Where the � -hypothesis has always failed the cost estimate

would tend to infinity. The reinforcement measure (H4) may be used equivalently

in this calculation.

cost estimate �  cost(r1) / p(s2 |t s1+r1)        (eqn. 3-4)

Postulate P4: Policy Value. The spreading valence (postulate P2) process creates

policy chains, indicating one or more paths or chains of actions (extracted from � -

hypotheses implicated in the valenced policy chain) extending between the goal and

any sign involved in the DPM. The policy value for any sign that is not the goal and

which is involved in the DPM is defined as the sum of individual cost estimates

(P3) for each element in the policy chain. In practice the spreading valence method

produces a graph or net like structure. Any policy chain shall be defined as

comprising the transitions representing the policy cost of lowest overall value

between pairs of sign nodes in that chain.
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where v is the valence level of each link in the policy chain formed and n is the

valence level of some sign “s”.

Postulate P5: Action Selection. Whenever there is a valenced top-goal (and so a

DPM) an action may be selected for reification from the � -hypothesis implicated in

the DPM whose context sign is both active (postulate S2) and which has the lowest

policy value (P4).

Postulate P6: Valence Break Point. Creating a DPM (postulate P2) and selecting

an action (P5) establishes within the animat an expectation that the top-goal may

be achieved at a certain cost (P4). The model defines a valence break point (VBP),

typically some multiple of the policy value (policy value * n). When actions

selected from the DPM fail the policy value rises. Should the policy value exceed

that of the previously computed valence break point, goal directed behaviour is

suspended, with the animat reverting to exploratory behaviours for a time. During

this period the animat may create new � -hypotheses if the opportunity arises,

offering the possibili ty of a new path chain to the goal. Goal directed behaviour is

reinstated with a less demanding valence break point (the policy value is now

higher). Goal directed and exploratory behaviours alternate until either the goal is

reached, or the goal is finally cancelled by the extinction process (G4). This

process mirrors the experimental extinction phenomena repeatably observable in

animal experiments (figure 3-1).

3.6.2. Evidence for Chaining

Evidence that animals may form explicit behaviour chains under controlled

conditions is described by Blackman (1974). Such chains are created by the

experimenter by manipulating the animal in an operant conditioning set-up to elicit

some response, say Rx, to achieve a reinforcing reward under some discriminating

stimulus situation, say Sx. Following this stage a response, say Ry, is conditioned

to Sx, but only in the presence of another discriminating stimulus, Sy. Sx has no

inherent reward characteristics, but acts as a conditioned reinforcer. Using this

method chains of considerable length and complexity have been reported.

Sy �  Ry �  Sx �  Rx �  reward
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An independent series of experiments on the latent extinction phenomena

demonstrates that these behaviour chains may be disrupted, weakened or broken

when individual elements of the chain are extinguished (Bower and Hilgard, 1981,

describing the work of Stewart and Long, and others.) The abili ty to construct, and

disrupt behaviour chains is not in itself direct confirmation of induced valence, but

is important supporting evidence. Experience from animal training (Bower and

Hilgard, 1981, p. 179) suggests that the chain need not be built up backwards from

the primary source of reinforcement, but may also be built forwards, or by inserting

operant elements into existing shorter chains.

3.6.3. Evidence for Goal Suspension and Extinction

Figure 3-1 shows stylised cumulative records (from Blackman, 1974, p.67, after

Reynolds) derived from Skinner box experiments under various operant

conditioning reinforcement schedules. In the fixed ratio (FR) schedule “reward” is

delivered to the animal after a fixed number of “responses” . In the variable ratio

(VR) schedule “reward” is delivered after a random number of “responses” . In the

variable interval (VI) schedule “reward” is delivered at randomly varying intervals,

independently of actions by the animal. Similarly, the fixed interval (FI) schedule

delivers “reward” after a fixed interval of time, again independently of “responses”

by the subject. All these schedules are applied to animals that have previously been

conditioned to operate the Skinner box apparatus on a regular reward schedule.

The slope of the curve indicates the rate of the learned response (each response

causes an upwards increment in the trace), downward “tick” marks indicate

individual reinforcing reward events. Note the characteristic stepped form of the

curve in the extinction phase of the experiments following the cessation of reward

events. The stepped form reflects the changing relationship between two forms of

activity during the extinction phase, shortening periods when responses are made,

and lengthening periods when no responses are made. In time the learned response

is apparently completely eradicated. This extinction process is a highly repeatable

phenomenon, and has been widely reported under both classical and operant

conditioning regimes. Experimental regimes also indicate a secondary process of
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spontaneous recovery, in which the previously extinguished effect re-appears,

albeit in a weakened form, after a period of rest.

The Dynamic Expectancy Model emulates the shape of the extinction curve by the

combined effects of the reinforcement (H4), valence break point (P6) and goal

extinction (G4) postulates. Specific details of how these interact in the

implemented model, and experimental analysis of the effects are described later.

Extinction curves of the type shown in figure 3-1 indicate the manner in which an

animat may abandon use of individual � -hypotheses that prove ineffective. The

reinforcement schedules themselves may yet reveal much about how � -hypotheses

may be created and managed in an animat designed with biological plausibility in

mind.

Figure 3-1: Extinction Curves Under Various Schedules
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3.6.4. Comparison to Q-learning

The Dynamic Expectancy Model is based on a different set of fundamental

premises to that of the reinforcement and Q-learning strategies of Sutton and

Watkins. Watkins (1989, p.16) summarises the situation for Q-learning in three

position statements: (1) that the capacity for maximally efficient performance is

valuable; (2) that exploration is cheap; and (3) that the time taken to learn a

behaviour is short compared to the period of time during which it will be used.

Statement (1) is hardly in contention. Statements (2) and (3) indicate that the

ultimate level of performance is inherently more important than the time taken to

achieve it. “Optimality” is thus defined as maximising reward acquisition over an

extended time period. Learning in the Dynamic Expectancy Model aims to provide

the animat with the best path to achieve goal (reward) states as they become

indicated, given the current level of knowledge. It may be that as the animat

becomes more experienced the quality of that path might be expected to converge

to some acceptable notion of “optimal”20 behaviour. This would be the case, as

discussed under the FDMSSE conditions considered earlier, except for the

competing requirement that the animat continue to explore while any phenomena

remain unpredicted, an innate drive to continuously augment and refine its state of

knowledge.

3.7. Innate Behaviour Patterns

Innate behaviour patterns provide a grounding for intelli gence. In the Dynamic

Expectancy Model innate behaviours serve three distinct roles. First they provide

the animat with sufficient behaviour to survive in its environment from parturition,

before any learning. These behaviours imbue the animat with strategies to react to

life threatening events, where learning would represent too high a risk for failure

on the initial instances; predator avoidance for instance. Second to select and set

goal priorities. Most goal directed behaviour serves basic physiological

requirements. Innate behaviour detects conditions indicating those requirements

and establishes them as goals. Third to provide a level of background behaviour to

                                               
20Optimalit y, li ke beauty, is in the eye of the beholder. The Q-learner may regard the shortest
path between current state and reward state as the optimal path. A hungry predator waiting beside
this path may agree.
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ensure the animat is appropriately tasked whenever neither the primary nor

secondary roles are activated. It may be appropriate that the animat enters a state

of hibernation, torpor or sleep, a strategy that may conserve energy or serve other

physiological functions. The animat may also use these periods to perform

exploratory actions, thereby triggering � -hypothesis creating postulates, and

performing acts that corroborate existing � -hypotheses. It is a consequence of the

Dynamic Expectancy Model postulates that learning may take place in the absence

of explicit reinforcement. Several strategies for this exploration may be applicable.

Definition B0: Behaviours. Behaviours are unlearned activities inherent within the

system. Behaviours give rise to actions (postulate A0) in response to circumstances

detectable by the animat. They are defined prior to parturition as part of the

ethogram. There is no limit to the complexity (or simplicity) of innate behaviour.

An animat might be solely dependent on innate behaviours, with no learning

component.

Postulate B1: Behaviour Priority. Each behaviour within the animat is assigned a

priority relative to all the other behaviours. This priority is defined by the

ethogram. The action (postulate A0) associated with the behaviour of highest

priority is selected for reification (A1).

Postulate B2: Primary Behaviours. Primary behaviours define the vocabulary of

behaviour patterns available to the animat at parturition. These behaviours provide

a repertoire of activities enabling the animat to survive in its environment until

learning processes may provide more effective behaviours.

Postulate B3: Goal Setting Behaviours.  The ethogram defines the conditions

under which the animat will convert to goal seeking behaviour. Once a goal is set

the animat is obliged to pursue that goal while there is no primary behaviour of

higher priority. Where no behaviour can be selected from the DPM, the animat

selects the behaviour of highest priority that is available. Behaviour selection and

reification (A1) from the DPM resumes once there is any match between the set of

active signs (S2) and the current DPM (P5).
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Interruption of goal directed behaviour by a higher priority innate behaviour may

draw the animat away from its top priority goal. For instance, goal directed

nourishment seeking behaviour may be interrupted by high priority predator

avoidance activity. Once the threat is passed goal directed behaviour will be

resumed, although the animat’s perceived “place” in the DPM graph will have

shifted as a result of the intervening behaviour. The structure and corroboration of

the DPM may have changed, and it must be re-evaluated as behaviour reverts to

the goal directed form. Where goal seeking takes the form of a sustained

maintenance of the selected goal state, the selection process must reassert the

required goal each time it is satisfied.

Postulate B4: Default (exploratory) Behaviours. Default Behaviours provide a

set of behaviours to be pursued by the animat whenever neither a primary nor goal

setting behaviour is in force. Typically these default behaviours will take the form

of exploratory actions. Exploratory actions may be either random (trial and error),

or represent a specific exploration strategy. Selection of this strategy will impact

the rate and order in which the � -hypothesis creation processes occur (H5). Default

behaviours have a priority lower than any of the primary (B2) or goal setting (B3)

behaviours. The provision of default behaviours is mandatory within the ethogram.

3.7.1. Balancing Innate and Learned Behaviour

The balance between innate and learned behaviour varies widely throughout both

nature and the study of artificial animats. Action selection models, such as those of

Brooks, Chapman and Agre, Maes, and Tyrrell, place full emphasis on the

provision of pre-programmed behavioural activity. Behaviours are selected to give

the animat appropriate responses to its environment, and as a consequence animat

behaviour may appear “ intelli gent” by virtue of this applicabili ty. In this case the

originator imbues the animat with a mechanism to determine which needs are

required, and a mechanism to balance between them. Within its repertoire of innate

behaviours a simulated animal may manage its requirements for nourishment and

water, for warmth, for shelter, predator evasion and the need to procreate.

Similarly a robot may be programmed to partition its activities into different, and

mostly mutually exclusive, behaviours - collecting soda-cans, environmental
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mapping, avoiding unexpected obstacles, seeking its recharging point and

replenishing its batteries. Each robot may incorporate these, and other tasks, whose

usefulness and complexity are limited primarily by the imagination, patience and

programming skill s of the robot designer. Recall that � -hypotheses may themselves

be defined in the ethogram, consequently the Dynamic Expectancy Model does not

imply that all goal seeking behaviour must be learned.

At the other end of the scale many adaptive learning models adopt a tabula rasa

approach. With little or no predefined coherent behaviour, they rely instead on a

(pre-defined) learning mechanism to accumulate sufficient information about the

environment to eventually create coherent and appropriate overt behaviour.

Reinforcement and Q-learning schemes fall into this category, as does Drescher’s

schema system. Initially actions are selected at random, under a trial and error

regimen and internal structures built or existing structures populated. With the

application of sufficient trials purposive behaviour may be generated from the

structures and information accumulated.

Mott’s ALP was essentially initially a tabula rasa system, but a small number of

low-level robot reflexes were provided. To prevent the robot becoming physically

trapped into corners a reflexive backoff mechanism was pre-coded into the robot

control-level controller. This is a recurring problem for mobile robot constructors,

exacerbated in this instance due to the physical layout of the robot used, a square

outline with differentially powered wheels forward of the centre-line. For this

reason many mobile robots are designed with a circular, or at least rounded “floor-

plan” , with their drive wheels placed symmetrically about the centre-line. A second

low-level innate reflex was found to be necessary to suppress the backoff reflex

when the robot was at the charging point. This “discriminating push” reflex

prevented contact with the charger being broken, ensuring that effective electrical

contact was maintained between the robot’s charger contact plates and the sprung

base station charger contacts throughout the recharging period.

3.8. Advances Introduced by the Dynamic Expectancy Model

Cursory inspection of the Dynamic Expectancy Model postulates H3 and H4 might

suggest that this is a conventional reinforcement model of learning. Procedures
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(encapsulated by equations 3-1, 3-2 and 3-3) by which reinforcing events

strengthen or weaken disposition of the animat to adopt one behavioural option

over another are similar to those of other well-established reinforcement methods.

The source of the reinforcement is, however, radically different. In the Dynamic

Expectancy Model the reinforcement signal is internally generated by the setting

and subsequent verification of a prediction. In previous reinforcement systems the

reward signal must be received from the external environment before any learning

could occur. In the new model a valid reinforcement signal is generated whenever a

behaviour choice is exercised and a � -experiment activated, so that the processes

of behaviour may now be largely disassociated from those of learning.

It will be demonstrated later that this new method allows for substantially

improved learning rates over conventional reinforcement learning techniques

(section 6.2). It is quite clear that learning triggered by external reinforcing reward

is also a valid effect, and commonly observed in animals. While this thesis primarily

explores the effects of internally generated reward, it will be demonstrated (section

7.4) that additional performance benefits may accrue to the animat when internal

expectancy and external reward signals are combined.

The Dynamic Policy Map arises from the fundamental disassociation of the learning

and (goal-seeking) behavioural processes. In the static policy map of, say, the Q-

learning algorithm, each sensory state becomes increasingly permanently attached

to a particular action relative to a fixed goal. While this may bring advantages in

enhanced reaction times following the learning phase, it leads to an inflexible

reaction to the changing needs of the animat with time and varying goals. The

Dynamic Expectancy reinforcement method of learning allows the construction of

a policy map only when it is required, and relative to the specific needs of the

animat at the time of construction. � -Hypotheses become “committed” to a

particular goal only while that goal has the highest priority, and will be reallocated

whenever the goals of the animat change. An example of this dynamic map

construction will be given in section 4.9.3.

By generating the policy map dynamically in this way the advantage of the reactive

response to active signs inherent in the static policy map is retained. By not

committing any individual � -hypothesis to any particular goal or reward during the
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learning process the Dynamic Policy Map may be reconstructed to provide a

reactive policy relative to the current goal, even where the goal has not previously

been implicated in the learning process.

By integrating expectancy learning with an action selection based model of

behaviour a way of selecting goals is made possible. This combination of

techniques also provides a way of defining innate, reactive stimulus-response

behaviours. These innate behaviours provide the animat with a mechanism with

which to react in a manner to allow survival while the individual learns the skills

required to behave ever more appropriately in its environment.


