Chapter 4

4. The SRSE Algorithm

This chapter describes the SRSE computer algorithm. SRSE is derived dredly
from the Dynamic Expectancy Modedl postulates of leaning and behaviour
developed in the previous chapter. SRSE follows in the tradition established by
Bedker's M, Mott's ALP and Drescher’'s systems by providing an intermediate
level cognitive model based on the mntext-adion-outcome triplet. As with these
previous gstems, SRSE offers a sensory-motor view of leaning. It is not,
however, to be mnsidered as a re-implementation of any of these existing systems.
As with Mott’s ALP and Drescher’s algorithm, and indeed the mgjority of extant
animat control algorithms, SRS/E is based on a repeaing cycle of sensory
aqquisition from the environment, processng and taking overt adions into the
environment.

Eadh moddl is a refledion of the times in which it was creded. Bedker's M
proposal and Mott's ALP implementation adopt an associative net structure for
schemata LTM; consistent with prevailing theories from psychology and cognitive
science, for example, Norman (1969. Adopting a net structure served to contain
the computational seach and matching load inherent in these designs, bringing
distinct pradicad advantages to Mott’s implementation in the @ntext of a time-
sharing ICL mainframe. Drescher’s later (1991) system adopted a “neura crossar
architedure”, consistent with the revival of interest in connedionist thinking at that
time. Availability of the massvely parallel Connection Machine made the brute
force gproad of the marginal attribution agorithm feasible. In turn, SRSE arises
as a readion to an upsurge of interest in reinforcement leaning and related
behaviourist concepts. SRSE’s name, an abbreviation of Stimulus-Response-
Stimulus/Expedancy, pays passng tribute to the life's work of E.C. Tolman, and
defines the positioning of the work. Various other items of terminology, notably
the use of Sgn, Valence, Hypothesis and (Cognitive) Map, are derived from the
vocabulary developed by Tolman and his contemporaries.
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In contrast to these other systems SRSE is primarily an algorithm that manipulates
lists of data. This chapter is divided into two main parts. In the first part the
various types of data list are described. The seacond part presents the dgorithm
used to manipulate the lists, perform the leaning tasks and generate overt
behaviours, either from the animat’s predefined ethogram, or as a mnsequence of
learned information.

4.1. Encoding the Ethogram: SRSE List Structures

SRS/E currently defines sven internal data structures. These data structures will
be referred to as lists. Eadh list encapsulates an asped of the animat’s ethogram,
and so reoord the instantaneous “state” of the animat. At defined points in its
exeaution cycle the SRS/E algorithm will insped the wntents of these lists and
generate behaviours based on the prevailing contents of those lists. Equaly the
SRS/E agorithm will add, modify or delete information stored on the lists by
processes derived from the Dynamic Expedancy Model postulates described in
chapter three These processes will be defined later in this chapter. Each of the
seven lists is composed of list elements. In turn eat element of ead list is itself
composed of list element values, which record items of information relevant to
eat list element. So, for example, the Hypothesis List is composed of many
individual u-hypotheses, the dements of that list. Eadh u-hypothesis has attadched to
it various hypothesis values, which are aeded and initialised at the same time &
the individual p-hypothesis, and may be updated ead time the dgorithm utili ses the
individual u-hypothesis. All list element values (or “vaues’) are updated by the
SRS/E agorithm as a result of events impinging on the animat and adions the
animat makes. The list structures, list elements and list element values are
summarised in table 4-1, and described in the sub-sedions that follow. List
elements may be defined by the originator before the aedion of an individua
animat, as would be the case with the Response and Behaviour Lists. Otherwise, as
would be typicd for al the other lists, lists are empty at the point the animat
beames a free standing individual. In which case the SRS/E algorithm credes
individual list element entries as the need arises.
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4.1.1. List Notation

Throughout this chapter ead of the seven lists will be represented by a single
cdligraphic character. Upper-case dharaders represent complete lists (I, S, R, B,
H, Pand G). Lower case charaders represent individual elements in the respedive
list (& & v, b; hy p and g). Table 4-1 summarises this notation. A superscript
notation will be aopted to indicate some property of a list or a list element. In
particular the use of an asterisk will indicae “adive” dements, those whose
attributes match the prevailing circumstances on the arrent exeaution cycle. For
instance I*will refer to all those dements of I where the crresponding token has
been deteded in the sensory buffers I* < I, therefore I - I* will refer to all those
elements of I where no corresponding input token has been deteded. A number of
additional superscripted formswill be introduced later; ead will i ndicate some sub-
set of alist, or speafy some dtribute of alist element. A notation in which the list
element value name is used to refer to or accessa list element or sub-list will aso
be employed.

As with JCM, ALP and Drescher’'s g/stem every element in ead SRS/E list has
attached to it a number of numeric and other values. These values are updated as
the dgorithm exeautes and are in turn used by the dgorithm in seleding overt
behaviours and to guide the leaning process SRS/E is intended primarily as a
platform for experimentation. List element values are therefore variously available
for use in the dgorithm as presented, and by reporting and analysis ftware
creaed with the spedfic purpose of analysing and presenting experimental results.
The list element values used by SRS/E are shown in table 4-1. Their functions and
purposes are described following a detailed description of ead list type. Such
values will be shown in adifferent font “t hus”. List element value names $own in
this different font are dosen to diredly reflea the variable names employed in the
current implementation of SRS/E used to conduct the experiments described in
chapter six. The dharader in bradets asociated with ead value shown in table 4-
1 indicates the data type seleded for that value in the aurrent implementation. A
cdligraphic charader, “(8” for example, indicates a pointer or reference to a list
element of the indicated type; “(i)” indicaes an integer type; “(t)” a “time” value,
and “(b)” a bit-sequence. The types “(i)", “(t)” and “(b)” are d encoded
conveniently as (long) integers. Time values are recorded as discrete intervals
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corresponding to exeaution cycles of the dgorithm. ASCIl encoded strings are
indicated “(9)”, red or floating point values as “(f)”. The range of some floating
point values will be restricted within the program.

List List Description List List Element Values
Symbol Element
Symbol
I Input Token List. Binary, U token_string (s)
atomic input items from token_identifier (i)

token_first_seen (t)
token_l ast _seen (1)
token_count (i), token_prob (f)

sensors. Associates input
items to arbitrary internal

symbols token_activation_trace (b)
S Sign List. Descriptions of an | sign_conj unction (see text)
environmental “state”, defined o o _de“: ifier 8))
. . sign_first_seen
by a conjunction of tokens) sign_last_seen (0

and other internal symbols si gn_count (i), sign_prob (f)
sign_activation_trace (b)
best _val ence_| evel (i)

R ResponseList. All available | response_string (s)

actions (simple and response_identifier (i
response_cost (f)

compound) response_activation_trace (b)
B Behaviour List. b condition (g

(condition,action) defined action (n

innate behaviour patterns behavi our_priority (f)

(conditione S — actione R).

G Goal List. Actua or potential | g goal _sign (9

i Ariti goal _priority (f)
system goals, prioritised by B. time_goal set (9
H HypothesisList. List of h s1 (9 r1 (M, s2 (9
u-hypothesesin the form time_shift ()
(Sl ri 32) hypo_identifier (i)
e hypo_first_seen (t)
sle S’ rle R’ s2eS. hypo_l ast _seen (t)

hypo_activation_trace (b)
recency (i), hypo_bpos (f)
hypo_cpos (f), hypo_cneg (f)
hypo_age (t), hypo_maturity (i)
hypo_creator (h

val ence_l evel (i)
cost_estimate (f)

pol i cy_val ue (f)

P Prediction List. List of p predi cting_hypo(
predictions awaiting predicted_sign(y
confirmation. predicted_time (t)

Table4-1: SRYE Internal Data Structures
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4.1.2. Summary of Lists

The Input Token List reards binary atomic input items from system sensors and
assgns ead one aunique, but arbitrary, internal symbol such that ead subsequent
appeaance of the same input item will generate the same internal symbol. The
Input Token List implements the “token” of definition TO.

The Sign List provides the system with partial or complete descriptions of the
environmental “state”. A sign is defined as a conjunction of input tokens and other
internally generated symbols, and their negations, providing the structure to
implement the sign of definition SO.

The Response List defines the set of all the adions available to the animat, to
implement the adion of definition AO. Simple adions are defined by the ehogram.
Compound adions (postulate A3) may be formed by the concaenation of smple
actions.

The Behaviour List explicitly defines the innate behaviour patterns for the animat
as an integral part of the ehogram (definition BO). Fixed, pre-programmed,
behaviour patterns (postulate B2) may subsequently be subsumed by leaned, goal-
seeking behaviour. For simple animat ethogram definitions the Behaviour List will
also be responsible for setting goals (postulate B3) and so balancing the priorities
between fixed and learned behaviour.

The Goal List records none, one or more possbhle goals being sought by the
animat at any particular time (definition GO). The aiimat only pursues one goal at
any one time, theop-goal.

The Hypothesis List recrds leaned expedancies (u-hypotheses) in the form
“sl,rl,s2”. Context “s1” and consequence “s2” are dements from the Sign List.
Action “r1” is an element from the Response List. Each element of the Hypothesis
List equates diredly to a single p-hypothesis, a small, isolatable fragment of
knowledge &out the animat’'s existence, well defined in terms of the other list
types (definition HO). To be of value to the system ead u-hypothesis must make a
clea and verifiable prediction. Corroborated u-hypotheses are subsequently used
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by the animat to generate useful goal-seeking behaviours. The SRS/E agorithm
provides the dgorithmic resources to credae, verify, modify, delete and use u-
hypotheses.

The Prediction List recrds expedations made by adivated p-hypotheses for
confirmation or denial at a defined time. This dructure retains time tagged
predictions until they are verified (postulate H1).

4.2. Tokensand thelnput Token List

SRS/E employs a grounded symbol approadch to behaviour and leaning and has
much in common with the notion of deictic representation2! (Agre and Chapman,
1987 Chapman, 1989 Whiteheal and Ballard, 199]). Deictic markers point to
aspeds of the perceivable environment. Idedly eat marker will point to only one
objed or event, or to one well-defined class of objeds or events, in the
environment. This alows the aiimat to respond appropriately to the presence of
the objed or occurrence of the event, or to lean the significance of the objed or
event with minimal ambiguity (the FDMSSE assumption).

Typicdly input tokens either diredly refled the value of some sensor, or are
derived from sensor values to define apartially or wholly complete state descriptor.
Thus SRS/E will equally accet ALP style kernels, such as “<LOW>S" or
“<BRIGHT>S", derived dredly from the transducer values from the robot, or
Drescher's (1991, p117 primitive items “hpll”, “vpll”, or “fovf00-33”
denoting pertial state descriptors from the smulated environment. As with Mott
and Drescher, SRS/E input tokens are binary in rature, present or absent. SRS/E
does not employ the predicate and value representation described by Becker.

The SRS/E algorithm accepts squences of tokens from the environment. During
eadt exeaution cycle none, one or many tokens may be presented to the dgorithm
from a sensor sub-system integral with the animat. The first appeaance of any
token is registered into the Input Token List, I, and the new token is assgned a

unique internal code. This redises the tokenisation process described in postulate

2}(OED) deictic: a & n, Pointing, demonstrative, [Gleiktikos]
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T1. For every subsequent appeaance of that token the unique de will be
generated from the list. At ead exeadtion cycle the Input Token List I will be
partitioned into those tokens that have gpeaed in the input stream on the airrent
cycle and hence ae adive, and al the others that have not appeaed and are not
active. As indicated in sectighl.1the active partition is denotdd'

Tokens may be registered into I by the originator as part of the initial ethogram
definition and subsequently employed in generation of innate behaviour patterns.
Apart from this, tokens have no inherent “meaning” to the system. Once registered
into the Input Token List, token identities are permanently retained. SRSE will
accet new additional tokens at any point in the lifegycle of the aiimat. The
appeaance of novel tokens also drives the leaning process There is no
generalisation over input tokens, non-identicd input token strings are treaed as
wholly distinct.

The Input Token List isimplemented as a hash table (Knuth, 1973, the internally
generated token symbol value being set equal to the index position in the hash
table. Initially the hash table is given a fixed size, but is grown automeaticdly and
the symbols re-hashed when the table is close to overflow. As part of this process
al internal token symbol values are updated to reflea their new position in the
table.

4.2.1. Input Token List Values

In addition to the token_identifier, the internal symbol, and the external
representation of the token string t oken_st ri ng, the Input Token List maintains
four additional numeric values for ead Input Token List element. As an aid to the
analysis of experimental data the input t oken_string is retained in the Input
Token List and is $own in preference to the anonymous internal symbol in output
trace ad log files. The list element value token_first_seen recrds which
exeaution cycle the token ¢ was first deteded. The vaue token_| ast_seen
records the exeaution cycle when the token was most recently deteded. The value
t oken_count records the total number of cycles that the token & has occurred on
I* Theraw probability of occurrence (t oken_pr ob) for any token may be derived

according to the equation:
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t oken_count

t oken_prob « (eqn4-1)

now - token first_seen + 1

This raw token probability may be used as a measure to determine the degree to
which the sensory sub-system is able to differentiate the phenomena indicated by
the token from others. Generadly, tokens with a relatively low raw probability
measure facilitate the behavioural and learning process.

A reoord of recent past adivations for eat element ¢ is maintained in the variable

t oken_acti vati on_trace according to the assignments:
. . t-n-1 . . t-n
token_activation_trace < token_activation_trace (eqn4-2a)

token_act i vation_traceW ¢ J activation state (eqn4-2b)

These trace values, and those for other list element types, are used in sign
definitions to record past adivations and provide a medhanism to implement
temporal discrimination, an asped of the u-hypothesis differentiation process
(postulate H6). The activation traces are of finite length, newer values entering the
trace displace older values which are lost to the algorithm.

In the current implementation of SRS/E, n of equation 4-2a takes the values 1 to
32. The token activation trace is therefore conveniently represented as individual
bit postions in a long integer. The operation described by equation 4-2a is
achieved in the current SRS/E implementation as an arithmetic shift left by one bit
position. The operation described by equation 4-2b by setting (or clearing) the
lowest order bit of the integer recording the trace values according to the current
activation value of the token.

4.3. Signsand the Sign List

Signs encapsulate one or more tokens into a single item (this is derived from
postulate S1). They are identified within the system by a unique symbolic identifier.

96



The tota Sign List is designated as S. The subset of signs that are adive & the
current time are designated$% Sign activation was described by postulate S2.

4.3.1. Representing Signs

As with the schema representations of Mott and Drescher, SRSE signs are a
conjunction of primitive tokens, where the token must be present for the
conjunction to be adive, or negated tokens, where the token must not be present
for the @njunction to be adive. Drescher’s representation is sverely restricted
with resped to Mott’s in that the schema left hand side in ALP alowed inclusion
of kernels from any position in Short Term Memory (STM), whereas Drescher’s
did not. Mott’s use of the little arow notation, with its grict time sequence
information, imparts further contextual information to the schema left hand side.
SRSJ/E also adopts an explicit time representation to tokens, so:

ALP: [<BRIGHT>S— <FRONT>S - <CHARGE>S .... ]
becomes:
SRS/E: (brighf* & front & ~charge ....)

In SRS/E all timings are cnsidered to be relative to the airrent cycle (t=0 or,
equivalently, t=now), negative from the past, positive into the future. Thus the
notation “ @t-1" is conveniently read as “at the arrent time minus one”, or “on the
cycle before the aurrent one”. Token negation is represented by the tilde dharader
(“~"). The representation of past events in ALP is limited to the length of STM
(typicdly six cycles), in SRS/E by the length of the adivation trace (typicdly 32
cycles). Unlike Bedker, but like SRS/E, Mott did not permit recycling of kernels
from the end of STM into the input register as esential timing information is lost.
Drescher offered no equivalent to a Short Term Memory in his system.

By convention an input token incorporated into a sign will be aitomaticdly
dereferenced to its external form from the internaly represented symbolic form
whenever it is displayed or printed. Sign conjunctions may also incorporate other
symbolic information contained within the SRSE system. So a sign conjunction
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may include the symbolic name for another sign (from S). Similarly adions (from
R) may be included. Thus past adions by the system are available for inclusion into
the “s1” conjunction. u-Hypothesis adivation (from #) may aso be recorded in a
sign, by including the symbolic name of the hypothesis (to be described in a later
sedion). The inclusion of the hypothesis form into the sign conjunction may give
the system limited access to its own operation and hence the posshility of
predicting, seeking as a goal, and creding hypotheses about aspeds of its own
leaning behaviour. The ramificaions of this ability are beyond the experimental
investigations of SRSE presented here. This construct is broadly equivalent to
Mott’s proposa for an internal kernel and Drescher’s notion of a synthetic item,
but more mncise and manageale than the latter as only the symbolic name is
required. SRS/E does not, however, at present have any explicit support for the
notion ofobject permanence.

Thesi gn_conj uncti on may be more concisely defined as:
* N . . k S
ye §* iff conjunction _(x.) (eqn. 4-3)

where k gives the number of terms in the conjunction. Each of the items Xi may

substitute for one of four forms:

X, = we X* form 1
or
~y = xe X* form 2
or
X = we X form 3
or
~X§@_t = e X*@ form 4

allowing for the presence of symbol of type x (form 1), the absence of symbol of
type x (form 2), the recorded presence of symbol of type x at time (now-t) in the
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past (form 3) and the recorded absence of symbol of type x in the past (form 4).
In these forms the symbol x (and hence X) may substitute for elements from any
of the lists, S, R or #.

The sign definition adopted in SRS/E has no don't care (“#") representation of the
form employed in classfier systems. If a symbol is not explicitly included its
condition istaken asirrelevant. Thisis generally consistent with Popper’s view that
an ‘experiment’ should define dl its relevant preconditions, but exclude dl those
inconsequential to its outcome. This representation is not as concise where small,
bounded sets of feaures are to be cnsidered, but offers sgnificant advantages
where small subsets of avery large feaure set are to be represented and where past
values of fedures are to be included. Many other representational schemes have
been proposed to enable madiine leaning systems to represent left hand side
preconditions completely or conveniently. In particular, Michalski (1980 describes
a ondition form for the VL,; logic system that includes enumeration,
variabilisation and hierarchical descriptions; but not past events.

In the SRS/E implementation the Sign List is held as an indexed list of sign
elements. The index is used to crede the sign identifier (thus: “Snnnii', where nnnn
is the index number). This designation for a sign symbol appeas in the log and
analysis information from the experimental runs of SRS/E. Individual conjunctsin a
si gn_conj unction definition are recorded as a triple. conjunct identifier, a
negation flag, and time offset. In the aurrent implementation they are recorded in a
canonica form for efficient access Also in the arrent implementation negation is
indicated by recording the @njunct identifier (for instance t oken_i dentifier)
with a negative value. Attempts to crede anew sign that dugicates an existing
sign are rejected by SRS/E.

4.3.2. Other Sign List Values

Eadh element of the Sign List is assgned a unique sign_identifier, as
described, and ead sign hes asociated with it sign_first_seen,
sign_last_seen, sign_count and sign_ activation_ trace vaues. The

derivation and use of ead of these mirrors the derivation and use described for the
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equivalent Input Token values. Sign probability, si gn_prob, is cdculated in an
analogous manner t@ken_pr ob:

si gn_count

si gn_prob « (eqn4-4)

now - sign_first_seen + 1

An additional measure, raw si gn_prob, may be derived from the individual
probability ) values of the component parts of the sign conjunction:

raw_si gn_prob < H:zl( p(X:)) (egn4-5)

Where si gn_prob >> raw si gn_prob the SRS/E agorithm may use this as an
indicaion that the sign conjunction is a significant combination of component
parts, and not just a combination of random or “occult” occurrences.

4.4. Actionsand the Response List

The Response Ligt, R, reaords the basic adions available to the animat. For any
SRS/E controlled animat, the originator “registers’ a list of basic adions and their
associated costs as part of the initial ethogram definition. Actions will be required
to serve the needs of both the innate behavioural and the leaning components of
the SRSE system, though the same acdions may well be alequate for both
purposes. In SRS/E the adions defined in R serve & instructions or commands to
the aduation sub-system, whether physicd or smulated. Seledion and description
of the adionsin R are anintegral part of any experimental run discussed in chapter
six. SRS/E supports both simple (moleaular) and compound (molar) adions. A
compound adion is one built from the mncaenation of two or more simple
adions, as described by postulate A3. Compound adions run to completion once
initiated. This definition of compound adion is therefore distinct from Drescher’s
definition of a composite action, which may be seen as an intermediate stage
between the SRS/E compound action and the Dynamic Policy Map.

In the aurrrent implementation ead adion is held as an element in the indexed list
R. Individua adions are registered into the list before the start of ead
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experimental run. Additional entries may be registered into the list at any time, to
implement a maturation strategy, for instance. On eat exeaution cycle SRS/E will
sded a single adion from R to be refied (derived from postulate A1) and
delivered to the atuator sub-system. The reified adion is placel on the R * list for
the gycle in which it is adive. Output adions take the form of an ASCII string
(entered at the time of registration) to be interpreted by the aduator system as an
instruction to perform some defined adivity. Trace ad log information arising
from the use of SRSE will automaticdly dereferencethe adion index to this gring
for ease and clarity of analysis, as with Input Token List entries.

4.4.1. ResponselList Values

In addition to the anonymous internal symbolic value, r esponse_i denti fi er and
the external string representation of the adion, r esponse_st ri ng stored with eat
adion in R, the SRS/E agorithm rerds response_cost, an estimate of the
effort that will be expended whenever that adion is taken (the adion cost, from
postulate A2). Thisisthe estimate provided by the originator at the time the a¢ion
is registered. It may reflea the energy required to perform the adion, a notiona
amount of resource depleted by the adion, or the time taken to complete the
simple or compound adion, or some cmbination of these and other attributes.
This is broadly in kegoing with Tolman’s (Tolman, 1932 Ch. 7) observations that
rats generaly choose paths through experimental mazes that minimise delay or
effort.

On a pradica note this value dso provides the Dynamic Policy Map generation
algorithm a metric by which to evauate the gpropriateness of aternative paths
through the map. The originator is required to spedfy r esponse_cost values of
unity or gredaer, and that these values be proportioned acwrding to the relative
effort aadoss all adions in R. The response_activation_trace mantans a
transent record of past adions (a record of R¥, computed as for

token_activation_trace andsi gn_activation_trace.
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4.5. Innate Activity and the Behaviour List

The Behaviour List B defines the innate behaviours for the animat. This definition
is an essential part of the ethogram, and built into the animat at the time of its
definition by the originator. Such behaviours will react to situations, events, and
changes in the environment as prescribed by the originator. In the main these
activities will be mediated and modified by internally generated and detected needs,
drives or motivations differentially selecting or inhibiting aspects of innate
behaviour patterns. Innate behaviours need not be fixed over the life-cycle of the
animat and may vary according to a maturation schedule or imprinting regime.
This section does not intend to revisit the mechanisms by which behaviours are
formed and selected, nor to further consider the arguments over which of the many
proposed strategies most effectively or closely model observed natural behaviours.
It will, however, be primarily concerned with how the overt behaviour of the
animat will be apportioned between the innate and learned parts of the mechanism.

45.1. Behaviour List Structure and Selection

The Behaviour List is a notiona list of condition-action pairs (condition € § —
action € R), fully in the tradition of the stimulus-response behaviourist camp. At
each execution cycle every element b- of B is evaluated against S¥ and a list of
applicable candidate actions, B¥, formulated. The selection of behaviours on each
cycle is thus made based on the evidence for their applicability. To achieve the
required balance of innate and learned behaviours the Behaviour List will be
considered to be in two parts. The first part, B”, lists condition-action pairs from
which action candidates will be selected (B"¥). This part of the list redlises the
primary behaviours of postulate B2. The second part, B, lists condition-action
pairs determining which, if any, goals the animat should pursue given the prevailing
circumstances. This second part of the list realises the goal setting behaviours of
postulate B3. During each execution cycle several possible actions, and severd
goals could be applicable. SRS/E makes its selection from B"* and B%* on a
priority basis.

Each potential innate behaviour in the animat is assigned a priority by the
originator, which is initially set within the ethogram according to its significance.
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Thusin an animal smulation, predator avoidance might be assgned a high priority,
and therefore be made manifest whenever the conditions that indicae the gproad
or presence of a predator. Other behaviours, those initiated by, say, the onset of
hunger (deteded, perhaps, by lowered “blood sugar levels’) having a lower overall
priority and so being interrupted by the avoidance behaviour. SRSE must aso
adjudicae between innate and goa seeking behaviours, those derived from the
Dynamic Policy Map. To achieve this, elements of B¢ (and so B#* are dso
asggned a priority in the @hogram. At ead cycle SRSE will ether sded the
highest priority element from B"¥, if this priority is higher than that for the highest
priority element from B#* Otherwise aDynamic Policy Map will be aeaed, or

the existing one used, to generate a behaviour from stangobtheses.

Where none of the defined innate behaviours has an effective priority, it is
inappropriate for the animat to pursue any of those behaviours. So, if it is not
threatened, hungry, thirsty, tired or dirty, etc., then there is little to be gained by
fleeing, eating, drinking, Sleeping or preening, etc., just because one of these
behavioursis dightly lessirrelevant than the others. Therefore the SRS/E agorithm
places a lower bound, the basal level threshold (g), on behaviour activation, below
which none of the behaviours defined in B will be seleded. Yet the aiimat is
expeded to perform some adivity on eat cycle. Where no innate behaviour or
goal behaviour is adive the animat performs exploratory adions sleded from R.
These implement the third, and mandatory class of innate behaviour pattern, the
Default (exploratory) Behaviours (redising postulate B4). The leaning mechanism
is gill adively monitoring the adions taken and their outcomes and leaning
continues during these periods of apparently undirected activity.

The Behaviour List as defined for the present version of SRSE places restrictions
on what may be dfedively represented by the originator. It is adequate to generate
the reflexive behaviours described for ALP. Any scheme by which behaviours are
controlled through the presence of only binary releasers provides little useful
analogue with the natural world, and gves rise to a range of difficulties in
providing a useful smulation of innate behaviour. The default exploratory (“tria
and error”) behaviour is present in SRS/E as an inherent component of the system
and requires no additional intervention by the originator. For the purposes of the
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experimental regimes to be described in chapter six the experimenter is able to
activate goals externally.

45.2. Behaviour List Values

In addition to the condi ti on and act i on values, ead element of B has asciated
with it the value behavi our _pri ori ty, which defines the pre-assgned importance
of the behavioural component. There is a fundamental difference between adions
on the BY and B¥ parts of the Behaviour List. In the former case the adion is
seleded from those available on the Response List. In the latter case the “adion”
taken is to place asign onto the Goal List, or to manipulate the priority of the goal
because circumstances have altered.

Potential exists to extend the B" part of SRS/E to respond to a wnventional
external reward schedule. A separate reinforcement strategy may be put in placeto
re-prioritise dements of the Behaviour List relative to desirable outcomes, either
employing a straightforward immediate reward medianism or some variant of the
Q-learning orucket-brigade algorithms.

4.6. GoalsandtheGoal List

The Goal List is a sub-set of the Sign List (G < S). Any sign, whether created by
the originator or formulated during the learning process, may be designated as a
goal state (goal _sign). The structure of the SRS/E s€ign offers a single
representational type which provides (1) a symbolic name, such that the goal can
be conveniently identified internally within the system; (2) a description of what is
relevant to the definition of the goa (and so what is not relevant); and (3) a test
enabling the system to recognise when the goa has been achieved. Signs are
attached to the Goal List under the control of the Innate Behaviour List (B%¥), as
previoudly described (postulate B3). The goa sign having the highest associated
priority (goal _priority) is designated g1 and so forms the seed to build the
current Dynamic Policy Map. This is the top-goal. SRS/E supports many signs on
the Goal Ligt, after the top-goal these are designated gz, g3 and so on, ordered
according to their given priority.
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Goals are deemed satisfied when they appear on G* (and so S¥), readlising
postulate G3. The SRS/E agorithm automatically cancels satisfied goals by
removing them from G, and remaining goals on the Goal List are moved up the list
automatically. As a consequence of this the Dynamic Policy Map is recomputed
with the new seed and the observed behaviour of the animat changes accordingly.
The change in behaviour is in effect instantaneous, and may lead to a completely
different set of responses being employed by the animat in apparently identical
circumstances. This is a significant departure from the reinforcement and Q-
learning approach, where a single goal is repeatedly sought and a network of paths
(a graph) constructed, dedicated to achieving the designated goal. When the Goadl
List becomes empty, use of the Dynamic Policy Map as a behaviour generator
ceases. Until a new goa of sufficient priority is again placed on G observable
behaviour reverts to innate actions drawn from the Innate Behaviour List B"* or

default behaviour mechanisms.

Under these circumstances the originator bears some responsibility for ensuring the
stability of the Goal List ordering. SRSE builds the DPM according to the top-
goal gl. It may be that B"* givesrise to two goals of very similar priority, because,
for instance, they are derived from sensors currently giving signals of equivalent
significance. Under these circumstances the priority of the multiple goals may be
unstable, swapping between the alternatives. The DPM is automatically
recomputed at each priority swap causing changes or reversals of observed
behaviour leading, in turn, to the inability of the animat to reach any of the enabled
goal states. This is equivalent to the problem faced by any of the Action Selection
Mechanisms (ASM) described earlier, where each must ensure that coherent
patterns of behaviour are established to meet the needs of the animat.

4.7. TheHypothesisList

The Hypothesis List is the primary repository of learned knowledge within the
SRS/E agorithm. Each element of the list, a u-hypothesis, encapsulates a small,
well-formulated, identifiable and verifiable fragment of information. A pu-
hypotheses is not an unequivocal statement about the animat or its environment,
but is an assertion about the nature of things - it may be true or it may be false. A
u-hypotheses may be partially complete and so true in some proportion of instances

105



in which it is applicable. Every u-hypothesis is an independent observation. SRS'E
supports the notion of competing hypotheses, severa hypotheses that share
identicd pre-conditions or which share identica conclusions. SRSE accepts
mutually inconsistent p-hypotheses, to be resolved following corroboration?2.
SRS/E does not allow the installation of duplicate copies of identicgbothesis.

The originator is, of course, at liberty to incorporate into the ehogram or
controlling algorithm whatever consistency chedking and verification medanisms
he or she mnsiders appropriate. To do so takes the construction of the animat
controller badk to the redms increasingly referred to as traditional Al (Cliff, 1994
or GOFAI (Good Old Fashioned Artificial Intelligence, Boden, 1994. This is a
valid approadh, but not the one alopted here, and moves the aiimat definition
towards the caegory (3) intelligence of chapter one. In SRSE ambiguity is
resolved by application and testing of the n-hypotheses in the form of u-
experiments, which are conducted by the SRS/E system whenever the opportunity
arises to do so. In turn, p-experiments take the form of making verifiable
predictions about the percevable state of the animat or its environment at some
defined time in the future.

All u-hypotheses in SRS/E take the form of a triplet of component parts:
Signl + Response> Sign®* (eqn4-6)

The first sign (Signl or just “s1”) provides a @ntext in which the performance of
the adion (Response or just “r1”) is hypothesised to result in the gopeaance of the
seoond sign (Sign2 or “s2”) some spedfied time in the future (at ‘@' the predicted
time, +t cycles in the future). The signs “sl” and “s2” are drawn from §, the
response “r1” from R. Response “r1” isthe agion to be taken on this cycle, “s1” is
the aurrent value of the context sign. However “s1” may include token values
drawn from the various adivation traces, and so inherently defines a tempora as
well as a spatia context. In Tolman'sterms, “s2” is st as an expedancy whenever
“s1” and “r1” are present. This expedancy relationship is the basis of the means-

220y, if the animat is in a genuingly inconsistent environment, or in one which is unresolvably
ambiguous, to remain inconsistent in perpetuity. Vershure and Pfeifer (1993 develop these issues
further.
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ends cagpability of SRS/E. If "s2" is an end, or goal, to be adieved, then “s1” and
“r1” provide ameans of achieving that end. In considering any u-hypotheses with
“s2” as its desired end, the wrresponding “s1”, if it is not currently adive and so
available, may beaome an end, or sub-goal, in its own right. Developing a cgnitive
map of means-ends-readiness from many individual expedancies was a ceitra
component of Tolman's expedancy theory. Means-Ends Analysis has developed
into a crnerstone mncept in traditiona Artificial Intelligence from its introduction
by Newelland Simor(1972) in the form of th&eneral Problem Solver (GPS).

In a perfed p-hypothesis “s1” defines exadly those cnditions under which the
response “r1” leads to the gpeaance of “s2” at the designated time. In an
incompletely spedfied u-hypotheses the relationship will hold on some occasions,
but not others. A u-hypothesis creded as the result of an occult occurrence should
hold very rarely (spedficdly, at a frequency of occurrence @mmensurate with the
computed raw probability derived from its component parts). The evidence for
superstitious learning was reviewed ealier. The mnditions under which the p-
experiment may be performed occur whenever “s1” and “r1” are on their
respedive adive lists (§*and R¥ at t=now, regardlessof whether or not “r1” had
been adively seleded to achieve “s2”. Drescher (1997) refers to the latter case &
implicit activation.

4.7.1. Other HypothesisList Values

As with other list types, SRS/E n-hypotheses have asociated with them a number
of values. These values reard corroborative evidence dout ead u-hypothesis and
retain information used by the threemain processs involved in the management of
u-hypotheses. These processes are: (1) up-hypothesis corroboration and
reinforcement (redising postulates H3 and H4); (2) building the Dynamic Policy
Map (redising postulates P1 and P2); and (3) u-hypothesis list maintenance
(redising postulates H6 and H7). Some of the list element values asciated with
ead p-hypothesis are described next, and the three main processes and the p-
hypothesis values associated with them in the sedions that follow. As ead of the
threeprocesses are intimately interrelated, the order of these sedions is smewhat
arbitrary chosen.



Ead u-hypothesis on the Hypothesis List is assgned a unique hypo_i denti fi er,
creaed from the list index number. Index numbers are aeded in sequential order,
and so indicate the relative aye of the p-hypothesis. The designation “Hnnnri
appeas in the output log and analysis information, where nnnnis the list index
number. The values hypo_first_seen and hypo_| ast _seen respedively record
the g/cle on which the u-hypothesis was creaed and the most recent cycle on
which the p-hypothesis was adive. A u-hypothess is defined as adive when the
following conditions are met on any given execution cycle:

W e H*iff si(v) € S¥*AND ri(h) € R¥ (ean. 4-7)

These conditions define when a p-hypothesis will perform a p-experiment by
making a verifiable prediction. The value hypo_acti vati on_trace reords the
most recent adivations for the u-hypothesis. The value ti me_shi ft records the
number of cycles between an adivation of a u-hypothesis and the time that the “s2”
sign is predicted to occur. The derived value hypo_age indicates the number of
cycles elapsed since the n-hypothesis was creaed. It is cdculated from
hypo_first_seen and the system variable “now”.

The remaining values as®ciated with ead Hypothesis List entry may be
charaderised into serving one of three purposes. (1) Corroborative values
recording the performance of the predictive &bility of a u-hypothesis. These values
reflea the confidence the system may placein the dfedivenessof the u-hypothesis
when huilding the Dynamic Policy Map, and in cdculating when to modify or
delete individual p-hypotheses. These values broadly refled the notion of schema
confidence weight adopted by Beder and Mott. (2) Values computed, and re-
computed, ead time the Dynamic Policy Map is prepared. These values provide
the adion seledion medianism with the basis to determine which u-hypothesis (and
hence which adion “r1”) should be passd to the aduation sub-system during goa
seeking behaviour. (3) Administrative values, recording information relevant to the
credion and subsequent modification of individual u-hypotheses. Major sedion
headings will now be given over to the discusson of these values, refleding their
importance to the operation of the SRS/E algorithm.
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4.8. Corroborating p-Hypotheses, Predictions and the Prediction List

Every time a u-hypotheses is activated it will perform a u-experiment and so make
a prediction, which will be verified on a later execution cycle. Each prediction is
placed on the Prediction List, P. As predictions are dl of the form where aknown
sign is expeded at a known time, the validation processis a straightforward matter
of matching the dements of P which were predicted for the aurrent exeaution cycle
against the adive Sign List S* Alternative interpretations are available & to how
“credit” for a corred or “debit” for an incorred prediction should be asgned to
the individual p-hypotheses responsible for the prediction. These dternatives are
refleded in the crroboration (H3) and reinforcement (H4) postulates. SRS'E
maintains four values for eagkhypotheses for this purpose.

Following Popper’'s notion that it is the @solute frequency of outcome that
provides the gpropriate measure of a hypothesis, the values hypo_cpos
(cumulative positive, cpos) and hypo_cneg (cumulative negative, cneg) record the
number of successful and unsuccessful predictions respectively. Specifically:

cpos <« cpos + 1iff sz(h)@tzpred € predi ct ed_si gn(ﬂ@t:pred (egn. 4-8)
cneg < cneg + 1iff sz(h)@tzpred ¢ predi ct ed_si gn(ﬂ@t:pred (egn. 4-9)

These two equations compare predictions made at some point in the past (t=pred)
to the appearance of actual signs at that predicted time. These two measures reflect
the overall effectiveness of the u-hypothesis over its pan from the point of credion
(the exeaution cycle recorded in hypo_fi rst _seen), to the aurrent exeaution cycle
(less any predictions made, but not yet verified). The overal probability that the
expectation defined by thehypothesis will hold is therefore defined by:

cpos
hypo_prob <« (eqn4-10)
cpos +cneg

This is the corroboration measure (Ch of postulate H3). By definition every u-
hypothesis is assumed to represent a succesdul prediction at the time of its
creaion. This asumption is considered reasonable when using the pattern
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extradion credion process described later, even though the u-hypothesis may
subsequently be determined to denote an occult occurrence. This initia fillip to a
newu-hypothesis’ confidence value will be referred to asctleation bonus.

In a dangeable environment the validity of any given p-hypothesis may also
change with time. To refled this the value hypo_bpos (bpos) is updated acarding
to a discounting fador, thereby giving precalence to the dfeds of recent
activations at the expense of those further in the past, specifically:

bpos <« bpos - ai(bpos - 1)iff s2() @ & predi ct ed_si gn(P) @™
(egn. 4-11)

or

bpos < bpos - B(bpos) iff Sz(h)@t:pred ¢ predi ct ed_si gn(ﬂ@tzpred
(egn. 4-12)

otherwise
bpos unchanged
where:

o isthe positive reinforcement rate, (O< o < 1)
and
B isthe negative extinction rate, (0< B < 1)

This implements the reinforcement measure (Rh of postulate H4). Long sequences
of successful predictions for a single u-hypothesis will asymptoticaly tend its bpos
values to 1.0, long sequences of faled predictions will smilarly tend bpos vaues
towards 0.0. This notion of an asymptotic negatively accelerating curve is
ubiquitous throughout the conditioning and behaviourist literature, and forms the
basis of MadCorquodale and Medl's (1954 p. 237) strength of expectancy
measure. This procedure is smilar to those used in most recent reinforcement and
the Q-learning mechanisms.
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The last value in this group is r ecency, which spedficaly reards the outcome of
the most recently completed prediction for ead u-hypothesis. The recency
measure represents an alternative gproach to Drescher's modelling of object
permanence. The recency value remains asserted for any individual u-hypothesis
after a valid prediction about “s2” is deteded. It is cleared when the prediction
next fails. It ads as one form of event memory. Unlike Drescher’'s g/stem SRS'E
contains no inherent medanism supporting the representation or manipulation of a
“physical object”.

The different measures cpos, cneg, bpos and recency serve different purposes in
the generation of the Dynamic Policy Map (cost estimation) and in the management
of the Hypothesis List (differentiation and deletion of ineffedive u-hypotheses).
These differently computed values may refled different views of the predictive
effediveness of u-hypotheses. SRS/E may represent permanent (hypo_pr ob),
semi-permanent or reaurring (bpos), and transient (r ecency) phenomena. In this
context the term “permanent” may equally be gplied to an immutable physicad law
as to any phenomena that remains consistently predictable throughout the lifetime
of the animat. For example, an animal, or animat learning to seek nourishment may
locate a source that is habitualy available, which may reliably be returned to.
Equally a source of nourishment may be identified, which only comprises a finite
quantity of sustenance Finally the aeaure may happen aaoss a single item of
nourishment, which once ®nsumed is finished. No seoond order effeds are
proposed for SRSE to further classfy individual u-hypotheses into these various
caegories based on longevity of the phenomenon underlying the prediction. Such a
strategy might properly be included in later implementations.

4.8.1. Prediction List Element Values

Eadh element of the list is creded from the “s2” of any adivated p-hypothesis.
Eadh element retains only three items, predi cti ng_hypo, the identity of the u-
hypothesis responsible for the prediction, pr edi ct ed_si gn and pr edi ct ed_t i ne,
the sign expeded and the exeaution cycle on which it is predicted to occur.
Elements of P are deleted as ©on as the prediction they define has been verified
against S* As ead prediction is held separately, any u-hypothesis may have

several predictions waiting for confirmation (as ead p-hypothesis may make &
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most one prediction on each execution cycle thisis limited by the number of cycles

between now and t*™

). There may equally be more than one prediction of a given
sign for each future execution cycle, as many different u-hypotheses may predict

the same outcome.

4.9. TheDynamic Policy Map (DPM)

Whenever B%*is not empty and the priority of the top-goal is greater than that for
the highest priority candidate action from B"* the SRYE algorithm will attempt to
construct a Dynamic Policy Map (DPM, after definition PO) from knowledge
accumulated in the Hypothesis List. The effect of the Dynamic Policy Map is to
categorise entries in the Sign and Hypothesis Lists according to an estimate of their
effectiveness as being on a path of actions that will lead to the satisfaction of the
top-goal. The SRS/E algorithm builds the Dynamic Policy Map by the process of
spreading activation, based on repeated application of the spreading valence
postulate (postulate P2). Individual u-hypotheses, hv, which lead dredly to the
top-goal, gl, are seleded (where 22(h) = gl). This sledion and binding process
will be referred to as “valencing”, following Tolman's use of the term. Context
signs in these u-hypotheses may then ad as “sub-goals’, alowing another sub-set
of the Hypothess List to be incorporated into the Dynamic Policy Map. The
SRS/E algorithm stops building the DPM once d the entries in the Hypothesis List
have been incorporated or there ae no more u-hypotheses that may be dained in
this way. Signs and u-hypotheses incorporated in the DPM are termed sub-
valenced. The valence level of ead p-hypothess incorporated into the DPM
indicates the estimated minimum number of sub-goals that must be traversed to
reach the designated goal sign.

The Dynamic Policy Map may be considered as a graph structure. Signs from the
Sign List ad as nodes, u-hypotheses from the Hypothesis List the acs. One speda
sign, the top-goal, ads as the seed or start point for the sprealing adivation
process to creae the graph. Development proceels on a breadth-first basis, -
hypotheses at eat valence level are seleded at the same step in the spreading
adivation process This is implemented as a variant of the well-established graph-
search procedure (Nilssor,980, Ch. 2).
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Every arc has asociated with it a cst estimate. An arc is traversed by seleding the
adion, “r1”, from the p-hypothesis. The true @mst of traversing the ac is given by
the response_cost value asgned to ead adion (the action cost of postulate
A2). Thisis smply the “effort” expended in taking the adion, as provided in the
Response List. The estimated cost of traversing the ac to a node & the next
valence level takes into acount the true @st of the adion and the relative
effedivenessof the p-hypothesis in adually adhieving its expeded outcome, based
on past experience. Thisst _est i mat e for eachu-hypothesis is prepared from:

response_cost

cost_estimate < (eqn4-13)
hypot hesi s_confi dence

This redises the Cost Estimate postulate (P3). The hypot hesi s_confi dence

value is in turn prepared from:

hypot hesi s_confi dence < (hypo_prob * yl) + (eqn4-14)
(hypo_bpos * ¥%) +
(recency * y3) +

(loscill] *v%
where:

Gy +yP ey =1

and
(O<oscill £1)

The hypo_prob, hypo_bpos and recency vaues are those previously described.
The osci || component is an esentialy random fador designed to perturb the
path seledion process This has the dual effed of adding an element of uncertainty
to encourage the use of other u-hypotheses, and to alow the system to escape
from potential behavioural loops. The dfed of this parameter is intended to refled
the use that Hull describes for his oscillatory component, (O,, from which the
current name is derived. In implementation the value of osci | | isderived from the
pseudo-random number sequence generator (and so is not redly “oscillatory” at
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all). While superficialy smilar in effed to Sutton’s (1991 exploration bonus in
Dyna-Q+, the balance of goal-seeking behaviour to exploration is ultimately
adhieved in a quite dissmilar manner in SRSE. This is considered in detail in
chapter six.

The mst estimate for ead arc, ignoring the osci | I component, refleds the given
adion cost scded by the recorded probability that the caisal relationship described
by the p-hypothesis is indeed responsible for the transition. Asauming for the
moment that the selection factor yl has been set to one (and so yz, y3 and y4 are dl
ze023) the cost _estimate for the ac is equa to the true (given) cost of the
adion “r1” when hypo_prob is a its maximum vaue. This condition only holds
when the u-hypothesis has never failed. Where au-hypothesis has been creded as
result of an occult occurrence the value of hypo_pr ob will tend to zero, and so the
value of cost_estimate will tend toward infinity. The hypo_pr ob value will never
reat zero, due to the initial creation bonus. Increasing the relative contribution of
yz (at the expense of yl) biases cost estimates toward more recant experiences.
Values for the fadors yl, yz, y3 and y4 are set by the experimenter before eab
experientia run, and are fixed for the duration of that run in the aurrent
implementation.

No acount in the mmputation of the st estimate is taken of the experience of
the u-hypothesis, as recrded in the hypo_age and hypo_mat uri ty measures, in
the aurrent implementation. For the experiments described later the aeaion bonus
serves to increase the likelihood that a new (and therefore inexperienced) u-
hypothesis will be seleded and so appeas to provide an adequate balance of new
and old knowledge. A more sophisticated strategy may bias the estimate to more
experienced n-hypotheses where the importance or priority of the goal is high.
Conversely newer, less experienced, u-hypotheses may be favoured in play
stuations, where (apparently unimportant) goals are set for the explicit purpose of
gaining experience ad knowledge. Such considerations are left for future
investigations.

23 Note that these superscripts indicate the firshe secong and so on; similarly g ¢?, etc.
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4.9.1. Selecting actionsfrom the DPM

Every u-hypothesis implicaed in the DPM is assgned a policy_val ue, the
minimum sum of individual cost _esti mat e elements acossall the acs from the
sign node asociated with “s1” to the goa sign node gl. This is a redisation of
Postulate P4. During the graph building processthe pol i cy_val ue asciated with
ead node is updkted if alower cost route to that node is discovered. Figure 4-1
shows a printout from an experimental log showing a valenced path, the lowest
(estimated) cost path from the aurrent situation to the desired goal. It records the
individual u-hypotheses (e.g. “H119') seleded from the graph, the individual cost
contributions from cost _esti mate (“cost”) and the aumulative pol i cy_val ue
(“total”) values as the valence levels are traversed. It starts with a node (“X2Y 0",
the printout has automaticdly dereferenced signs to externa names) that is
currently on the adive Sign List S¥ and so defines the u-hypothesis (“H126")

which will contribute the reified action (*U”) in the current execution cycle.

H126 predicts X2Y1 from X2Y0 (active) after U (cost = 1.818182, total = 15.006273)
H117 predicts X3Y1 from X2Y1 after R (cost 1.290323, total = 13.188091)

H119 predicts X4Y1l from X3Y1l after R (cost 1. 059603, total 11.897769)

H120 predicts X5Y1 from X4Y1l after R (cost 1.290323, total 10. 838166)

HA predicts X6YL from X5Y1 after R (cost 1.290323, total = 9.547844)

H5 predicts X7Y1L from X6Yl after R (cost 1.290323, total = 8.257522)

H6 predicts X8Y1 from X7Yl after R (cost 1.290323, total = 6.967199)
H8
Ho

predicts X8Y2 from X8Yl after U (cost 1.126761, total = 5.676877)
predicts X8Y3 from X8Y2 after U (cost 1.078894, total = 4.550116)
H10 predicts X8Y4 from X8Y3 after U (cost = 2.351558, total = 3.471222)
H11 predicts X8Y5 (goal) from X8Y4 after U (cost = 1.119664, total = 1.119664)
Val enced path in 11 steps, estimated cost 15.006273

Figure4-1: Log Printout of a Valenced Path

It is important to note that the valence path printout is not a set of prescribed
adions to be performed to reat to goal state, as would be the cae in STRIPS
(Fikes and Nilsson, 1971), but rather a sub-set of the total DPM. It is presented to
provide the experimenter with information about the aurrent state of the animat
under investigation. The adion seleded may, or may not, lead to the expeded sign
at the lower valence level on the valence path. On the next exeaution cycle anew
assessment of the environment is made, as indicated by $fnew
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The next adion is sleded from the DPM on the basis of the new S$* It may be
that the next adtion on the existing valence path is sleded. However the new S*
may indicate that a shorter route has, through fortuitous circumstance, become
available; equally only longer routes may now be available. In ead eventudity the
DPM ads essntialy equivalently to the policy map in reinforcement and Q-
learning agorithms, recommending the best course of adion relative to the aurrent
circumstances and the goal sought.

There is a pathologicad case where no intersedion between $* and the DPM exists
and so no adion can be seleded from the DPM. Under this circumstance the
current algorithm seleds an exploratory trial and error adion at random. A more
sophisticated variant of the dgorithm might balance the return to exploratory
adivity with a*“faith” that the a¢ion was perhaps siccesdul, but that the expeded
outcome had not been properly deteded. In this way the animat may continue
along a previously computed valence path and avoid the potential disruption
caused by deflecting to exploratory actions.

4.9.2. Recomputing the DPM

There ae severa circumstances where the SRS/E algorithm nmust recompute the
Dynamic Policy Map. When the top-goa, gl, is satisfied, the next highest priority
goal bemmes the top-goal, and a new DPM must be computed before another
adion may be seleded. Similarly innate behaviours from the Behaviour List may
alter the priorities of the Goal List (redising postulate B3), also preapitating a
recdculation of the DPM. At eat exeaution cycle many n-hypotheses may have
their values updated, refleding predictions they made in the past. At any cycle new
u-hypotheses may be alded to the Hypothesis List, or existing ones deleted from
the list. Any of these dhanges can have profound effeds on the best paths through
the graph. On the other hand, recomputing the DPM is a @st overheal not to be
ignored. The SRS/E agorithm nmust recompute the DPM if the goa changes, but
the experimenter may control the sensitivity of SRS/E to changes in the Hypothesis
List.

The system variable r ebui | dpol i cynet is cleaed ead time the DPM is rebuilt. It
is incremented by some quantity A each time the Hypothesis List changes, and by
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some (typicdly smaller) amount o every time a u-experiment prediction fails.
Before eab use of the DPM rebuil dpol i cynet is compared to the system
constant REBUI LDPQOLI CYTRI P, the DPM being reaeded once this trip value is
readied or excealed by rebui | dpol i cynet. Apart from the dfed these values
have on the balance of resource utilisation by SRS/E on policy construction and
other computational adivities, they also have aprofound effed on aspeds of the
animats observable behaviour. This effed is particularly apparent in the dual path
blocking experiments described later. In the aurrent implementation A and 6 are
selected such that the DPM is rebuilt following any change.

4.9.3. TheDPM, A Worked Example

Figure 4-2 shows a graph generated from the model Hypothesis List shown
embedded in the figure. For the purposes of this example aDPM comprising eight
signsand 12u-hypothesesis creaed. In this instance the top-goadl, gl, is equated to
sign rumber “S16°. Only three ations are available on the Response List, “Al”,
“A2" and “A3" all with an adual cost of one. The third column shows me
possble “cost estimate” values for the various p-hypotheses following a period of
behaviour. At ead valence level in the graph the policy cost asciated with eah
sign isthe awmulative policy value of the lowest cost path through the graph to the
chosen goa. Eadh arc is labelled with the p-hypothesis responsible for the
transition, with its action and associated cost estimate.



Hypothesis List

H1 S12-5A3-S16
H2 S14-5>A3-S16
H3 S4—A3—8512
H4 S6—->A3—-812
H5 S8—-5A3-812
H6 S8—5>Al1—S14
H7 S18—al1-S58

H8 S10—Al1—->8S14

H9 8Sl6—»>A2-S12
H10 S16—»A2—->S14
H1l S12—5A2—S8
H12 S14—-5A2-S8

BEORWUOOWNO B W
NNJONBROANSEB IR &

S18 A1
=

Valence Valence Valence
Level 3 Level 2 Level 1

Figure4-2: Model DPM Generated from Sample Hypothesis List

It may be that on the aurrent exeaution cycle signs “S4” and “S18’ are adive and
so on $* (figure 4-3a). Policy cost for “S18’ is lower than “S4”, so SRS/E seleds
adion “A1”. The expedation is that “S8” will appea on $* on the next exeaution
cycle, and so adion “A3" from p-hypothesis “H5” would be seleded. As a
consequence these drcumstances the hypot hesi s_confidence value of the
succesdul u-hypothesis “H7” would be strengthened, and that for the unsuccesgul
u-hypothesis “H3” would be diminished (figure 4-3b). With “S8” on the adive
Sign List, SRSE will choose the path described by “H5”, performing adion “A3”,
expeding sign “S12’. If this expedation is met, “H5” is grengthened, and adion
“A3" (from “H1") will be seleded on the next exeaution cycle; leading to god
satisfaction if that subsequent expectation is also satisfied.
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Figure 4-3: Various Outcomesfor Model DPM

If, at the step indicated by figure 4-3b, the adion “A3” did not lead to the expeded
sign “S12’, but instead “S8” remained on S* then confidence in “H5” would be
wedkened. Eventually the aumulative st of the path “H5"-“H1” would exceel
that for “H6”-“H2", at which point SRS/E would attempt adion “Al” (from
“H6"). Note that the confidence in “H6” was unaltered duing the time “A3”
adions were atempted, because it was not placel on ¥ as its “r1” precondition
was not matched and so it was not eligible to issue aprediction. The rate & which
the estimated cost of any path rises under these drcumstances is primarily
controlled by the 3 extinction rate factor; though changes in estimated cost will not
take effect until increments to(andA) cause the DPM to be recomputed.

What SRS/E hypothesises about the nsequences of its adions in the
environment, and what acually occurs may not hold true in pradice Considering
again the situation described by figure 4-3a, it may be that rather than the expeded
adivation of “S8”, sgn “S14" is adivated (figure 4-3c), either through some
previously unknown path, or by a previously undeteded event. On this exeaution



cycle SRS/E would seled the adion “A3" asociated with p-hypothesis “H2". If
this expedation subsequently holds the top-goal would be adtieved, and so
removed from the Goal List. As a side dfed of this unexpeded transition SRS'E
may crede the new  u-hypotheses “H16/(S4—A1—S14)” and
“H17:(S18->A1—-S14)” (figure 4-3d), employing the medhanism of postulate H5-
2.

Under the initial conditions described by figure 4-3a, the new paths of lower
estimated cost offered by “H16" and “H17" may be mnsidered in future instances
in preference to either “H3” or “H7” originally available. Where they are due to a
genuinely repedable phenomenon the nfidences of these new u-hypotheses will
be strengthened, leading to the adoption of the lower cost estimate path. Where the
u-hypotheses were aeded due to occult or unrepeaable drcumstances the use of
the new, apparently preferable, path will fall into disuse following a number of
unsuccesdul applications. The experimental procedure adopted in chapter six can
giverise to this phenomenon (for instance, the dfed shown in figure 6-10c), and it
will be considered further.

The dfeds of recomputing the Dynamic Policy Map can completely alter the
response of SRS/E to incoming tokens. Figure 4-4 shows an alternative
computation of the DPM graph using the same Hypothesis List as Figure 4-2, but
where the goa definition has changed from “S16” to “S8”. Note in particular that,
although none of the @st estimates for the u-hypotheses have danged, the
response of the system to signs “S14” and “S12’ is now completely different. This
feaure differentiates the behaviour SRS/E from the readion of reinforcement and
Q-leaning systems in the manner highly reminiscent of Tolman's arguments in
favour ofexpectancy theory over stimulus-response theorising.
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Hypothesis List

H1 S12—-5A3-S16
H2 S$14-5A3-5816
H3 S4-A3-812
H4 S6—A3—512
H5 S8—A3—812
H6 S8—Al1—-S14
H7 S18—5A1->S8
H8 $10-A1-814
H9 sSl6—-A2—-s12
H10 S16—A2—514
H11l S12—A2—8S8
H12 S14—A2—-S8

oW WNOYX W
NNNdONBOAdIBIRE A

Valence Valence
Level 1 Level 2

Figure 4-4: Model Graph Recomputed for Goal “S8”

4.9.4. Pursuing Alternative Goal Paths

The Dynamic Policy Map indicates the path with the currently most favourable
estimated cost from an active sign state to the highest priority top-god state.
Actions are selected on the basis of this estimate. Consider the DPM graph shown
infigure 4-5.
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Figure4-5: A Sample Dynamic Policy Map

The top-goal (gl) is equated to “Sa”, and the only adive signis “Sx*”. Six distinct
paths are avallable to the aimat. These ae summarised in table 4-2, with
ilfustrative aost estimates. Individual signs are shown with letters, not sequence
numbers, purely as a shorthand notation. The double arow on an arc indicates a
pair of u-hypotheses, for instance apath is known both between “Sx” and “Su” and
between “Su” and “Sx”. No path is available through the loop formed by “Su”-
“St”-"S0”-“Sp” as no u-hypothesis exists for the transition “St”-“So”, as indicaed
by the unidirectional arrowhead.
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Path “Estimated Cost”
(1) Sx-Sg-Sk-Sh-Sv-Sa 18.4

(2) Sx-Sr-Sk-Sh-Sv-Sa 20.8

(3) Sx-Su-Sp-Sj-Sv-Sa 38.5

(4) Sx-Su-Sp-Sj-Sf-Sv-Sa 45.7

(5) Sx-Sr-Si-Se-Sb-Sv-Sa 67.9

(6) Sx-Sr-Si-Se-Sc-Sd-Sb-Sv-Sa 158.1

Table 4-2: Paths Through Figure 4-5 Graph

On the basis of the st estimates diown, the aiimat will seled the adion “rl1”
associated with u-hypothesis “Hxqg” (indicaing the transition from “Sx*” to “Sq”).
If this expedation is met, the animat seleds “Hgk”, and so on. Should this path
succee, then sign “Sa” will be removed from the Goal List, and path (1) will be
strengthened. If, while & node “Sq”, the expedation described by “Hgk” failed, the
cost of the remaining path “Sg*”-“Sk”-“Sh”-“Sv”-“Sa” would rise, due etirely to
the increased estimate for “Hgk”. In pradice under these drcumstances, the
increase in cost for a single expedation failure is relatively small and it may be that
the estimated cost of the remaining peth is gill below that for any alternative, so
that “r1” from “Hgk” will be tried again. Even if the remaining peth would have a
greder cost, if the dfed of 6 (the expedation failure policy rebuild increment) is
small the DPM may not be rebuilt, and the policy decision will remain unaltered.

At some point, the st estimate would come to exceal that for the next lower
estimated cost path, “Sg*”-“Sx’-“Sr”-“Sk”-“Sh”-“Sv"-“Sa” in a recomputed
DPM, and the adion assciated with “Hgx” would be seleded. If this is aso
blocked at some point, the next lowest cost estimate path would be atempted,
starting from the aurrently adive node. Each time the @st estimates indicae anew
path, following a DPM recmputation, a new solution path is tried. The frequency
with which the DPM is recomputed determines how persistent the aiimat will
appear to be in pursuing a blocked course of action.

Individuals with values of A and 6 that are small relative to REBUI LDPOLI CYTRI P
will persist with one curse of adion longer than individuals where these values are
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correspondingly larger. Persistence of behaviour may be an appropriate wurse of
adion. In the environment he describes, the probability of Mott’s robot reading
the dharger under the influence of the schema “<BRIGHT>S — <FORW>M =
<ON-CHARGE>S" isvery low. It is neverthelessthe best option available, and a
persistent individual animat that did not swap between other alternatives frequently
would be alvantaged. In other circumstances the ability to change to a potentialy
better solution path may be advantageous, where there is srious competition from
other individuals for limited resources, for instance No seaond order leaning
phenomena ae airrently implemented in the SRSE algorithm to determine an
appropriate balance between persistence and fickleness in selecting a solution path.

4.9.5. Pursuing a Goal to Extinction

In the situation where dl possble paths to a top-goa are unobtainable, continued
attempts at the goal bemme athrea to the animat’s survival by locking out other
behaviours. The goa must be forcibly abandoned, this is the goal extinction point
(postulate G4). Goal extinction is adchieved in the SRSE algorithm by removing
the unsatisfied top-goal, gl, from G. The animat would then be freeto pursue the
next highest priority goal as top-goal, or other behaviours if there ae no further
elements on G. Extinction of behaviours has been widely observed experimentally
(sedion 3.6.3). Extinction does not, however, appea as an abrupt abandonment of
the behaviour. Instead the behaviour persists for a time (the “on-period”), then
suspended briefly (the “off-period”) before being resumed for another on-period.
This alternation of apparently goal direded behaviour with periods of some other
adivity persists for a time, until the goal direded behaviour finally appeas to be
completely suppressed. The relative lengths of the “on” and “off-periods’ change
in a dharaderistic manner, the periods “on” shortening and the periods “off”
lengthening.

During goa direded behaviour SRSE always takes the best possble estimated
path, there is no explicit exploration during this type of behaviour. SRS/E does not
attempt to locate new paths, but instead applies its resources to adieving the god
using the best known path. At the end of the first “on” period behaviour reverts to
default trial and error adions. This period has the dfed of exploring for new
paths through the graph. If the animat “stumbles’ upon the solution and arrives at

124



the goal it is stisfied in the normal way, and a new path is known for future use.
Lengthening periods of exploration have the dfed of widening the aeaof seach
in the graph space increasing the likelihood of happening on a previously unknown
path through the agnitive map and thereby reading the top-goal24. The duration
of the first “on-period” is determined from the initial cost-estimate of the best path
in the graph. The valence break point (VBP, described by postulate P6), is %t to
some multiple of the initial lowest policy value st estimate (best cost ) computed
by the dgorithm. This multiple is defined by the system constant
VALENCE_BREAK_PQO NT_FACTCR, currently set to 10.

VBP < best cost * VALENCE_BREAK_POI NT_FACTOR (eqn4-15)

Thus in the example given by figure 4-5 (table 4-2), goal direded behaviour would
continue until the estimated cost of the best available path exceals a value of
184.0. The multiplier value is sleded to give the animat ample opportunity to
adiieve the goal by dired use of the DPM, allowing a generous margin for failed
expectations.

Once the policy value of the best path reades the VBP value the goa is
temporarily suppressed, and VBP is again multiplied by the valence bres& point
fador (to 184Q0). On reading ead kregk point behaviour reverts to exploratory
adions for a period determined by a goal _recovery_rate parameter, the goal
recovery mechanism. Actions taken during this period are referred to as
unvalenced actions, to distinguish them from purely trial-and-error exploratory
adivities. On the first suppresson the goal rewmvery rate is high, and behaviour
reverts to goal directed quickly after only a few unvalenced actions

On reading ead subsequent valence bre& point the goal remvery rate is reduced
(in the aurrent implementation by afador of two) and so the number of unvalenced
adions during the off-period increases. Ead time the blocked n-hypothesis fails
the estimated cost of the step increases at an exponentia rate, and the time taken to

24panic reactions may be an extreme form of this phenomena, wild or exaggerated actions being
performed, posshly beyond the normal limits to physical well-being, in afinal attempt to escape
some intolerable @ndition. Indistinguishable behaviours may equaly be part of the innate
behavioural repertoire, unrelated to goal seeking.
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read the next VBP level deaeases as a mnsequence At some point the estimated
cost of the path exceeds the goal cancellation level, Q, and the unacievable top-
goal is automatically deleted from the Goal List.

The extinction processwill be demonstrated experimentally in chapter six, but it is
most clealy shown when only a single path exists through the DPM to the goal.
Suchisin effed the cae in Skinner box experiments. Only pressng the bar delivers
the reward. Similarly the only known route to the goal definition sign “Sa” in figure
4-5 is via the path “Sv”-“Sa” (u-hypothesis “Hva”). If the experimenter denies the
animat accessto “Sa”, then “Hva” will be tried on every attempt to read the god
(sincethereis no ather known option), and the estimated cost of this gep will rise
until Q isreaded. On the other hand if there is me other, as yet unknown, route,
then the periods of exploration give the animat the posshility of discovering it by
growing the agnitive map. These dfeds are investigated in the path blocking and
alternative path experiments of chapter six.

4.10. Creating New p-Hypotheses

New p-hypotheses are aeded under two spedfic drcumstances, (1) the
appeaance of a mmpletely novel sign, postulate H5-1 (novel event); and (2) the
appeaance of a sign that is known, but which was not predicted, postulate H5-2
(unexpected event). SRS/E may therefore operate under the tabula rasa conditions
discuseed previoudly. It is also a strong example of an unsupervised learning
procedure, no intervention is required from the originator or experimenter to cause
or guide the leaning process The originator may, of course, build behavioural
patternsinto the Behaviour List intended to advantage or bias the animat’s learning
process The experimenter may equally establish situations that trigger or exploit
the animat’s innate leaning ability to train or tead the animat. In the experiments
to be described no such behaviour patterns are used. Conditions under which the
experimenter intervenes are described were appropriate.

SRS/E uses a pattern extraction method for creding new u-hypotheses. The

detedion of a novel or unpredicted sign, notated for the moment “s2”, causes
SRSE to extrad a recet adion, “rl”, from R, as recorded in the
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response_activation_trace vaues, and to extrad a sign, “sl” from §, as

recorded in thei gn_acti vati on_t race values. The new-hypothesis:
he H(s1,r1,s2™ (eqn4-16)

is creded from the components extraded from the various traces. Note the use of
the notation “ x<— X(y)” to denote the aeaion of alist element of type x from
some (appropriately typed) element or elements “y’. Note dso that the adion
seleded is to be drawn from at least one exeaution cycle in the past, and that the
context sign “s1” shal be mntemporary with the adion “r1”. As a convention,
where “s2” follows “s1” and “r1” by exadly one exeaution cycle the use of the
“@" (at) notation will normally be dispensed with, as this is the default
relationship. Where dl the component token parts for “sl1” are drawn from their
respedive adivation traces, then adion seledion and prediction by the p-
hypothesis will not depend on the aurrent state of the system, only on the recorded
past states.

In keeping with Popper’s observation that the smplest means possble should be
employed to describe the phenomena (occam's razor), the airrent implementation
of SRS/E initidly creaes new u-hypotheses to this notion, concurrent sign “sl”
and adion “r1” predicting the target sign “s2” on the next exeaution cycle. The
exad combination of elements for the new u-hypothesis are spedfied by a
hypothesis template, which in the arrent implementation is coded into the
structure of the SRSE algorithm. As the size of S* increases, the number of
possble options for inclusion in the new u-hypothesis will increase. Currently,
SRS/E may limit the number of u-hypotheses creaed for eat novel or unpredicted
sgn appeaance This, in effed, creaes a sampling strategy for the leaning
process The medhanism for an explicit sampling strategy implemented in SRSE is
described later.

This is a form of instrumental learning, predicaed on a fundamental notion of
causality between the @ntext in which the animat makes adions, the spedfic
adions made by the aimat and the onsequences to the aimat and its
environment of those adions. It is an animat-centric view, but there may be other



adive agents in the environment causing changes. These ae only recorded by the
animat in so far as they affect the animat’s ability to manipulate its circumstances.

Shettleworth (1979 provides evidence that animals may be predisposed to utilise
feaures from the environment seledively. With or without this innate bias it would
be areasonable dternative strategy to creade many u-hypotheses in an attempt to
explain the occurrence of the novel phenomena, and alow the subsequent
corroboration processto seled useful u-hypotheses and dscard the remainder, a
sub-set sampling asumption. In the ésence of any underlying “theory” about the
environment, which is the default assumption, ead p-hypothesis forming “guess’ is
as good as anotlter

4.10.1. Maintaining the Hypothesis List

Given the use of the pattern extraction (token seledion from the various lists I, S,
R and 1) method for creaing new u-hypotheses one of four outcomes will emerge
following a period of corroboration. First, an individual p-hypothesis may
acarately predict its outcome. Seand, a p-hypothesis may acairately predict its
outcome only in a fradion of the instances in which it is adivated. Third, a p-
hypothesis may never, or very rarely predict corredly. Fourth, a u-hypothesis may
not be activated again, and so will make no predictions that may be corroborated.

The first of these outcomes needs no immediate adion. The second outcome may
indicate that the p-hypothesis be a cadidate for specialisation, one form of
differentiation (postulate H6). By this process extra tokens are alded to the
context sign “s1”, on the asumption that the u-hypothesis is underspedfied in its
applicaion. JCM and ALP both propose aspedalisation medianism. In the aurrent
definition, the Dynamic Expedancy Model isolates candidate u-hypotheses which
have intermediate @rroboration values, and which have a maturity
(hypo_mat urity) value greaer than the system defined maturity threshold level
(). The use of the maturity criteria ensures that candidate u-hypotheses have
undergone asufficient number of adivations and hence ®rroborative predictions.
Maturity is not equivalent to age.

25This cluster of hagtily formed guesses contingent on a new phenomena may be related to the
“first appearances” effectvidely, but often apocryphally, described. For instance KI®§7).
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For any of these candidates, which are arrently on the adive list ¥ and where
the cnfidence measure falls between a system defined lower confidence bound (6)
and upper confidence bound (0), an additional token term is added to the existing
context sign “s1”. In the aurrent scheme this token is drawn from the record of
token adivations recorded in the respedive adivation traces. It is in esence
another “guess’, but (as with u-hypothesis credion) one drawn from the
population of extant observations. The origina u-hypothesis is retained, and a new
one gpended to the Hypothesis List. Duplicae u-hypotheses are not installed by
SRS/E. By appending the new, modified, sign “sl” to the Sign List a stream of
novel signs is created to further activatetHe/pothesis creation process.

The experiments described later make extensive use of the u-hypothesis creaion
steps, but do not necesstate the use of this edalisation step. It is therefore
largely speaulative. However the intention is to crede a population of u-
hypotheses, which attempts to improve its performance based on predictive aility
within the lifespan of the animat. Where the initial u-hypotheses were aeded from
the simplest combination of parts, new u-hypotheses will only be aeaed when
these minimalist interpretations of the environment are demonstrated inadequate
through the corroboration process Among other candidate gpproadies to this gep
in the SRS/E algorithm are the use of the dossover and mutation techniques
employed by Genetic Algorithms (GA), and the techniques used by the machine
learning by induction schools of thought.

Both Bedker and Mott also discuss generalisation, the @nverse operation to
spedalisation. In generalisation terms are removed from the wntext of ineffedive
schema on the premise that they contain irrelevant additional kernels which over
spedfy and hence reduce the dfediveness of the u-hypothesis. The Dynamic
Expedancy Model does not provide any explicit mechanism for generalisation. It
instead relies on the notion that lesseffedive u-hypotheses will be removed, after a
suitable period of corroboration, by the deletion/forgetting process described
below.

The third outcome indicates a candidate for deletion, as it apparently fails in its task
as a hypothesis about the environment. The arrent definition for SRSE seleds a
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candidate set of u-hypotheses for deletion on the basis of their maturity (compared
to the maturity threshold, ¥) and confidence values from a sub-set of the
population sharing a mmmon consequence sign “s2”. A reasonable minimum value
for the lower confidence bound (6, also the minimum bound for spedalisation)
would be one based gaint probabilities (Harrison 1983):

joint_prob =p(“sl”) * p(“r1”) * p(“s2”) (eqn4-17)

The joint probability value would be that value gproximated by a u-hypothesis
creded following a true dhance or occult occurrence. The dgorithm’s readinessto
delete u-hypotheses must aso be related to the number available for predicting
“s2”. Where only one, or a very limited number of u-hypotheses are available it
appeas inappropriate to expunge this knowledge, even where it is demonstrated to
be of restricted value. Experimental evidence from Skinner box experiments would
appea to indicae that experimental animals do not erase operant behaviours even
after full extinction, as evidenced by the spontaneous recvery of the extinguished
behaviour after a period of rest. It may also be noted that where only a single
adion élicits reward its use may be particularly persistent during the extinction
process.

The fourth outcome offers no information on which to base adedsion, and so a
pragmeatic gpproad isindicaed. In principle an old, untested, u-hypothesis has no
more nor less potential as a valuable item of knowledge than a more recently
creaed one, which has yet to be tested. Where nothing else is known about the
outcome there is a dea reason to retain the uncorroborated p-hypotheses. Where
other alternatives alrealy exist, and spaceis becoming at a premium, a Hypothesis
List element falling into this caegory is a dea candidate for deletion - but as a
purely housekeeping consideration.

4.11. The SRS/E Execution Cycle

In the seacond main part of this chapter the SRSE agorithm is considered in some
detail as a series of interrelated computational processes. SRSE must explicitly
balance the demands placeal upon it by definitions of innate behaviours provided in
the aimat’s ethogram, goa-initiated behaviours, and by the requirement to
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generate new behaviours. Goal-setting, goal-seeking and the leaning processes are
all defined or controlled as part of the total ethogram. The extent to which the
animat can crede leaned behaviours and the degreeto which it can override innate
behaviours with learned ones are dso defined in the original ethogram. In this way
SRS/E can truly be described as implementing a “scheme for leaning and
behaviour”.

4.11.1. Summary of Execution Cycle Steps

Wheress the first part of this chapter described the definition of the various list
types and dscussed much of the rationale behind various design choices in the
construction of the arrent implementation of SRS/E, this part describes the
algorithm primarily from the viewpoint of the manipulations performed on those
lists during an individual exeaution cycle. Figure 4-6 summearises the main steps in
eadh SRSE cycle. Sub-sedions simmarise these list manipulations with a degree
of formality, utilising the notation developed ealier. The intention of this algorithm
IS to create a situation where each of the lists is sustained on a continuing basis.

In step one the dgorithm accepts tokens derived from the animat’s snsors and
transducers. These ae onverted to the internal symbol form using information
recorded in the Input Token List, and used to evauate the adivation state of all
Sign List elements.

In step two the Prediction List is inspeded for any predictions made in the past
which fall due on the arrent cycle. These predictions are mmpared with the adive
Sign List, and the hypotheses making the predictions are updated, for both
succesdul and failed expedations. This is the corroboration and reinforcement of
existingu-hypotheses (from postulates H3 and H4).

In step three the dgorithm evaluates the Behaviour List to prepare acandidate
adion and to determine which, if any, innate behaviours or goals are gpropriate in
the prevaili ng circumstances. The SRS/E algorithm requires that the Behaviour List
provide apriority associated with ead candidate adivity or goal. When the highest
priority adivity is greaer than the highest priority goal, no goa seeking behaviour
is considered and the dgorithm skips immediately to step 6 to perform the diosen
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adion. Whenever step three does not adively selea any purposive behaviour or
assert a goal a default, exploratory, action will be selected.

Step 1a)Gather Input Tokensto form I*
1b) Update S*
1c) Cancel satisfied goals from G
Step 2) Evaluate past u-experiments from 7
Step 3a) Select default action candidate from R
3b) Select innate action and priority from B *
3c) Set goals G and priorities from B#*
3d) Innate priority > goal priority? — to step 6
Step 4) Build Dynamic Policy Map (DPM) relativeto g1
Step 5) Select valenced action from (DPM U S$¥
Step 6) Perform selected candidate action
Step 7) Perform u-experiments from H¥* update P
Step 8a) Novel occurrence? — create hypothesis on #
8b) Unexpected occurrence? — create hypothesis on #
8c) Partially effective hypothesis? — differentiate to #€
8d) Ineffective hypothesis? — delete from
Step 9) Tostepl

Figure4-6: Summary of Stepsin the SRSE Execution Cycle

In step four the dgorithm builds (if required) a Dynamic Policy Map. This is
performed as a spreading adivation graph building algorithm. u-Hypotheses that
are known to lead dredly to the top-goal are mwnsidered to have avalence level of
one, and so define aset of sub-goals (their “s1” component), which in turn ad as
sub-goals at valence level two, and so on.

In step five the dgorithm matches the aurrent perceived situation, as expressed by
the adive Sign List from step one, with the Dynamic Policy Map generated in step
four, to seled a candidate adion to be performed in step six. Step five must also
caer for situations where there is no intersedion between the arrent policy map
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and any adive signs, and for circumstances where the policy map proves ineffedive
at providing a goal path.

Having defined an adion to take, either as a high-priority innate adion, a goal
direded adion seleded from the Dynamic Policy Map or a default adion, this
action is passed to the animat actuatossep six.

Once a adion is ®leded, and gven the adive Sign List from step one, a sub-set
of the Hypothesis List will be adive, able to make a prediction. Active u-
hypotheses take part in p-experiments. Step seven seleds al the adive u-
hypotheses and causes them to append their prediction about “s2” onto the
Prediction List. A u-hypotheses does not have to have mntributed to the agion
selected in step six to be considered acimpl{cit activation).

Step eight concerns itself with the management of the Hypothesis List. In kegoing
with the principles defined in the previous chapter. u-Hypotheses may be created,
varied or removed within this step.

Having concluded one oycle (step nine), the dgorithm returns to step one and
begins the next. It might again be noted that SRS/E does not provide for any
terminating condition, there is nothing inherent in the basic dgorithm that
concludes the continued execution of cycles.

The base SRS/E algorithm, coupled to any behavioural definitions provided by the
originator in the ehogram, is expeded to imbue the aiimat with an appropriate
degreeof behavioural autonomy. The new-born animal or human child may require
protedion and nurturing, the cild may be tutored and educaed, but these things
do not compromise our notion that they are aitonomous and so ultimately self-
sufficient. Should the undamaged individual require @ntinued nurture, not achieve
anormal degreeof self-sufficiency, or be unable to lean without continued tuition,
then it might reasonably be concluded that an adequate level of autonomy had not
been achieved within the @hogram definition. Smilarly the ehogram design may
cdl for a proteded maturational period, and as an essntially autonomous leaning
system the animat may be teadable, but these do not undermine the defining
behavioural autonomy properties for the ethogram or animat.

13¢



4.12. The SRSE Algorithm in Detail

Figure 4-7 illustrates the major steps in the SRS/E agorithm, the most significant
data pathways and their relationships to the various list structures. Individual steps
in the dgorithm are described in greder detail in the sedions that follow. Steps
which real from the list structures are indicated with a solid line termination
(“e—"), those which add to a list structure by a “+” indicator (“®<"), and those
which remove dements from a list by a “-” termination (“©<+"). Each of the
subsumption points (SPL and SF2) indicaes a stage in the dgorithm where a
previousy seleded candidate adion may be replaced (subsumed) by an adion of
higher priority.

Activation tracc
-

New
Predictions

Iﬂew Snew
Existing —— B
Tokens Existing Signs Prediclions’ Step 1c
Caricel
Satisfied
Gather Update Evaluate ﬁ_ﬁ::fet Select Gosls.
| Tokens [I*I ] SignList |s*I u-Expts. | ; Goals
F Action
Trom d Step 1a Step 1b Step 2 5 Step 3b S* Step 3¢ st
ransducers
Aclival'En lrace 3 A2
Select B“':\j
R Default \\/ bP
Action Subsumption S+ Step 4
— Step 3a Point (SP) 1 ‘
Record Action Made
New Prediction y Select
From Sign Trace From Sign Trace Valenced
2 Action
From Action Tracc
Y ]
Current Token ta Differentiate Step 5
Create Create
Delete Differentiate i * Perform [ Perform
u-Hypoth. u-Hypoth u-Hypoth. <= o p-Hypoth. u-Expts. [* Action
) (unexpect) «— (novel) 4
Step 8d Step 8¢ Step 8b Step 8a Step 7 Step 6
Make Action

“To Actuators

KEY:
. S pti int
o—» Read from List A uosum b

B . . .
. Optional action at point B
@< Add to List @ has precedence over action

(O« Remove from List at point A to give G

Figure4-7: The SRSE Algorithm
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4.12.1. Step 1: Processing Input Tokensand Signs

Figure 4-8 shows the list management activities undertaken during step 1.0 of the
SRS/E cycle. In step 1.1.1, input token strings are accepted from the input buffer
and converted into the internal token form (¢). Steps 1.1.2 perform additional
processing on input tokens previously unknown to the system (i.e., any not already
on I). The novel token is appended to I (step 1.1.2.1). Additionally a new sign is
created from each novel token (step 1.1.2.2) and appended to the temporary list
S". Tokens present in the input buffer on the current cycle are assigned to the
active Token List, I¥ (step 1.1.3). New signs created in step 1.1.2.2 are added to
the Sign List (step 1.2). The temporary list $"® will be used to drive the learning
process of step 8.1. Once al input tokens have been processed, each sign is
evaluated according to the criteria laid down in equation 4-3, forms 1 through 4.
Every sign meeting the criteria defined for activation are placed on the active Sign
List $* (step 1.3). Step 1.4 matches elements on the Goal List (G) to any active
signs ($%, and automatically cancels satisfied goals.

Initialise S™ « {}; I*«{}; S*«{};
1.1 Accept tokensinto buffer, for each t oken_string do
1.1.1 & < I(t oken_stri ng) [convert input string]
[note: X(y) convert element of type y to element of type X]
1.1.2if & ¢ I[atoken previously unknown to the system]

11211« I+ [append & to I]
1122 8™« ™ + §(©) [create asign containing &/]
113 %« I*+ ¥
128« S+ 8™

1.3 For each y where sy € §
1.3.1if (Eval Si gnConj unct i on($))
S* S*+ ¢ [egn. 4-3]
14G«— G- (S*n G) [cancel satisfied goals]

Figure 4-8: Step One, Token and Sign Processing
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4.12.2. Step 2: Evaluating p-Experiments on the Basis of Prior Prediction

Once active signs have been determined the algorithm may assess the accuracy of
past predictions falling due on the current execution cycle and so update the
individual u-hypotheses responsible for those predictions (figure 4-9). Steps 2.1
process each element of P where the predi ct ed_ti me is equa to now. Where the
predicted_sign is on S* the p-hypothesis identified by the Prediction List
element predi cti ng_hypo is updated according to equations 4-8 and 4-11 (step
2.1.1.1). The temporary list S records each sign that was correctly predicted
(step 2.1.1.2). Similarly step 2.1.2.1 updates each u-hypothesis responsible for an
incorrect prediction falling due at the current time, according to equations 4-9 and
4-12. For each faled prediction the system variable rebuil dpolicynet is
increased by the amount o (step 2.1.2.2). Spent predictions are removed from P

(step 2.1.3). The temporary list S"exPected

records all active signs that were not
predicted by any p-hypothesis (step 2.3), these will be used to drive the learning

process of step 8.2.

Initialise S« {};
2.1for every p (p € P), such that predi ct ed_ti me(p) = now, do
2.1.1if predi cted_si gn(p) € S* [prediction succeeds]
2.1.1.1 Update pr edi ct i ng_hypo(p) [according to o, eqn. 4-11]
2.1.1.2 Sred . gPred 4 predi ct ed_si an(p)
2.1.2if predicted_si gn(p) ¢ S* [prediction fails]
2.1.2.1 Update pr edi ct i ng_hypo(p) [accordingto 3, egn. 4-12]
2.1.2.2 rebui | dpol i cynet < rebui | dpol i cynet + 9
213P«P-p [remove spent prediction]
2.2 gunexpected gk gpred [record unpredicted signs]

Figure 4-9: Step Two, Evaluation of u-Experiments

4.12.3. Step 3: Selecting Innate Behaviours and Setting Goals

The availability of S* also allows the Behaviour List, B, to be evaluated (figure 4-

10). The default candidate action, candi dat e_acti on, for this cycle is selected
from R in step 3.1. In the present scheme the default candidate action is selected at
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random from those available. This formsthe trial and error (or other default) action
if no other candidate is selected during the current cycle. A list of active
behaviours, B"¥ is sdected from the primary behaviours part (B") of the
Behaviour List on the basis of a match between the condition part and the active
Sign List S* (step 3.2). The action with the highest priority is selected from the
active primary behaviours (B"¥ and assigned to i nnat e_act i on according to the
stored behaviour_priority values (step 3.3). The actua priority of that
behaviour is recorded in the variable innate_priority (step 3.4). If
i nnat e_action has a higher priority than the basal level threshold (g) it is
adopted as the candidate action, candi date_action, for the current cycle in
preference to the one selected in step 3.1 (step 3.7). The Goal List is built from the
goal setting behaviours part of B (B%) in step 3.5, and the Goal List priority
ordered (according to goal _priority) in step 3.6. SRS/E selects between innate
and goal seeking behaviours on each cycle according to the priority of the top-
godl, gl, and the value recorded ini nnate_priority (step 3.8). Where an innate
behaviour is selected the algorithm skips directly to perform the candidate action in
step 6 (step 3.8.1).

Initialise B* < {};
3.1candi date_acti on < Sel ect RandomAct i on(R)
3.2 for each b- where act i on(b-) € B AND condi ti on(D) € $*
321 B™*« B+ 1y
3.3innat e_acti on < act i on(max(behavi our _pri ority(B"¥)) [innate action]
3.4innate_priority < max(behavi our_priority(B"¥)
3.5 for each b- where act i on(b) € B¥AND condi ti on(b) € S*

351G« G+ b [build Goal Ligt]
3.6 G« order(goal _priority(G)) [order Goal List by priorities]
3.7if(innate_priority >¢) [above basal threshold?]

3.7.1 candi date_acti on <—innate_action
3.8if(goal _priori ty(gl) <innate_priority) [select goal or innate]
3.8.1 skip to step 6.0

Figure 4-10: Step Three: Select Innate Actions and Set Goals
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4.12.4. Step 4: Building the Dynamic Policy Map

Steps 4.1 determine whether the Dynamic Policy Map is to be mnstructed on this
exeaution cycle. If the goal g1 is already satisfied, the goal is cancedled (step 4.1.1),
and the next lower priority goal seleded (step 4.1.2). If no goal remains on the
Goal List control passes diredly to step 6.0 (step 4.2). If the top-goal is unchanged
since the last cycle axd the rebuildpolicynet vaue has not excealed
REBUI LDPCOLI CYTRI P no change is required and the dgorithm skips diredly to
valenced action selection in step S 4.3).

Steps 4.4 (stage 1 of the construction) build the first valence level in the DPM. For
al elements () of the Hypothesis List where the mnsequence “s2” is equivalent
to g1 the steps 4.4.n are taken. The estimated cost for the transition is obtained
(equation 4-13) and held in W, the st estimate value for u-hypothesis v (step
4.4.1). The temporary list $"2is built from the context signs “s1” for u-hypotheses
seleded (step 4.4.2), these form the sub-goals at the next valence level. The
temporary list #E records the estimated policy cost for the p-hypothesis hv as h
(step 4.4.3). Similarly the temporary list SF records the lowest cost solution found
so far for ead sign implicaed in the @nstruction of the DPM (step 4.4.4). If the
context sign “s1” for any instance of kv is dready on the adive Sign List $* then a
path from the aurrent situation to the goal has been found (step 4.4.5) and the flag
pat havai | abl e IS &t TRUE. The lowest cost path estimate best cost is updsted if
the estimated cost of this new path islower than any previously found solution path
from this sgn to the top-goal (step 4.4.6). Once pat havai | abl e is as®rted the
algorithm might to skip to step 50 (i.e., perform the adion assciated with the
element v with the adive mntext sign), or it may continue to build the DPM to
discover possble lower cost paths. Were the animat to be constrained to perform
an adion within a given time this flag is an important indicaor that a path exists.
The current implementation places no such time constraint on the algorithm.

Steps 4.5-4.8 (stage 2 of the @nstruction) continue the sprealing adivation
process for successve valence levels, vn+1l (step 4.5), until there ae no further
nodes to expand (step 4.6) which terminates the DPM construction. Each node
identified as a sub-goal at the previous valence level is expanded (steps 4.7) in the
manner described for steps 4.4. The temporary list #- records the policy value for
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eadt u-hypothesis by adding the new cost estimate value for the transition to the
previously computed lowest policy value for the sub-goa “s2” (step 4.7.1). The
temporary list #is updated to refled new policy values (step 4.7.2). Whenever a
new sign node or a lower estimated policy cost to a sign node is discovered (step
4.7.3), the sign is established at the new valencelevel (step 4.7.3.1) and the new or
lower cost isrecorded (step 4.7.3.2). The net effed of this processis to caegorise
every u-hypothesis, and so ead sign “sl1”, which is implicaed in the DPM by its
lowest estimated policy cost to the top-goal. The flag pat havai | abl e may be set
at any valence level (step 4.7.4). The variable best cost is updeted whenever a
new lowest estimated cost is encountered (step 4.7.5). If there is no intersedion of
sub-goal node and S¥* pathavail abl e remains FALSE and best cost remains

undefined.



Initialise - « {}; §' « {§; SF < {;
rebui | dpol i cynet <— O; pat havai | abl e <~ FALSE;
best cost <~ MAXVALUE; vn < 1 [valence level one]

Rebuild map if goal changed or ‘rebuild’ greater than threshold

4.1 while (d € $% [top-goal already satisfied]

411G« G- g1 [so remove]

4.1.2 d < max@oal _priority(G)) [and ®lect next highest]
4.2 if(G = {}) skip to step 6.0 [no goals on Goal List]
4.3 (if g = g"®" AND rebui I dpol i cynet < REBUI LDPOLI CYTR! P)

skip to step 5.0 [no need to rebuild DPM]

Stage 1 - create first valence level
4.4 for eachv such thas2(h) = ¢

4.4.1 0 « cet cost Esti mat e(h) [eqn.4-13]
4428« &+ si(h) [record valenced sub-goals]
443 H — HE+ S [cost of transition s1 to goal]
4448 « sl(hf) [record sign cost]
4.45ifc1(h) e SH

pat havai | abl e <~ TRUE [path solution found]

4.4.6 ifpest cost > hf“) best cost « h¥

Stage 2 - continue spreading activation until done
45vnevn+1

4.6 if(S' = {}) skip to step 5.0 [expansion complete]
4.7 for eachiv such thas2(h) € §™*" [expand each sub-goal]
4.7.1 0 « s2(5F) + Get Cost Est i mat e(h) [eqn.4-13]
4.72H — HE+ S [record total costfopath]
4.7.3ifc1(h) ¢ S'OR s1(hf) > s1(55))  [new or better path]
47318« 8" +s1(h) [new sub-goals]
4.7.3.28 « §F + s1d) [record lower sign cost]
4.7.4ifc1(h) e S$H
pat havai | abl e <~ TRUE [solution path found]
4.7.5 ifpest cost > hf“) best cost « h¥
4.8 return to step 4.5 [expand next valence level]

Figure4-11: Step Four, Construct Dynamic Policy Map

14C



4.12.5. Step 5: Selecting a Valenced Action

Steps 5 (figure 4-12) determine whether a valenced adion is appropriate, and if so
seled the adion. These steps also manage the goal extinction process A value for
the valence break point is determined first. If VBP is drealy set, this value is used
(step 5.1). Where thisis the first instance of a DPM, or the previous valence bre&k
point has been excealed, a new value for VBP is computed ac®rding to equation
4-15 (step 5.3). The valencebre& point is cleared if no path is found (step 5.2). A
temporary list of u-hypotheses, "% is formed from the intersedtion of those -
hypotheses with valence (recorded on H£) and whose oondition part “s1” is on the
adive Sign List $* (step 5.4). The candidate valenced adion, val enced_acti on,
is extracted from the dement of = with the lowest estimated policy cost to the
goal (step 5.5). If the estimated cost of this proposed adion is {ill [ essthan vBP,
this valenced adion is <sleded as the overal candidate adion,
candi date_action, for the exeaition cycle (step 5.7). Where there is no
intersedion of valenced u-hypotheses and the adive Sign List, the candidate adion
seleded in step 3 will be used. This siImmary of the dgorithm does not detail the
sub-steps for the goal recovery mechanism previously described. Step 5.8
determines if the total estimated cost of the path hes exceeled the goal
cancellation level, Q , and if so removes the current top-goal from G.

5.1 VBP < Get Val enceBr eakPoi nt () [establish ver]
5.2if (pat havai | abl e = FALSE) VBP < 0O [no path to goal]
5.3 elseif (vBP < 0 OR VBP > best cost ) [compute VBP]
VBP <— best cost * VALENCEBREAKPO NTFACTOR
54 H*E — H A (s1(h) € $H [candidate active signs]
5.5 h « min(H*%) [select least policy cost]
5.6 val enced_action «ri(h)
5.7 if(pol i cy_val ue(h) < VBP) [break-point reached?]
candi dat e_act i on < val enced_acti on [no, use valenced action]
5.8if(pol i cy val ue(h) >Q) [goal cancellation level?]
581G« G- g1 [so cancel top-goal]

Figure 4-12: Step Five, Select Valenced Action
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4.12.6. Step 6: Performing an Action

Figure 4-13 describes the adion reficaion process The adion
candi dat e_acti on, seleded either as an innate response from the Behaviour List
B¥ (step 3.3), from the Dynamic Policy Map as a valenced adion (step 5.7), or as
a default trial and error adion (step 31) is snt to the animat’s effedors to be
performed on the arrent cycle (step 6.1). The dement of the Response List finally
seleded is recorded on the adive Response List R * for the airrent exeaution cycle

(step 6.2).

6.1 DoAct i on(candi dat e_act i on) [reify candidate action]
6.2 R*< candi date_action [record in trace]

Figure 4-13: Step Six, Perform Action

4.12.7. Step 7: Conducting p-Experiments

Figure 4-14 describes the steps taken to create the predictive expectations. The
active Hypothesis List * is constructed from every p-hypothesis where the
context sign “s1” appeas on the adive Sign List $* and the adion “r1” appeas on
the ative Response List R* (step 7.1.1). SRS/E does not distinguish between
adions made & part of the goa seeking process and those made due to innate
behaviour definitions or for any other reason. As a nsequence SRSE
corroborates u-hypotheses whenever they establish an expedation. Such
expedations are added to the Prediction List as a triple recording the u-hypothesis
responsible for the prediction, the predicted sign, the time & which that sign is
predicted (step 7.1.2). The value t is remvered from the tinme_shift vaue
asociated with the p-hypothesis. These predictions will be corroborated in step 2
of later execution cycles.

initialise H* <« {};
7.1fordl h, suchthat s1(h) € S¥*AND r1(h) € R*
711 H*— H¥+ h [record activation]

712 P« P+ P(h, s2(h), now+1) [make prediction]

Figure 4-14: Step Seven: Conduct p-Experiments
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4.12.8. Step 8: Hypothesis Creation and M anagement

Steps 8.1 (figure 4-15) are mncerned with the aedion of new p-hypotheses when
anovel event is detected. These steps are triggered when the temporary list $™" is
not empty. Elements were placel on ™ in step 12. A new u-hypothesis is
creaed from a ontext sign (“sl”) seleded from the Sign List adivation trace
record (step 8.1.2), from an adion (“r1”’) seleded from the Response List
adivation trace(step 8.1.3), and the novel sign extraded from $"*" (“s2"), (step
8.1.4). The newly formulated u-hypothesis is added to the Hypothesis List (step
8.1.5) and its values =t to refled the creation bonus previously described. As the
u-hypothesis is creded from a novel sign, there is no posshility that it will

dugicae an existing u-hypothesis. The timebase shift is acieved by predicting the
occurrence of “s2” n cycles in the future, where the “s1” and “r1” values were
previously extraded from the respedive adivation traces n cycles in the past. The
relative time shift, #; is recorded in thg-hypothesisi me_shi ft value.

The aeaion of a new p-hypothesis may affed the structure of the DPM, and so
the system value r ebui | dpol i cynet is incremented by A to hasten or trigger a
DPM rebuild (step 8.1.6). The novel sign is removed from S (step 8.1.7), and
steps 8.1 repeated until this list is empty. An explicit sampling learning strategy is
implemented by omitting steps 8.1.2 to 8.1.6 for one or more of the signs on §""
according to a frequency set by the learning probability rate. The learning
probability rate will also be referred to by the abbreviation Lprob and by the
symbol (A). When the learning probability rate is 1.0 every opportunity to create a
u-hypothesis will be used, if it were set to 0.0 no p-hypothess creation would
occur. In eecting to implement a sampling strategy at this point any sign passed
over will only seed a new u-hypothesis as a result of the process described in steps
8.2, asit will not reappear on $".

Steps 8.2 create new u-hypotheses when unexpected signs are detected. Elements
were added to the temporary list S“"P*** in step 2.2. The basic mechanism for u-

hypothesis creation isidentical to that described in steps 8.1. In a sampling strategy
(A < 1.0) passed over signs can reappear on S""P* again (as they may remain

unpredicted), and so be the subject of this process on a subsequent execution cycle.
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Creation on the basis of novelty

8.1 for eachy™ such that (§™" = {}AND ™ € §™)
8.1.1if (rand(0.0 .. 1.0) > A) skip to step 8.1.7
8.1.2 51 « Sel ect (§ € $*@Y
8.1.3r1 « Sel ect (¥ € R*®Y
81452 « &
8.1.5 1 « H+ H(s1,r1,52%"), wheres1 # s2

8.1.6rebui | dpol i cynet < rebui | dpol i cynet + A
8.1.7 8« S g

Creation on the basis of unpredicted event
8.2 for each $"PeM gych that (SUNSPEd . {1 AND ginePected o gUnexpected,
8.2.1if (rand(0.0 .. 1.0) > A) skip to step 8.2.7
8.2.2s1 « Select (§ € S*@'t)
8.2.3r1 « Sel ect (¥ € R*®Y
8.2.4 52 « gnereted
8.2.5 1 « H+ H(s1,r1,52%"), wheres1 # s2

8.2.6 rebui | dpol i cynet < rebui | dpolicynet + A
827 Sunexpected P Sunexpected _ ¢synexpe(:ted

Figure 4-15: Step Eight, Hypothesis Creation

Steps 8.3 (figure 4-16) describe the specialisation process by which individual p-
hypotheses are made more spedfic in their applicaion. Extra spedficity is achieved
by adding dscriminant terms to the context sign conjunction (“s1”). The airrent
definition seleds p-hypotheses that are: (1) adive, (2) exceal the maturity
threshold (¥), in that they have been tested many times, and (3) have a
indeterminate confidence probability values (hypo_pr ob, or bpos) falling between
the upper (©) and lower (6) confidence bounds. A seleded p-hypothesis must be
adive to ensure that the additional elements added to the @njunction are drawn
from the set of extant events at the time of modificaion (i.e., those falling within
the range defined by the respective activation traces).
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A new context sign is created by adding an additional term to the existing context
sign conjunction (step 8.3.1). This new term may be drawn from the Input Token
List, the Sign List, the Response List or the Hypothesis List. It may take any of the
four forms described in equation 4-3. Action (step 8.3.2) and consequence (step
8.3.3) parts are copied from the existing u-hypothesis. The new u-hypothesis is
appended to the Hypothesis List (step 8.3.4). The origina p-hypothesis is not
removed, and will compete with the new one. The new sign created in step 8.3.3 is
appended to the Sign List (step 8.3.5). On its first subsequent activation the new
sign will appear as a candidate on $""P**® a5 there is no p-hypothesis to predict
it. This mechanism therefore provides a continuing source of new signsto drive the
learning process indefinitely.

Specialisation (differentiation)
8.3foral h, suchthat v € H*AND hypo_maturity(h)>W¥
AND hypo_pr ob(Iv) > 6 AND hypo_prob(h) <®

8.3.1s1 « S(s1(h) + ¥ [differentiate s1]
832r1«<r1(h) [copy action]

8.3.3s2 < s2(h) [copy s2]

8.3.4 1 « H+ H(s1,r1,52%" [install new u-hypothesis]
8358« S+s1 [ingtall new signin ]

8.3.6 rebui | dpol i cynet < rebui | dpol i cynet + A

Figure 4-16: Step Eight, Hypothesis Management - Specialisation

Step 8.4 (figure 4-17) defines the criteria for p-hypothesis deletion. u-Hypotheses
that persistently fail to make effective predictions may be removed. The degree of
maturity should be high and the corroboration measures should indicate that the u-
hypothesis has little or no predictive value. u-Hypotheses are deleted by simply
removing them from the Hypothesis List (Step 8.6).
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Deletion (forgetting) under competition

initialise #* « {};

8.4 for alllv, such thalv € FH*AND hypo_maturity(h)>W¥
AND hypo_prob(h) <©

841H — H'+ h [build candidate list]
8.5 W¥¥  min(hypo_pr ob(}) [select a deletion candidate]
8.6 1 « H - W [update Hypothesis List]

8.7 rebui | dpol i cynet < rebuil dpolicynet + A

Figure4-17: Step Eight, Hypothesis Management - For getting

4.13. Implementation

The SRS/E agorithm is implemented in Microsoft Visual C++ and runs as a text
only Window under Microsoft Windows v3.1 or Windows 95. Eadh of the major
lists and their associated functions are defined as objed classes. The use of the
term “list” here does not imply the use of a list processng language such as LI1SP.
Elements of these Lists are dlocated and redlocaed dynamicadly, typicdly stored
and indexed as array members. In the interests of efficiency this implementation
eschews conventional objed oriented message passng in favour of crossclass
access functions.

4.14. SRSE - A Computer Based Expectancy M odel

In this chapter the Dynamic Expectancy Model developed in chapter three of this
thesis has been trandated into a single dgorithm, SRS/E. MadCorquodae ad
Meehl (1953 recognised that their expedancy theory postulates were “incompl ete,
tentative and nonsufficient”. Bedker’'s ICM was only presented as a proposal for
implementation. Mott adiieved a substantive implementation of ALP, but was
heavily constrained by the timesharing technology available & the time, and by the
generally impoverished nature of the robot interface he employed. Drescher
provides <ant indicaion of the results for his claimed implementation, beyond an
indication of the extensive computational resources required to sustain the marginal
attribution process.
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The SRS/E agorithm, and its implementation, stands as a “proof by existence”, a
working model creaed from the postulates presented in chapter three The SRSE
algorithm clams to be “sufficient” in this resped, and as an implementation at least
one step beyond “tentative”. Ead of the postulates contributes a small component
part of the whole. The processs are lesstightly coupled than, say, Watkins Q-
learning; a repetitive gplication of a smple reinforcement transfer rule. More
tightly coupled than, say, the ideaimplicit in Minsky's (1985 notion of a “society
of mind”. The relatively large number of Dynamic Expedancy Model postulates,
and so algorithmic steps, refleds the goparent need to construct a balanced and
functional medanism; in much the same manner as an automobile design requires
many coupled systems to achieve an acceptable level of usability, safety, reliability,
maintainability and performance It may be that further work will demonstrate that
the system is gill overspedfied, and elements may be deleted without affeding
overall functionality.

Yet SRSE does not clam completeness There is gill a substantial “bad-
caalogue” of published reseach describing a huge range of phenomena that must
eventually be explained or incorporated into alarger single model of the animat. In
kegoing with an idea that evolution adds capabilities to the best of previous
generations and proto-typicd spedes it seams inevitable that extra postulates,
rather than simplification, will be found necessary.

The next chapter describes an experimental environment to investigate the
properties of the SRS/E algorithm as implemented.



