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Chapter 4

4. The SRS/E Algorithm

This chapter describes the SRS/E computer algorithm. SRS/E is derived directly

from the Dynamic Expectancy Model postulates of learning and behaviour

developed in the previous chapter. SRS/E follows in the tradition established by

Becker’s JCM, Mott’s ALP and Drescher’s systems by providing an intermediate

level cognitive model based on the context-action-outcome triplet. As with these

previous systems, SRS/E offers a sensory-motor view of learning. It is not,

however, to be considered as a re-implementation of any of these existing systems.

As with Mott’s ALP and Drescher’s algorithm, and indeed the majority of extant

animat control algorithms, SRS/E is based on a repeating cycle of sensory

acquisition from the environment, processing and taking overt actions into the

environment.

Each model is a reflection of the times in which it was created. Becker’s JCM

proposal and Mott’s ALP implementation adopt an associative net structure for

schemata LTM; consistent with prevaili ng theories from psychology and cognitive

science, for example, Norman (1969). Adopting a net structure served to contain

the computational search and matching load inherent in these designs, bringing

distinct practical advantages to Mott’s implementation in the context of a time-

sharing ICL mainframe. Drescher’s later (1991) system adopted a “neural crossbar

architecture”, consistent with the revival of interest in connectionist thinking at that

time. Availabili ty of the massively parallel Connection Machine made the brute

force approach of the marginal attribution algorithm feasible. In turn, SRS/E arises

as a reaction to an upsurge of interest in reinforcement learning and related

behaviourist concepts. SRS/E’s name, an abbreviation of Stimulus-Response-

Stimulus/Expectancy, pays passing tribute to the life’s work of E.C. Tolman, and

defines the positioning of the work. Various other items of terminology, notably

the use of Sign, Valence, Hypothesis and (Cognitive) Map, are derived from the

vocabulary developed by Tolman and his contemporaries.



90

In contrast to these other systems SRS/E is primarily an algorithm that manipulates

lists of data. This chapter is divided into two main parts. In the first part the

various types of data list are described. The second part presents the algorithm

used to manipulate the lists, perform the learning tasks and generate overt

behaviours, either from the animat’s predefined ethogram, or as a consequence of

learned information.

4.1. Encoding the Ethogram: SRS/E List Structures

SRS/E currently defines seven internal data structures. These data structures will

be referred to as lists. Each list encapsulates an aspect of the animat’s ethogram,

and so record the instantaneous “state” of the animat. At defined points in its

execution cycle the SRS/E algorithm will i nspect the contents of these lists and

generate behaviours based on the prevaili ng contents of those lists. Equally the

SRS/E algorithm will add, modify or delete information stored on the lists by

processes derived from the Dynamic Expectancy Model postulates described in

chapter three. These processes will be defined later in this chapter. Each of the

seven lists is composed of list elements. In turn each element of each list is itself

composed of list element values, which record items of information relevant to

each list element. So, for example, the Hypothesis List is composed of many

individual � -hypotheses, the elements of that list. Each � -hypothesis has attached to

it various hypothesis values, which are created and initialised at the same time as

the individual � -hypothesis, and may be updated each time the algorithm utili ses the

individual � -hypothesis. All li st element values (or “values”) are updated by the

SRS/E algorithm as a result of events impinging on the animat and actions the

animat makes. The list structures, list elements and list element values are

summarised in table 4-1, and described in the sub-sections that follow. List

elements may be defined by the originator before the creation of an individual

animat, as would be the case with the Response and Behaviour Lists. Otherwise, as

would be typical for all the other lists, lists are empty at the point the animat

becomes a free standing individual. In which case the SRS/E algorithm creates

individual list element entries as the need arises.
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4.1.1. List Notation

Throughout this chapter each of the seven lists will be represented by a single

calli graphic character. Upper-case characters represent complete lists (
� �
, � � , � � , � � ,� �

, � �  and � � ). Lower case characters represent individual elements in the respective

list ( � � , � � , 	 	 , 
 
 , � � , � �  and 
 
 ). Table 4-1 summarises this notation. A superscript

notation will be adopted to indicate some property of a list or a list element. In

particular the use of an asterisk will i ndicate “active” elements, those whose

attributes match the prevaili ng circumstances on the current execution cycle. For

instance 
������

 will refer to all those elements of 
� �
 where the corresponding token has

been detected in the sensory buffers 
������

 �  � � , therefore � �  - ������  will refer to all those

elements of � �  where no corresponding input token has been detected. A number of

additional superscripted forms will be introduced later; each will i ndicate some sub-

set of a list, or specify some attribute of a list element. A notation in which the list

element value name is used to refer to or access a list element or sub-list will also

be employed.

As with JCM, ALP and Drescher’s system every element in each SRS/E list has

attached to it a number of numeric and other values. These values are updated as

the algorithm executes and are in turn used by the algorithm in selecting overt

behaviours and to guide the learning process. SRS/E is intended primarily as a

platform for experimentation. List element values are therefore variously available

for use in the algorithm as presented, and by reporting and analysis software

created with the specific purpose of analysing and presenting experimental results.

The list element values used by SRS/E are shown in table 4-1. Their functions and

purposes are described following a detailed description of each list type. Such

values will be shown in a different font “thus” . List element value names shown in

this different font are chosen to directly reflect the variable names employed in the

current implementation of SRS/E used to conduct the experiments described in

chapter six. The character in brackets associated with each value shown in table 4-

1 indicates the data type selected for that value in the current implementation. A

calli graphic character, “( � � )” for example, indicates a pointer or reference to a list

element of the indicated type; “(i)” indicates an integer type; “(t)” a “time” value,

and “(b)” a bit-sequence. The types “(i)” , “(t)” and “(b)” are all encoded

conveniently as (long) integers. Time values are recorded as discrete intervals
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corresponding to execution cycles of the algorithm. ASCII encoded strings are

indicated “(s)” , real or floating point values as “(f)” . The range of some floating

point values will be restricted within the program.

List
Symbol

List Description List
Element
Symbol

List Element Values

� �
Input Token List. Binary,
atomic input items from
sensors. Associates input
items to arbitrary internal
symbols

� �
token_string (s)
token_identifier (i)
token_first_seen (t)
token_last_seen (t)
token_count (i), token_prob (f)
token_activation_trace (b)� �

Sign List. Descriptions of an
environmental “state”, defined
by a conjunction of tokens (

� �
)

and other internal symbols

� � sign_conjunction (see text)
sign_identifier (i)
sign_first_seen (t)
sign_last_seen (t)
sign_count (i), sign_prob (f)
sign_activation_trace (b)
best_valence_level (i)� �

Response List. All available
actions (simple and
compound)

� � response_string (s)
response_identifier (i)
response_cost (f)
response_activation_trace (b)� �

Behaviour List.
(condition,action) defined
innate behaviour patterns
(condition �  

� �
 �  action �  

� �
).

	 	
condition ( 
 
 )
action ( � � )
behaviour_priority (f)

� �
Goal List. Actual or potential
system goals, prioritised by 
 
 .

� � goal_sign ( 
 
 )
goal_priority (f)
time_goal_set (t)� �

Hypothesis List. List of� -hypotheses in the form
(s1,r1,s2)
s1 �  � � , r1 �  � � , s2 �  � � .

� �
s1 ( � � ), r1 ( � � ), s2 ( � � )
time_shift (t)
hypo_identifier (i)
hypo_first_seen (t)
hypo_last_seen (t)
hypo_activation_trace (b)
recency (i), hypo_bpos (f)
hypo_cpos (f), hypo_cneg (f)
hypo_age (t), hypo_maturity (i)
hypo_creator ( � � )
valence_level (i)
cost_estimate (f)
policy_value (f)� �

Prediction List. List of
predictions awaiting
confirmation.

� �
predicting_hypo( � � )
predicted_sign( � � )
predicted_time (t)

Table 4-1: SRS/E Internal Data Structures
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4.1.2. Summary of Lists

The Input Token List records binary atomic input items from system sensors and

assigns each one a unique, but arbitrary, internal symbol such that each subsequent

appearance of the same input item will generate the same internal symbol. The

Input Token List implements the “token” of definition T0.

The Sign List provides the system with partial or complete descriptions of the

environmental “state”. A sign is defined as a conjunction of input tokens and other

internally generated symbols, and their negations, providing the structure to

implement the sign of definition S0.

The Response List defines the set of all the actions available to the animat, to

implement the action of definition A0. Simple actions are defined by the ethogram.

Compound actions (postulate A3) may be formed by the concatenation of simple

actions.

The Behaviour List explicitly defines the innate behaviour patterns for the animat

as an integral part of the ethogram (definition B0). Fixed, pre-programmed,

behaviour patterns (postulate B2) may subsequently be subsumed by learned, goal-

seeking behaviour. For simple animat ethogram definitions the Behaviour List will

also be responsible for setting goals (postulate B3) and so balancing the priorities

between fixed and learned behaviour.

The Goal List records none, one or more possible goals being sought by the

animat at any particular time (definition G0). The animat only pursues one goal at

any one time, the top-goal.

The Hypothesis List records learned expectancies ( � -hypotheses) in the form

“s1,r1,s2” . Context “s1” and consequence “s2” are elements from the Sign List.

Action “r1” is an element from the Response List. Each element of the Hypothesis

List equates directly to a single � -hypothesis, a small, isolatable fragment of

knowledge about the animat’s existence, well defined in terms of the other list

types (definition H0). To be of value to the system each � -hypothesis must make a

clear and verifiable prediction. Corroborated � -hypotheses are subsequently used
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by the animat to generate useful goal-seeking behaviours. The SRS/E algorithm

provides the algorithmic resources to create, verify, modify, delete and use � -

hypotheses.

The Prediction List records expectations made by activated � -hypotheses for

confirmation or denial at a defined time. This structure retains time tagged

predictions until they are verified (postulate H1).

4.2. Tokens and the Input Token List

SRS/E employs a grounded symbol approach to behaviour and learning and has

much in common with the notion of deictic representation21 (Agre and Chapman,

1987; Chapman, 1989; Whitehead and Ballard, 1991). Deictic markers point to

aspects of the perceivable environment. Ideally each marker will point to only one

object or event, or to one well-defined class of objects or events, in the

environment. This allows the animat to respond appropriately to the presence of

the object or occurrence of the event, or to learn the significance of the object or

event with minimal ambiguity (the FDMSSE assumption).

Typically input tokens either directly reflect the value of some sensor, or are

derived from sensor values to define a partially or wholly complete state descriptor.

Thus SRS/E will equally accept ALP style kernels, such as “<LOW>S” or

“<BRIGHT>S” , derived directly from the transducer values from the robot, or

Drescher’s (1991, p117) primitive items “hp11” , “vp11” , or “ fovf00-33”

denoting partial state descriptors from the simulated environment. As with Mott

and Drescher, SRS/E input tokens are binary in nature, present or absent. SRS/E

does not employ the predicate and value representation described by Becker.

The SRS/E algorithm accepts sequences of tokens from the environment. During

each execution cycle none, one or many tokens may be presented to the algorithm

from a sensor sub-system integral with the animat. The first appearance of any

token is registered into the Input Token List, 
� �
, and the new token is assigned a

unique internal code. This realises the tokenisation process, described in postulate

                                               
21(OED) deictic: a & n, Pointing, demonstrative, [Gk: deiktikos]
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T1. For every subsequent appearance of that token the unique code will be

generated from the list. At each execution cycle the Input Token List 
� �
 will be

partitioned into those tokens that have appeared in the input stream on the current

cycle and hence are active, and all the others that have not appeared and are not

active. As indicated in section 4.1.1 the active partition is denoted 
������

.

Tokens may be registered into 
� �
 by the originator as part of the initial ethogram

definition and subsequently employed in generation of innate behaviour patterns.

Apart from this, tokens have no inherent “meaning” to the system. Once registered

into the Input Token List, token identities are permanently retained. SRS/E will

accept new additional tokens at any point in the lifecycle of the animat. The

appearance of novel tokens also drives the learning process. There is no

generalisation over input tokens; non-identical input token strings are treated as

wholly distinct.

The Input Token List is implemented as a hash table (Knuth, 1973), the internally

generated token symbol value being set equal to the index position in the hash

table. Initially the hash table is given a fixed size, but is grown automatically and

the symbols re-hashed when the table is close to overflow. As part of this process

all internal token symbol values are updated to reflect their new position in the

table.

4.2.1. Input Token List Values

In addition to the token_identifier, the internal symbol, and the external

representation of the token string token_string, the Input Token List maintains

four additional numeric values for each Input Token List element. As an aid to the

analysis of experimental data the input token_string is retained in the Input

Token List and is shown in preference to the anonymous internal symbol in output

trace and log files. The list element value token_first_seen records which

execution cycle the token � �  was first detected. The value token_last_seen

records the execution cycle when the token was most recently detected. The value

token_count records the total number of cycles that the token � �   has occurred on
������

. The raw probabili ty of occurrence (token_prob) for any token may be derived

according to the equation:
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token_count

token_prob �      ————————————————        (eqn. 4-1)

     now  -  token_first_seen  +  1

This raw token probabili ty may be used as a measure to determine the degree to

which the sensory sub-system is able to differentiate the phenomena indicated by

the token from others. Generally, tokens with a relatively low raw probabili ty

measure facilitate the behavioural and learning process.

A record of recent past activations for each element 
� �
  is maintained in the variable

token_activation_trace according to the assignments:

     token_activation_tracet-n-1 �  token_activation_tracet-n     (eqn. 4-2a)

     token_activation_tracenow �  � � activation_state      (eqn. 4-2b)

These trace values, and those for other list element types, are used in sign

definitions to record past activations and provide a mechanism to implement

temporal discrimination, an aspect of the � -hypothesis differentiation process

(postulate H6). The activation traces are of finite length, newer values entering the

trace displace older values which are lost to the algorithm.

In the current implementation of SRS/E, n of equation 4-2a takes the values 1 to

32. The token activation trace is therefore conveniently represented as individual

bit positions in a long integer. The operation described by equation 4-2a is

achieved in the current SRS/E implementation as an arithmetic shift left by one bit

position. The operation described by equation 4-2b by setting (or clearing) the

lowest order bit of the integer recording the trace values according to the current

activation value of the token.

4.3. Signs and the Sign List

Signs encapsulate one or more tokens into a single item (this is derived from

postulate S1). They are identified within the system by a unique symbolic identifier.
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The total Sign List is designated as 
� �
. The subset of signs that are active at the

current time are designated as 
������

. Sign activation was described by postulate S2.

4.3.1. Representing Signs

As with the schema representations of Mott and Drescher, SRS/E signs are a

conjunction of primitive tokens, where the token must be present for the

conjunction to be active, or negated tokens, where the token must not be present

for the conjunction to be active. Drescher’s representation is severely restricted

with respect to Mott’s in that the schema left hand side in ALP allowed inclusion

of kernels from any position in Short Term Memory (STM), whereas Drescher’s

did not. Mott’s use of the little arrow notation, with its strict time sequence

information, imparts further contextual information to the schema left hand side.

SRS/E also adopts an explicit time representation to tokens, so:

ALP:     [<BRIGHT>S �  <FRONT>S ¬ <CHARGE>S .... ]

becomes:

SRS/E:    (bright@t-1 & front & ~charge .... )

In SRS/E all timings are considered to be relative to the current cycle (t=0 or,

equivalently, t=now), negative from the past, positive into the future. Thus the

notation “@t-1”  is conveniently read as “at the current time minus one”, or “on the

cycle before the current one”. Token negation is represented by the tilde character

(“~”). The representation of past events in ALP is limited to the length of STM

(typically six cycles), in SRS/E by the length of the activation trace (typically 32

cycles). Unlike Becker, but like SRS/E, Mott did not permit recycling of kernels

from the end of STM into the input register as essential timing information is lost.

Drescher offered no equivalent to a Short Term Memory in his system.

By convention an input token incorporated into a sign will be automatically

dereferenced to its external form from the internally represented symbolic form

whenever it is displayed or printed. Sign conjunctions may also incorporate other

symbolic information contained within the SRS/E system. So a sign conjunction



98

may include the symbolic name for another sign (from 
� �
). Similarly actions (from

� �
) may be included. Thus past actions by the system are available for inclusion into

the “s1” conjunction. � -Hypothesis activation (from � � ) may also be recorded in a

sign, by including the symbolic name of the hypothesis (to be described in a later

section). The inclusion of the hypothesis form into the sign conjunction may give

the system limited access to its own operation and hence the possibili ty of

predicting, seeking as a goal, and creating hypotheses about aspects of its own

learning behaviour. The ramifications of this abili ty are beyond the experimental

investigations of SRS/E presented here. This construct is broadly equivalent to

Mott’s proposal for an internal kernel and Drescher’s notion of a synthetic item,

but more concise and manageable than the latter as only the symbolic name is

required. SRS/E does not, however, at present have any explicit support for the

notion of object permanence.

The sign_conjunction may be more concisely defined as:

� �  �  ������    iff  
n

k

n

sconjunction x=1
( )          (eqn. 4-3)

where k gives the number of terms in the conjunction. Each of the items 
n

s

x  may

substitute for one of four forms:

n

s

x  	  
 
  �  ������ form 1

or

~
n

s

x  	  
 
  
  ������ form 2

or

n

s t

x
@−

 	  
 
  �  ������ @-t  form 3

or

~
n

s t

x
@−

 	  
 
  
  ������ @-t form 4

allowing for the presence of symbol of type 
 
   (form 1), the absence of symbol of

type 
 
   (form 2), the recorded presence of symbol of type 
 
   at time (now-t) in the
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past (form 3) and the recorded absence of symbol of type � �   in the past (form 4).

In these forms the symbol � �   (and hence � � ) may substitute for elements from any

of the lists � � , � � , � �  or � � .

The sign definition adopted in SRS/E has no don’ t care (“#”) representation of the

form employed in classifier systems. If a symbol is not explicitly included its

condition is taken as irrelevant. This is generally consistent with Popper’s view that

an ‘experiment’ should define all i ts relevant preconditions, but exclude all those

inconsequential to its outcome. This representation is not as concise where small,

bounded sets of features are to be considered, but offers significant advantages

where small subsets of a very large feature set are to be represented and where past

values of features are to be included. Many other representational schemes have

been proposed to enable machine learning systems to represent left hand side

preconditions completely or conveniently. In particular, Michalski (1980) describes

a condition form for the VL21 logic system that includes enumeration,

variabilisation and hierarchical descriptions; but not past events.

In the SRS/E implementation the Sign List is held as an indexed list of sign

elements. The index is used to create the sign identifier (thus: “Snnnn”, where nnnn

is the index number). This designation for a sign symbol appears in the log and

analysis information from the experimental runs of SRS/E. Individual conjuncts in a

sign_conjunction definition are recorded as a triple: conjunct identifier, a

negation flag, and time offset. In the current implementation they are recorded in a

canonical form for efficient access. Also in the current implementation negation is

indicated by recording the conjunct identifier (for instance token_identifier)

with a negative value. Attempts to create a new sign that duplicates an existing

sign are rejected by SRS/E.

4.3.2. Other Sign List Values

Each element of the Sign List is assigned a unique sign_identifier, as

described, and each sign has associated with it sign_first_seen,

sign_last_seen, sign_count and sign_activation_trace values. The

derivation and use of each of these mirrors the derivation and use described for the
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equivalent Input Token values. Sign probabili ty, sign_prob, is calculated in an

analogous manner to token_prob:

sign_count

sign_prob �      ———————————————        (eqn. 4-4)

     now  -  sign_first_seen  +  1

An additional measure, raw_sign_prob, may be derived from the individual

probability (p) values of the component parts of the sign conjunction:

raw_sign_prob �   
n

k

n

s
p x=∏ 1

( ( ))         (eqn. 4-5)

Where sign_prob >> raw_sign_prob the SRS/E algorithm may use this as an

indication that the sign conjunction is a significant combination of component

parts, and not just a combination of random or “occult” occurrences.

4.4. Actions and the Response List

The Response List, 
� �

, records the basic actions available to the animat. For any

SRS/E controlled animat, the originator “registers” a list of basic actions and their

associated costs as part of the initial ethogram definition. Actions will be required

to serve the needs of both the innate behavioural and the learning components of

the SRS/E system, though the same actions may well be adequate for both

purposes. In SRS/E the actions defined in 
� �

 serve as instructions or commands to

the actuation sub-system, whether physical or simulated. Selection and description

of the actions in 
� �

 are an integral part of any experimental run discussed in chapter

six. SRS/E supports both simple (molecular) and compound (molar) actions. A

compound action is one built from the concatenation of two or more simple

actions, as described by postulate A3. Compound actions run to completion once

initiated. This definition of compound action is therefore distinct from Drescher’s

definition of a composite action, which may be seen as an intermediate stage

between the SRS/E compound action and the Dynamic Policy Map.

In the current implementation each action is held as an element in the indexed list
� �

. Individual actions are registered into the list before the start of each
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experimental run. Additional entries may be registered into the list at any time, to

implement a maturation strategy, for instance. On each execution cycle SRS/E will

select a single action from 
� �

 to be reified (derived from postulate A1) and

delivered to the actuator sub-system. The reified action is placed on the 
������

 list for

the cycle in which it is active. Output actions take the form of an ASCII string

(entered at the time of registration) to be interpreted by the actuator system as an

instruction to perform some defined activity. Trace and log information arising

from the use of SRS/E will automatically dereference the action index to this string

for ease and clarity of analysis, as with Input Token List entries.

4.4.1. Response List Values

In addition to the anonymous internal symbolic value, response_identifier and

the external string representation of the action, response_string stored with each

action in 
� �

, the SRS/E algorithm records response_cost, an estimate of the

effort that will be expended whenever that action is taken (the action cost, from

postulate A2). This is the estimate provided by the originator at the time the action

is registered. It may reflect the energy required to perform the action, a notional

amount of resource depleted by the action, or the time taken to complete the

simple or compound action, or some combination of these and other attributes.

This is broadly in keeping with Tolman’s (Tolman, 1932, Ch. 7) observations that

rats generally choose paths through experimental mazes that minimise delay or

effort.

On a practical note this value also provides the Dynamic Policy Map generation

algorithm a metric by which to evaluate the appropriateness of alternative paths

through the map. The originator is required to specify response_cost values of

unity or greater, and that these values be proportioned according to the relative

effort across all actions in 
� �

. The response_activation_trace maintains a

transient record of past actions (a record of 
������

), computed as for

token_activation_trace and sign_activation_trace.
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4.5. Innate Activity and the Behaviour List

The Behaviour List 
� �

 defines the innate behaviours for the animat. This definition

is an essential part of the ethogram, and built into the animat at the time of its

definition by the originator. Such behaviours will react to situations, events, and

changes in the environment as prescribed by the originator. In the main these

activities will be mediated and modified by internally generated and detected needs,

drives or motivations differentially selecting or inhibiting aspects of innate

behaviour patterns. Innate behaviours need not be fixed over the life-cycle of the

animat and may vary according to a maturation schedule or imprinting regime.

This section does not intend to revisit the mechanisms by which behaviours are

formed and selected, nor to further consider the arguments over which of the many

proposed strategies most effectively or closely model observed natural behaviours.

It will, however, be primarily concerned with how the overt behaviour of the

animat will be apportioned between the innate and learned parts of the mechanism.

4.5.1. Behaviour List Structure and Selection

The Behaviour List is a notional list of condition-action pairs (condition  �  � �  �
action �  � � ), fully in the tradition of the stimulus-response behaviourist camp. At

each execution cycle every element � �   of 
� �

 is evaluated against ������ , and a list of

applicable candidate actions, 
� �� � , formulated. The selection of behaviours on each

cycle is thus made based on the evidence for their applicability. To achieve the

required balance of innate and learned behaviours the Behaviour List will be

considered to be in two parts. The first part, 
� � � �

, lists condition-action pairs from

which action candidates will be selected ( 	 	 � � 
 
 ). This part of the list realises the

primary behaviours of postulate B2. The second part, 	 	 � � , lists condition-action

pairs determining which, if any, goals the animat should pursue given the prevailing

circumstances. This second part of the list realises the goal setting behaviours of

postulate B3. During each execution cycle several possible actions, and several

goals could be applicable. SRS/E makes its selection from 	 	 � � 
 
  and 	 	 � � 
 
  on a

priority basis.

Each potential innate behaviour in the animat is assigned a priority by the

originator, which is initially set within the ethogram according to its significance.
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Thus in an animal simulation, predator avoidance might be assigned a high priority,

and therefore be made manifest whenever the conditions that indicate the approach

or presence of a predator. Other behaviours, those initiated by, say, the onset of

hunger (detected, perhaps, by lowered “blood sugar levels”) having a lower overall

priority and so being interrupted by the avoidance behaviour. SRS/E must also

adjudicate between innate and goal seeking behaviours, those derived from the

Dynamic Policy Map. To achieve this, elements of 
� � � �

 (and so 
� � � � � �

) are also

assigned a priority in the ethogram. At each cycle SRS/E will either select the

highest priority element from 
� � � � � �

, if this priority is higher than that for the highest

priority element from 
� � � � � �

. Otherwise a Dynamic Policy Map will be created, or

the existing one used, to generate a behaviour from stored � -hypotheses.

Where none of the defined innate behaviours has an effective priority, it is

inappropriate for the animat to pursue any of those behaviours. So, if it is not

threatened, hungry, thirsty, tired or dirty, etc., then there is little to be gained by

fleeing, eating, drinking, sleeping or preening, etc., just because one of these

behaviours is slightly less irrelevant than the others. Therefore the SRS/E algorithm

places a lower bound, the basal level threshold ( � ), on behaviour activation, below

which none of the behaviours defined in � �  will be selected. Yet the animat is

expected to perform some activity on each cycle. Where no innate behaviour or

goal behaviour is active the animat performs exploratory actions selected from � � .

These implement the third, and mandatory class of innate behaviour pattern, the

Default (exploratory) Behaviours (realising postulate B4). The learning mechanism

is still actively monitoring the actions taken and their outcomes and learning

continues during these periods of apparently undirected activity.

The Behaviour List as defined for the present version of SRS/E places restrictions

on what may be effectively represented by the originator. It is adequate to generate

the reflexive behaviours described for ALP. Any scheme by which behaviours are

controlled through the presence of only binary releasers provides little useful

analogue with the natural world, and gives rise to a range of diff iculties in

providing a useful simulation of innate behaviour. The default exploratory (“trial

and error” ) behaviour is present in SRS/E as an inherent component of the system

and requires no additional intervention by the originator. For the purposes of the
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experimental regimes to be described in chapter six the experimenter is able to

activate goals externally.

4.5.2. Behaviour List Values

In addition to the condition and action values, each element of 
� �

 has associated

with it the value behaviour_priority, which defines the pre-assigned importance

of the behavioural component.  There is a fundamental difference between actions

on the 
� � � �

 and 
� � � �

 parts of the Behaviour List. In the former case the action is

selected from those available on the Response List. In the latter case the “action”

taken is to place a sign onto the Goal List, or to manipulate the priority of the goal

because circumstances have altered.

Potential exists to extend the 
� � � �

 part of SRS/E to respond to a conventional

external reward schedule. A separate reinforcement strategy may be put in place to

re-prioritise elements of the Behaviour List relative to desirable outcomes, either

employing a straightforward immediate reward mechanism or some variant of the

Q-learning or bucket-brigade algorithms.

4.6. Goals and the Goal List

The Goal List is a sub-set of the Sign List ( � �  �  � � ). Any sign, whether created by

the originator or formulated during the learning process, may be designated as a

goal state (goal_sign). The structure of the SRS/E sign offers a single

representational type which provides (1) a symbolic name, such that the goal can

be conveniently identified internally within the system; (2) a description of what is

relevant to the definition of the goal (and so what is not relevant); and (3) a test

enabling the system to recognise when the goal has been achieved. Signs are

attached to the Goal List under the control of the Innate Behaviour List ( � � � � � � ), as

previously described (postulate B3). The goal sign having the highest associated

priority (goal_priority) is designated g1 and so forms the seed to build the

current Dynamic Policy Map. This is the top-goal. SRS/E supports many signs on

the Goal List, after the top-goal these are designated g2, g3 and so on, ordered

according to their given priority.
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Goals are deemed satisfied when they appear on 
������

 (and so � �� � ), realising

postulate G3. The SRS/E algorithm automatically cancels satisfied goals by

removing them from 
� �

, and remaining goals on the Goal List are moved up the list

automatically. As a consequence of this the Dynamic Policy Map is recomputed

with the new seed and the observed behaviour of the animat changes accordingly.

The change in behaviour is in effect instantaneous, and may lead to a completely

different set of responses being employed by the animat in apparently identical

circumstances. This is a significant departure from the reinforcement and Q-

learning approach, where a single goal is repeatedly sought and a network of paths

(a graph) constructed, dedicated to achieving the designated goal. When the Goal

List becomes empty, use of the Dynamic Policy Map as a behaviour generator

ceases. Until a new goal of sufficient priority is again placed on 
� �

 observable

behaviour reverts to innate actions drawn from the Innate Behaviour List � � � �
� �
 or

default behaviour mechanisms.

Under these circumstances the originator bears some responsibility for ensuring the

stability of the Goal List ordering. SRS/E builds the DPM according to the top-

goal g1. It may be that � � � �
� �
 gives rise to two goals of very similar priority, because,

for instance, they are derived from sensors currently giving signals of equivalent

significance. Under these circumstances the priority of the multiple goals may be

unstable, swapping between the alternatives. The DPM is automatically

recomputed at each priority swap causing changes or reversals of observed

behaviour leading, in turn, to the inability of the animat to reach any of the enabled

goal states. This is equivalent to the problem faced by any of the Action Selection

Mechanisms (ASM) described earlier, where each must ensure that coherent

patterns of behaviour are established to meet the needs of the animat.

4.7. The Hypothesis List

The Hypothesis List is the primary repository of learned knowledge within the

SRS/E algorithm. Each element of the list, a � -hypothesis, encapsulates a small,

well-formulated, identifiable and verifiable fragment of information. A � -
hypotheses is not an unequivocal statement about the animat or its environment,

but is an assertion about the nature of things - it may be true or it may be false. A

� -hypotheses may be partially complete and so true in some proportion of instances
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in which it is applicable. Every � -hypothesis is an independent observation. SRS/E

supports the notion of competing hypotheses, several hypotheses that share

identical pre-conditions or which share identical conclusions. SRS/E accepts

mutually inconsistent � -hypotheses, to be resolved following corroboration22.

SRS/E does not allow the installation of duplicate copies of identical � -hypothesis.

The originator is, of course, at liberty to incorporate into the ethogram or

controlli ng algorithm whatever consistency checking and verification mechanisms

he or she considers appropriate. To do so takes the construction of the animat

controller back to the realms increasingly referred to as traditional AI (Cliff, 1994)

or GOFAI (Good Old Fashioned Artificial Intelli gence, Boden, 1994). This is a

valid approach, but not the one adopted here, and moves the animat definition

towards the category (3) intelli gence of chapter one. In SRS/E ambiguity is

resolved by application and testing of the � -hypotheses in the form of � -

experiments, which are conducted by the SRS/E system whenever the opportunity

arises to do so. In turn, � -experiments take the form of making verifiable

predictions about the perceivable state of the animat or its environment at some

defined time in the future.

All � -hypotheses in SRS/E take the form of a triplet of component parts:

Sign1 + Response �  Sign2@+t        (eqn. 4-6)

The first sign (Sign1 or just “s1”) provides a context in which the performance of

the action (Response or just “r1”) is hypothesised to result in the appearance of the

second sign (Sign2 or “s2”) some specified time in the future (at ‘@’ the predicted

time, +t cycles in the future). The signs “s1” and “s2” are drawn from � � , the

response “r1” from � � . Response “r1” is the action to be taken on this cycle, “s1” is

the current value of the context sign. However “s1” may include token values

drawn from the various activation traces, and so inherently defines a temporal as

well as a spatial context. In Tolman’s terms, “s2” is set as an expectancy whenever

“s1” and “r1” are present. This expectancy relationship is the basis of the means-

                                               
22Or, if the animat is in a genuinely inconsistent environment, or in one which is unresolvably
ambiguous, to remain inconsistent in perpetuity. Vershure and Pfeifer (1993) develop these issues
further.



107

ends capabili ty of SRS/E. If "s2" is an end, or goal, to be achieved, then “s1” and

“r1” provide a means of achieving that end. In considering any � -hypotheses with

“s2” as its desired end, the corresponding “s1” , if it is not currently active and so

available, may become an end, or sub-goal, in its own right. Developing a cognitive

map of means-ends-readiness from many individual expectancies was a central

component of Tolman’s expectancy theory. Means-Ends Analysis has developed

into a cornerstone concept in traditional Artificial Intelli gence from its introduction

by Newell and Simon (1972) in the form of the General Problem Solver (GPS).

In a perfect � -hypothesis “s1” defines exactly those conditions under which the

response “r1” leads to the appearance of “s2” at the designated time. In an

incompletely specified � -hypotheses the relationship will hold on some occasions,

but not others. A � -hypothesis created as the result of an occult occurrence should

hold very rarely (specifically, at a frequency of occurrence commensurate with the

computed raw probabili ty derived from its component parts). The evidence for

superstitious learning was reviewed earlier. The conditions under which the � -
experiment may be performed occur whenever “s1” and “r1” are on their

respective active lists ( ������  and ������ ) at t=now, regardless of whether or not “r1” had

been actively selected to achieve “s2” . Drescher (1991) refers to the latter case as

implicit activation.

4.7.1. Other Hypothesis List Values

As with other list types, SRS/E � -hypotheses have associated with them a number

of values. These values record corroborative evidence about each � -hypothesis and

retain information used by the three main processes involved in the management of
� -hypotheses. These processes are: (1) � -hypothesis corroboration and

reinforcement (realising postulates H3 and H4); (2) building the Dynamic Policy

Map (realising postulates P1 and P2); and (3) � -hypothesis list maintenance

(realising postulates H6 and H7). Some of the list element values associated with

each � -hypothesis are described next, and the three main processes and the � -
hypothesis values associated with them in the sections that follow. As each of the

three processes are intimately interrelated, the order of these sections is somewhat

arbitrary chosen.
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Each � -hypothesis on the Hypothesis List is assigned a unique hypo_identifier,

created from the list index number. Index numbers are created in sequential order,

and so indicate the relative age of the � -hypothesis. The designation “Hnnnn”

appears in the output log and analysis information, where nnnn is the list index

number. The values hypo_first_seen and hypo_last_seen respectively record

the cycle on which the � -hypothesis was created and the most recent cycle on

which the � -hypothesis was active. A � -hypothesis is defined as active when the

following conditions are met on any given execution cycle:

� �
  �  ������  iff s1( � �  ) �  ������  AND r1( � �  ) �  	
�	
�            (eqn. 4-7)

These conditions define when a � -hypothesis will perform a � -experiment by

making a verifiable prediction. The value hypo_activation_trace records the

most recent activations for the � -hypothesis. The value time_shift records the

number of cycles between an activation of a � -hypothesis and the time that the “s2”

sign is predicted to occur. The derived value hypo_age indicates the number of

cycles elapsed since the � -hypothesis was created. It is calculated from

hypo_first_seen and the system variable “now”.

The remaining values associated with each Hypothesis List entry may be

characterised into serving one of three purposes. (1) Corroborative values

recording the performance of the predictive abili ty of a � -hypothesis. These values

reflect the confidence the system may place in the effectiveness of the � -hypothesis

when building the Dynamic Policy Map, and in calculating when to modify or

delete individual � -hypotheses. These values broadly reflect the notion of schema

confidence weight adopted by Becker and Mott. (2) Values computed, and re-

computed, each time the Dynamic Policy Map is prepared. These values provide

the action selection mechanism with the basis to determine which � -hypothesis (and

hence which action “r1”) should be passed to the actuation sub-system during goal

seeking behaviour. (3) Administrative values, recording information relevant to the

creation and subsequent modification of individual � -hypotheses. Major section

headings will now be given over to the discussion of these values, reflecting their

importance to the operation of the SRS/E algorithm.
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4.8. Corroborating � � -Hypotheses, Predictions and the Prediction List

Every time a � -hypotheses is activated it will perform a � -experiment and so make

a prediction, which will be verified on a later execution cycle. Each prediction is

placed on the Prediction List, � � . As predictions are all of the form where a known

sign is expected at a known time, the validation process is a straightforward matter

of matching the elements of � �  which were predicted for the current execution cycle

against the active Sign List ������ . Alternative interpretations are available as to how

“credit” for a correct or “debit” for an incorrect prediction should be assigned to

the individual � -hypotheses responsible for the prediction. These alternatives are

reflected in the corroboration (H3) and reinforcement (H4) postulates. SRS/E

maintains four values for each � -hypotheses for this purpose.

Following Popper’s notion that it is the absolute frequency of outcome that

provides the appropriate measure of a hypothesis, the values hypo_cpos

(cumulative positive, cpos) and hypo_cneg (cumulative negative, cneg) record the

number of successful and unsuccessful predictions respectively. Specifically:

    cpos �  cpos + 1 iff s2( � �  )@t=pred 	  predicted_sign( 
 
 )@t=pred        (eqn. 4-8)

    cneg �  cneg + 1 iff s2( � �  )@t=pred �  predicted_sign( 
 
 )@t=pred        (eqn. 4-9)

These two equations compare predictions made at some point in the past (t=pred)

to the appearance of actual signs at that predicted time. These two measures reflect

the overall effectiveness of the � -hypothesis over its span from the point of creation

(the execution cycle recorded in hypo_first_seen), to the current execution cycle

(less any predictions made, but not yet verified). The overall probabili ty that the

expectation defined by the � -hypothesis will hold is therefore defined by:

      cpos
hypo_prob 
 —————————————      (eqn. 4-10)

cpos + cneg

This is the corroboration measure (Ch of postulate H3). By definition every � -
hypothesis is assumed to represent a successful prediction at the time of its

creation. This assumption is considered reasonable when using the pattern
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extraction creation process described later, even though the � -hypothesis may

subsequently be determined to denote an occult occurrence. This initial filli p to a

new � -hypothesis’ confidence value will be referred to as the creation bonus.

In a changeable environment the validity of any given � -hypothesis may also

change with time. To reflect this the value hypo_bpos (bpos) is updated according

to a discounting factor, thereby giving precedence to the effects of recent

activations at the expense of those further in the past, specifically:

    bpos �  bpos - � (bpos - 1) iff s2(
� �

 )@t=pred �  predicted_sign( � � )@t=pred

      (eqn. 4-11)

or

    bpos �  bpos - � (bpos) iff s2(
� �

 )@t=pred �  predicted_sign( � � )@t=pred

      (eqn. 4-12)

otherwise

    bpos unchanged

where:

	  is the positive reinforcement rate, (0 
  	  
  1)

and

�  is the negative extinction rate, (0 
  �  
  1)

This implements the reinforcement measure (Rh of postulate H4). Long sequences

of successful predictions for a single � -hypothesis will asymptotically tend its bpos

values to 1.0, long sequences of failed predictions will similarly tend bpos values

towards 0.0. This notion of an asymptotic negatively accelerating curve is

ubiquitous throughout the conditioning and behaviourist literature, and forms the

basis of MacCorquodale and Meehl’s (1954, p. 237) strength of expectancy

measure. This procedure is similar to those used in most recent reinforcement and

the Q-learning mechanisms.
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The last value in this group is recency, which specifically records the outcome of

the most recently completed prediction for each � -hypothesis. The recency

measure represents an alternative approach to Drescher’s modelli ng of object

permanence. The recency value remains asserted for any individual � -hypothesis

after a valid prediction about “s2” is detected. It is cleared when the prediction

next fails. It acts as one form of event memory. Unlike Drescher’s system SRS/E

contains no inherent mechanism supporting the representation or manipulation of a

“physical object”.

The different measures cpos, cneg, bpos and recency serve different purposes in

the generation of the Dynamic Policy Map (cost estimation) and in the management

of the Hypothesis List (differentiation and deletion of ineffective � -hypotheses).

These differently computed values may reflect different views of the predictive

effectiveness of � -hypotheses. SRS/E may represent permanent (hypo_prob),

semi-permanent or recurring (bpos), and transient (recency) phenomena. In this

context the term “permanent” may equally be applied to an immutable physical law

as to any phenomena that remains consistently predictable throughout the lifetime

of the animat. For example, an animal, or animat learning to seek nourishment may

locate a source that is habitually available, which may reliably be returned to.

Equally a source of nourishment may be identified, which only comprises a finite

quantity of sustenance. Finally the creature may happen across a single item of

nourishment, which once consumed is finished. No second order effects are

proposed for SRS/E to further classify individual � -hypotheses into these various

categories based on longevity of the phenomenon underlying the prediction. Such a

strategy might properly be included in later implementations.

4.8.1. Prediction List Element Values

Each element of the list is created from the “s2” of any activated � -hypothesis.

Each element retains only three items, predicting_hypo, the identity of the � -
hypothesis responsible for the prediction, predicted_sign and predicted_time,

the sign expected and the execution cycle on which it is predicted to occur.

Elements of � �  are deleted as soon as the prediction they define has been verified

against ������ . As each prediction is held separately, any � -hypothesis may have

several predictions waiting for confirmation (as each � -hypothesis may make at
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most one prediction on each execution cycle this is limited by the number of cycles

between now and tpred). There may equally be more than one prediction of a given

sign for each future execution cycle, as many different � -hypotheses may predict

the same outcome.

4.9. The Dynamic Policy Map (DPM)

Whenever � � � � � �  is not empty and the priority of the top-goal is greater than that for

the highest priority candidate action from � � � � � �  the SRS/E algorithm will attempt to

construct a Dynamic Policy Map (DPM, after definition P0) from knowledge

accumulated in the Hypothesis List. The effect of the Dynamic Policy Map is to

categorise entries in the Sign and Hypothesis Lists according to an estimate of their

effectiveness as being on a path of actions that will lead to the satisfaction of the

top-goal. The SRS/E algorithm builds the Dynamic Policy Map by the process of

spreading activation, based on repeated application of the spreading valence

postulate (postulate P2). Individual � -hypotheses, � �  , which lead directly to the

top-goal, g1, are selected (where s2( � �  ) = g1). This selection and binding process

will be referred to as “valencing” , following Tolman’s use of the term. Context

signs in these � -hypotheses may then act as “sub-goals” , allowing another sub-set

of the Hypothesis List to be incorporated into the Dynamic Policy Map. The

SRS/E algorithm stops building the DPM once all the entries in the Hypothesis List

have been incorporated or there are no more � -hypotheses that may be chained in

this way. Signs and � -hypotheses incorporated in the DPM are termed sub-

valenced. The valence level of each � -hypothesis incorporated into the DPM

indicates the estimated minimum number of sub-goals that must be traversed to

reach the designated goal sign.

The Dynamic Policy Map may be considered as a graph structure. Signs from the

Sign List act as nodes, � -hypotheses from the Hypothesis List the arcs. One special

sign, the top-goal, acts as the seed or start point for the spreading activation

process to create the graph. Development proceeds on a breadth-first basis, � -

hypotheses at each valence level are selected at the same step in the spreading

activation process. This is implemented as a variant of the well-established graph-

search procedure (Nilsson, 1980, Ch. 2).
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Every arc has associated with it a cost estimate. An arc is traversed by selecting the

action, “r1” , from the � -hypothesis. The true cost of traversing the arc is given by

the response_cost value assigned to each action (the action cost of postulate

A2). This is simply the “effort” expended in taking the action, as provided in the

Response List. The estimated cost of traversing the arc to a node at the next

valence level takes into account the true cost of the action and the relative

effectiveness of the � -hypothesis in actually achieving its expected outcome, based

on past experience. This cost_estimate for each � -hypothesis is prepared from:

response_cost

cost_estimate �  ————————————      (eqn. 4-13)
        hypothesis_confidence

This realises the Cost Estimate postulate (P3). The hypothesis_confidence

value is in turn prepared from:

hypothesis_confidence � (hypo_prob * � 1) +      (eqn. 4-14)

(hypo_bpos * � 2) +

(recency * � 3) +

(|oscill| * � 4)

where:

( � 1 + � 2 + � 3 + � 4) = 1

and

(0 �  oscill �  1)

The hypo_prob, hypo_bpos and recency values are those previously described.

The oscill component is an essentially random factor designed to perturb the

path selection process. This has the dual effect of adding an element of uncertainty

to encourage the use of other � -hypotheses, and to allow the system to escape

from potential behavioural loops. The effect of this parameter is intended to reflect

the use that Hull describes for his oscillatory component, SOR, from which the

current name is derived. In implementation the value of oscill is derived from the

pseudo-random number sequence generator (and so is not really “oscill atory” at
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all). While superficially similar in effect to Sutton’s (1991) exploration bonus in

Dyna-Q+, the balance of goal-seeking behaviour to exploration is ultimately

achieved in a quite dissimilar manner in SRS/E. This is considered in detail in

chapter six.

The cost estimate for each arc, ignoring the oscill component, reflects the given

action cost scaled by the recorded probabili ty that the causal relationship described

by the � -hypothesis is indeed responsible for the transition. Assuming for the

moment that the selection factor � 1 has been set to one (and so � 2, � 3 and � 4 are all

zero23) the cost_estimate for the arc is equal to the true (given) cost of the

action “r1” when hypo_prob is at its maximum value. This condition only holds

when the � -hypothesis has never failed. Where a � -hypothesis has been created as

result of an occult occurrence the value of hypo_prob will tend to zero, and so the

value of cost_estimate will tend toward infinity. The hypo_prob value will never

reach zero, due to the initial creation bonus. Increasing the relative contribution of

� 2 (at the expense of � 1) biases cost estimates toward more recent experiences.

Values for the factors � 1, � 2, � 3 and � 4 are set by the experimenter before each

experiential run, and are fixed for the duration of that run in the current

implementation.

No account in the computation of the cost estimate is taken of the experience of

the � -hypothesis, as recorded in the hypo_age and hypo_maturity measures, in

the current implementation. For the experiments described later the creation bonus

serves to increase the likelihood that a new (and therefore inexperienced) � -

hypothesis will be selected and so appears to provide an adequate balance of new

and old knowledge. A more sophisticated strategy may bias the estimate to more

experienced � -hypotheses where the importance or priority of the goal is high.

Conversely newer, less experienced, � -hypotheses may be favoured in play

situations, where (apparently unimportant) goals are set for the explicit purpose of

gaining experience and knowledge. Such considerations are left for future

investigations.

                                               
23 Note that these superscripts indicate the first � , the second �  and so on; similarly g1, g2, etc.
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4.9.1. Selecting actions from the DPM

Every � -hypothesis implicated in the DPM is assigned a policy_value, the

minimum sum of individual cost_estimate elements across all the arcs from the

sign node associated with “s1” to the goal sign node g1. This is a realisation of

Postulate P4. During the graph building process the policy_value associated with

each node is updated if a lower cost route to that node is discovered. Figure 4-1

shows a printout from an experimental log showing a valenced path, the lowest

(estimated) cost path from the current situation to the desired goal. It records the

individual � -hypotheses (e.g. “H119”) selected from the graph, the individual cost

contributions from cost_estimate (“cost” ) and the cumulative policy_value

(“total” ) values as the valence levels are traversed. It starts with a node (“X2Y0”,

the printout has automatically dereferenced signs to external names) that is

currently on the active Sign List ������ , and so defines the � -hypothesis (“H126”)

which will contribute the reified action (“U”) in the current execution cycle.

It is important to note that the valence path printout is not a set of prescribed

actions to be performed to reach to goal state, as would be the case in STRIPS

(Fikes and Nilsson, 1971), but rather a sub-set of the total DPM. It is presented to

provide the experimenter with information about the current state of the animat

under investigation. The action selected may, or may not, lead to the expected sign

at the lower valence level on the valence path. On the next execution cycle a new

assessment of the environment is made, as indicated by a new ������ .

H126 predicts X2Y1 from X2Y0 (active) after U (cost = 1.818182, total = 15.006273)

H117 predicts X3Y1 from X2Y1 after R (cost = 1.290323, total = 13.188091)

H119 predicts X4Y1 from X3Y1 after R (cost = 1.059603, total = 11.897769)

H120 predicts X5Y1 from X4Y1 after R (cost = 1.290323, total = 10.838166)

H4 predicts X6Y1 from X5Y1 after R (cost = 1.290323, total = 9.547844)

H5 predicts X7Y1 from X6Y1 after R (cost = 1.290323, total = 8.257522)

H6 predicts X8Y1 from X7Y1 after R (cost = 1.290323, total = 6.967199)

H8 predicts X8Y2 from X8Y1 after U (cost = 1.126761, total = 5.676877)

H9 predicts X8Y3 from X8Y2 after U (cost = 1.078894, total = 4.550116)

H10 predicts X8Y4 from X8Y3 after U (cost = 2.351558, total = 3.471222)

H11 predicts X8Y5 (goal) from X8Y4 after U (cost = 1.119664, total = 1.119664)

Valenced path in 11 steps, estimated cost 15.006273

Figure 4-1: Log Printout of a Valenced Path
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The next action is selected from the DPM on the basis of the new 
������

. It may be

that the next action on the existing valence path is selected. However the new 
������

may indicate that a shorter route has, through fortuitous circumstance, become

available; equally only longer routes may now be available. In each eventuality the

DPM acts essentially equivalently to the policy map in reinforcement and Q-

learning algorithms, recommending the best course of action relative to the current

circumstances and the goal sought.

There is a pathological case where no intersection between 
������

 and the DPM exists

and so no action can be selected from the DPM. Under this circumstance the

current algorithm selects an exploratory trial and error action at random. A more

sophisticated variant of the algorithm might balance the return to exploratory

activity with a “faith” that the action was perhaps successful, but that the expected

outcome had not been properly detected. In this way the animat may continue

along a previously computed valence path and avoid the potential disruption

caused by deflecting to exploratory actions.

4.9.2. Recomputing the DPM

There are several circumstances where the SRS/E algorithm must recompute the

Dynamic Policy Map. When the top-goal, g1, is satisfied, the next highest priority

goal becomes the top-goal, and a new DPM must be computed before another

action may be selected. Similarly innate behaviours from the Behaviour List may

alter the priorities of the Goal List (realising postulate B3), also precipitating a

recalculation of the DPM. At each execution cycle many � -hypotheses may have

their values updated, reflecting predictions they made in the past. At any cycle new

� -hypotheses may be added to the Hypothesis List, or existing ones deleted from

the list. Any of these changes can have profound effects on the best paths through

the graph. On the other hand, recomputing the DPM is a cost overhead not to be

ignored. The SRS/E algorithm must recompute the DPM if the goal changes, but

the experimenter may control the sensitivity of SRS/E to changes in the Hypothesis

List.

The system variable rebuildpolicynet is cleared each time the DPM is rebuilt. It

is incremented by some quantity �  each time the Hypothesis List changes, and by
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some (typically smaller) amount 
�
 every time a � -experiment prediction fails.

Before each use of the DPM rebuildpolicynet is compared to the system

constant REBUILDPOLICYTRIP, the DPM being recreated once this trip value is

reached or exceeded by rebuildpolicynet. Apart from the effect these values

have on the balance of resource utili sation by SRS/E on policy construction and

other computational activities, they also have a profound effect on aspects of the

animats observable behaviour. This effect is particularly apparent in the dual path

blocking experiments described later. In the current implementation �  and 
�
 are

selected such that the DPM is rebuilt following any change.

4.9.3. The DPM, A Worked Example

Figure 4-2 shows a graph generated from the model Hypothesis List shown

embedded in the figure. For the purposes of this example a DPM comprising eight

signs and 12 � -hypotheses is created. In this instance the top-goal, g1, is equated to

sign number “S16”. Only three actions are available on the Response List, “A1” ,

“A2” and “A3” all with an actual cost of one. The third column shows some

possible “cost estimate” values for the various � -hypotheses following a period of

behaviour. At each valence level in the graph the policy cost associated with each

sign is the cumulative policy value of the lowest cost path through the graph to the

chosen goal. Each arc is labelled with the � -hypothesis responsible for the

transition, with its action and associated cost estimate.
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It may be that on the current execution cycle signs “S4” and “S18” are active and

so on 
������

 (figure 4-3a). Policy cost for “S18” is lower than “S4” , so SRS/E selects

action “A1” . The expectation is that “S8” will appear on 
������

 on the next execution

cycle, and so action “A3” from � -hypothesis “H5” would be selected. As a

consequence these circumstances the hypothesis_confidence value of the

successful � -hypothesis “H7” would be strengthened, and that for the unsuccessful

� -hypothesis “H3” would be diminished (figure 4-3b). With “S8” on the active

Sign List, SRS/E will choose the path described by “H5”, performing action “A3” ,

expecting sign “S12”. If this expectation is met, “H5” is strengthened, and action

“A3” (from “H1”) will be selected on the next execution cycle; leading to goal

satisfaction if that subsequent expectation is also satisfied.

Figure 4-2: Model DPM Generated from Sample Hypothesis List
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If, at the step indicated by figure 4-3b, the action “A3” did not lead to the expected

sign “S12”, but instead “S8” remained on 
������

 then confidence in “H5” would be

weakened. Eventually the cumulative cost of the path “H5”-“H1” would exceed

that for “H6”-“H2”, at which point SRS/E would attempt action “A1” (from

“H6”). Note that the confidence in “H6” was unaltered during the time “A3”

actions were attempted, because it was not placed on � �� �  as its “r1” precondition

was not matched and so it was not eligible to issue a prediction. The rate at which

the estimated cost of any path rises under these circumstances is primarily

controlled by the �  extinction rate factor; though changes in estimated cost will not

take effect until increments to �  (and � ) cause the DPM to be recomputed.

What SRS/E hypothesises about the consequences of its actions in the

environment, and what actually occurs may not hold true in practice. Considering

again the situation described by figure 4-3a, it may be that rather than the expected

activation of “S8” , sign “S14” is activated (figure 4-3c), either through some

previously unknown path, or by a previously undetected event. On this execution

Figure 4-3: Various Outcomes for Model DPM
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cycle SRS/E would select the action “A3” associated with � -hypothesis “H2”. If

this expectation subsequently holds the top-goal would be achieved, and so

removed from the Goal List. As a side effect of this unexpected transition SRS/E

may create the new � -hypotheses “H16:(S4� A1� S14)” and

“H17:(S18� A1� S14)” (figure 4-3d), employing the mechanism of postulate H5-

2.

Under the initial conditions described by figure 4-3a, the new paths of lower

estimated cost offered by “H16” and “H17” may be considered in future instances

in preference to either “H3” or “H7” originally available. Where they are due to a

genuinely repeatable phenomenon the confidences of these new � -hypotheses will

be strengthened, leading to the adoption of the lower cost estimate path. Where the
� -hypotheses were created due to occult or unrepeatable circumstances the use of

the new, apparently preferable, path will fall into disuse following a number of

unsuccessful applications. The experimental procedure adopted in chapter six can

give rise to this phenomenon (for instance, the effect shown in figure 6-10c), and it

will be considered further.

The effects of recomputing the Dynamic Policy Map can completely alter the

response of SRS/E to incoming tokens. Figure 4-4 shows an alternative

computation of the DPM graph using the same Hypothesis List as Figure 4-2, but

where the goal definition has changed from “S16” to “S8” . Note in particular that,

although none of the cost estimates for the � -hypotheses have changed, the

response of the system to signs “S14” and “S12” is now completely different. This

feature differentiates the behaviour SRS/E from the reaction of reinforcement and

Q-learning systems in the manner highly reminiscent of Tolman’s arguments in

favour of expectancy theory over stimulus-response theorising.
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4.9.4. Pursuing Alternative Goal Paths

The Dynamic Policy Map indicates the path with the currently most favourable

estimated cost from an active sign state to the highest priority top-goal state.

Actions are selected on the basis of this estimate. Consider the DPM graph shown

in figure 4-5.

Figure 4-4: Model Graph Recomputed for Goal “S8”
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The top-goal (g1) is equated to “Sa”, and the only active sign is “Sx*” . Six distinct

paths are available to the animat. These are summarised in table 4-2, with

ill ustrative cost estimates. Individual signs are shown with letters, not sequence

numbers, purely as a shorthand notation. The double arrow on an arc indicates a

pair of � -hypotheses, for instance a path is known both between “Sx” and “Su” and

between “Su” and “Sx” . No path is available through the loop formed by “Su”-

“St” -“So”-“Sp” as no � -hypothesis exists for the transition “St” -“So” , as indicated

by the unidirectional arrowhead.

Figure 4-5: A Sample Dynamic Policy Map
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On the basis of the cost estimates shown, the animat will select the action “r1”

associated with � -hypothesis “Hxq” (indicating the transition from “Sx*” to “Sq”).

If this expectation is met, the animat selects “Hqk” , and so on. Should this path

succeed, then sign “Sa” will be removed from the Goal List, and path (1) will be

strengthened. If, while at node “Sq” , the expectation described by “Hqk” failed, the

cost of the remaining path “Sq*”-“Sk”-“Sh”-“Sv”-“Sa” would rise, due entirely to

the increased estimate for “Hqk” . In practice under these circumstances, the

increase in cost for a single expectation failure is relatively small and it may be that

the estimated cost of the remaining path is still below that for any alternative, so

that “r1” from “Hqk” will be tried again. Even if the remaining path would have a

greater cost, if the effect of �  (the expectation failure policy rebuild increment) is

small the DPM may not be rebuilt, and the policy decision will remain unaltered.

At some point, the cost estimate would come to exceed that for the next lower

estimated cost path, “Sq*”-“Sx”-“Sr” -“Sk”-“Sh”-“Sv”-“Sa” in a recomputed

DPM, and the action associated with “Hqx” would be selected. If this is also

blocked at some point, the next lowest cost estimate path would be attempted,

starting from the currently active node. Each time the cost estimates indicate a new

path, following a DPM recomputation, a new solution path is tried. The frequency

with which the DPM is recomputed determines how persistent the animat will

appear to be in pursuing a blocked course of action.

Individuals with values of �  and �  that are small relative to REBUILDPOLICYTRIP

will persist with one course of action longer than individuals where these values are

Path “Estimated Cost”

(1) Sx-Sq-Sk-Sh-Sv-Sa 18.4

(2) Sx-Sr-Sk-Sh-Sv-Sa 20.8

(3) Sx-Su-Sp-Sj-Sv-Sa 38.5

(4) Sx-Su-Sp-Sj-Sf-Sv-Sa 45.7

(5) Sx-Sr-Si-Se-Sb-Sv-Sa 67.9

(6) Sx-Sr-Si-Se-Sc-Sd-Sb-Sv-Sa 158.1

Table 4-2: Paths Through Figure 4-5 Graph
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correspondingly larger. Persistence of behaviour may be an appropriate course of

action. In the environment he describes, the probabili ty of Mott’s robot reaching

the charger under the influence of the schema “<BRIGHT>S �  <FORW>M �

<ON-CHARGE>S” is very low. It is nevertheless the best option available, and a

persistent individual animat that did not swap between other alternatives frequently

would be advantaged. In other circumstances the abili ty to change to a potentially

better solution path may be advantageous, where there is serious competition from

other individuals for limited resources, for instance. No second order learning

phenomena are currently implemented in the SRS/E algorithm to determine an

appropriate balance between persistence and fickleness in selecting a solution path.

4.9.5. Pursuing a Goal to Extinction

In the situation where all possible paths to a top-goal are unobtainable, continued

attempts at the goal become a threat to the animat’s survival by locking out other

behaviours. The goal must be forcibly abandoned, this is the goal extinction point

(postulate G4). Goal extinction is achieved in the SRS/E algorithm by removing

the unsatisfied top-goal, g1, from 
� �

. The animat would then be free to pursue the

next highest priority goal as top-goal, or other behaviours if there are no further

elements on 
� �

. Extinction of behaviours has been widely observed experimentally

(section 3.6.3). Extinction does not, however, appear as an abrupt abandonment of

the behaviour. Instead the behaviour persists for a time (the “on-period”), then

suspended briefly (the “off-period”) before being resumed for another on-period.

This alternation of apparently goal directed behaviour with periods of some other

activity persists for a time, until the goal directed behaviour finally appears to be

completely suppressed. The relative lengths of the “on” and “off-periods” change

in a characteristic manner, the periods “on” shortening and the periods “off”

lengthening.

During goal directed behaviour SRS/E always takes the best possible estimated

path, there is no explicit exploration during this type of behaviour. SRS/E does not

attempt to locate new paths, but instead applies its resources to achieving the goal

using the best known path. At the end of the first “on” period behaviour reverts to

default trial and error actions. This period has the effect of exploring for new

paths through the graph. If the animat “stumbles” upon the solution and arrives at
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the goal it is satisfied in the normal way, and a new path is known for future use.

Lengthening periods of exploration have the effect of widening the area of search

in the graph space, increasing the likelihood of happening on a previously unknown

path through the cognitive map and thereby reaching the top-goal24. The duration

of the first “on-period” is determined from the initial cost-estimate of the best path

in the graph. The valence break point (VBP, described by postulate P6), is set to

some multiple of the initial lowest policy value cost estimate (bestcost) computed

by the algorithm. This multiple is defined by the system constant

VALENCE_BREAK_POINT_FACTOR, currently set to 10.

VBP �  bestcost * VALENCE_BREAK_POINT_FACTOR      (eqn. 4-15)

Thus in the example given by figure 4-5 (table 4-2), goal directed behaviour would

continue until the estimated cost of the best available path exceeds a value of

184.0. The multiplier value is selected to give the animat ample opportunity to

achieve the goal by direct use of the DPM, allowing a generous margin for failed

expectations.

Once the policy value of the best path reaches the VBP value the goal is

temporarily suppressed, and VBP is again multiplied by the valence break point

factor (to 1840.0). On reaching each break point behaviour reverts to exploratory

actions for a period determined by a goal_recovery_rate parameter, the goal

recovery mechanism. Actions taken during this period are referred to as

unvalenced actions, to distinguish them from purely trial-and-error exploratory

activities. On the first suppression the goal recovery rate is high, and behaviour

reverts to goal directed quickly after only a few unvalenced actions.

On reaching each subsequent valence break point the goal recovery rate is reduced

(in the current implementation by a factor of two) and so the number of unvalenced

actions during the off-period increases. Each time the blocked � -hypothesis fails

the estimated cost of the step increases at an exponential rate, and the time taken to

                                               
24Panic reactions may be an extreme form of this phenomena, wild or exaggerated actions being
performed, possibly beyond the normal limit s to physical well -being, in a final attempt to escape
some intolerable condition. Indistinguishable behaviours may equally be part of the innate
behavioural repertoire, unrelated to goal seeking.
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reach the next VBP level decreases as a consequence. At some point the estimated

cost of the path exceeds the goal cancellation level, 
�

, and the unachievable top-

goal is automatically deleted from the Goal List.

The extinction process will be demonstrated experimentally in chapter six, but it is

most clearly shown when only a single path exists through the DPM to the goal.

Such is in effect the case in Skinner box experiments. Only pressing the bar delivers

the reward. Similarly the only known route to the goal definition sign “Sa” in figure

4-5 is via the path “Sv”-“Sa” ( � -hypothesis “Hva”). If the experimenter denies the

animat access to “Sa”, then “Hva” will be tried on every attempt to reach the goal

(since there is no other known option), and the estimated cost of this step will rise

until 
�

 is reached. On the other hand if there is some other, as yet unknown, route,

then the periods of exploration give the animat the possibili ty of discovering it by

growing the cognitive map. These effects are investigated in the path blocking and

alternative path experiments of chapter six.

4.10. Creating New � � -Hypotheses

New � -hypotheses are created under two specific circumstances, (1) the

appearance of a completely novel sign, postulate H5-1 (novel event); and (2) the

appearance of a sign that is known, but which was not predicted, postulate H5-2

(unexpected event). SRS/E may therefore operate under the tabula rasa conditions

discussed previously. It is also a strong example of an unsupervised learning

procedure, no intervention is required from the originator or experimenter to cause

or guide the learning process. The originator may, of course, build behavioural

patterns into the Behaviour List intended to advantage or bias the animat’s learning

process. The experimenter may equally establish situations that trigger or exploit

the animat’s innate learning abili ty to train or teach the animat. In the experiments

to be described no such behaviour patterns are used. Conditions under which the

experimenter intervenes are described were appropriate.

SRS/E uses a pattern extraction method for creating new � -hypotheses. The

detection of a novel or unpredicted sign, notated for the moment “s2” , causes

SRS/E to extract a recent action, “r1” , from � � , as recorded in the
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response_activation_trace values, and to extract a sign, “s1” from 
� �
, as

recorded in the sign_activation_trace values. The new � -hypothesis:

� �
 �  � � (s1,r1,s2@+t)      (eqn. 4-16)

is created from the components extracted from the various traces. Note the use of

the notation “ � �  �  � � (y)” to denote the creation of a list element of type � �   from

some (appropriately typed) element or elements “y” . Note also that the action

selected is to be drawn from at least one execution cycle in the past, and that the

context sign “s1” shall be contemporary with the action “r1” . As a convention,

where “s2” follows “s1” and “r1” by exactly one execution cycle the use of the

“ @” (at) notation will normally be dispensed with, as this is the default

relationship. Where all the component token parts for “s1” are drawn from their

respective activation traces, then action selection and prediction by the � -
hypothesis will not depend on the current state of the system, only on the recorded

past states.

In keeping with Popper’s observation that the simplest means possible should be

employed to describe the phenomena (occam’s razor), the current implementation

of SRS/E initially creates new � -hypotheses to this notion, concurrent sign “s1”

and action “r1” predicting the target sign “s2” on the next execution cycle. The

exact combination of elements for the new � -hypothesis are specified by a

hypothesis template, which in the current implementation is coded into the

structure of the SRS/E algorithm. As the size of �
	�
	  increases, the number of

possible options for inclusion in the new � -hypothesis will i ncrease. Currently,

SRS/E may limit the number of � -hypotheses created for each novel or unpredicted

sign appearance. This, in effect, creates a sampling strategy for the learning

process. The mechanism for an explicit sampling strategy implemented in SRS/E is

described later.

This is a form of instrumental learning, predicated on a fundamental notion of

causality between the context in which the animat makes actions, the specific

actions made by the animat and the consequences to the animat and its

environment of those actions. It is an animat-centric view, but there may be other
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active agents in the environment causing changes. These are only recorded by the

animat in so far as they affect the animat’s ability to manipulate its circumstances.

Shettleworth  (1975) provides evidence that animals may be predisposed to utili se

features from the environment selectively. With or without this innate bias it would

be a reasonable alternative strategy to create many � -hypotheses in an attempt to

explain the occurrence of the novel phenomena, and allow the subsequent

corroboration process to select useful � -hypotheses and discard the remainder, a

sub-set sampling assumption. In the absence of any underlying “theory” about the

environment, which is the default assumption, each � -hypothesis forming “guess” is

as good as another25.

4.10.1. Maintaining the Hypothesis List

Given the use of the pattern extraction (token selection from the various lists 
� �
, � � ,

� �
 and � � ) method for creating new � -hypotheses one of four outcomes will emerge

following a period of corroboration. First, an individual � -hypothesis may

accurately predict its outcome. Second, a � -hypothesis may accurately predict its

outcome only in a fraction of the instances in which it is activated. Third, a � -

hypothesis may never, or very rarely predict correctly. Fourth, a � -hypothesis may

not be activated again, and so will make no predictions that may be corroborated.

The first of these outcomes needs no immediate action. The second outcome may

indicate that the � -hypothesis be a candidate for specialisation, one form of

differentiation (postulate H6). By this process extra tokens are added to the

context sign “s1” , on the assumption that the � -hypothesis is underspecified in its

application. JCM and ALP both propose a specialisation mechanism. In the current

definition, the Dynamic Expectancy Model isolates candidate � -hypotheses which

have intermediate corroboration values, and which have a maturity

(hypo_maturity) value greater than the system defined maturity threshold level

( � ). The use of the maturity criteria ensures that candidate � -hypotheses have

undergone a sufficient number of activations and hence corroborative predictions.

Maturity is not equivalent to age.

                                               
25This cluster of hastil y formed guesses contingent on a new phenomena may be related to the
“first appearances” effect, widely, but often apocryphally, described. For instance King (1987).
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For any of these candidates, which are currently on the active list 
������

, and where

the confidence measure falls between a system defined lower confidence bound ( � )
and upper confidence bound ( � ), an additional token term is added to the existing

context sign “s1” . In the current scheme this token is drawn from the record of

token activations recorded in the respective activation traces. It is in essence

another “guess” , but (as with � -hypothesis creation) one drawn from the

population of extant observations. The original � -hypothesis is retained, and a new

one appended to the Hypothesis List. Duplicate � -hypotheses are not installed by

SRS/E. By appending the new, modified, sign “s1” to the Sign List a stream of

novel signs is created to further activate the � -hypothesis creation process.

The experiments described later make extensive use of the � -hypothesis creation

steps, but do not necessitate the use of this specialisation step. It is therefore

largely speculative. However the intention is to create a population of � -
hypotheses, which attempts to improve its performance based on predictive abili ty

within the lifespan of the animat. Where the initial � -hypotheses were created from

the simplest combination of parts, new � -hypotheses will only be created when

these minimalist interpretations of the environment are demonstrated inadequate

through the corroboration process. Among other candidate approaches to this step

in the SRS/E algorithm are the use of the cross-over and mutation techniques

employed by Genetic Algorithms (GA), and the techniques used by the machine

learning by induction schools of thought.

Both Becker and Mott also discuss generalisation, the converse operation to

specialisation. In generalisation terms are removed from the context of ineffective

schema on the premise that they contain irrelevant additional kernels which over

specify and hence reduce the effectiveness of the � -hypothesis. The Dynamic

Expectancy Model does not provide any explicit mechanism for generalisation. It

instead relies on the notion that less effective � -hypotheses will be removed, after a

suitable period of corroboration, by the deletion/forgetting process described

below.

The third outcome indicates a candidate for deletion, as it apparently fails in its task

as a hypothesis about the environment. The current definition for SRS/E selects a
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candidate set of � -hypotheses for deletion on the basis of their maturity (compared

to the maturity threshold, � ) and confidence values from a sub-set of the

population sharing a common consequence sign “s2” . A reasonable minimum value

for the lower confidence bound ( � , also the minimum bound for specialisation)

would be one based on joint probabilities (Harrison, 1983):

joint_prob = p(“s1”) * p(“r1”) * p(“s2”)      (eqn. 4-17)

The joint probabili ty value would be that value approximated by a � -hypothesis

created following a true chance or occult occurrence. The algorithm’s readiness to

delete � -hypotheses must also be related to the number available for predicting

“s2” . Where only one, or a very limited number of � -hypotheses are available it

appears inappropriate to expunge this knowledge, even where it is demonstrated to

be of restricted value. Experimental evidence from Skinner box experiments would

appear to indicate that experimental animals do not erase operant behaviours even

after full extinction, as evidenced by the spontaneous recovery of the extinguished

behaviour after a period of rest. It may also be noted that where only a single

action elicits reward its use may be particularly persistent during the extinction

process.

The fourth outcome offers no information on which to base a decision, and so a

pragmatic approach is indicated. In principle an old, untested, � -hypothesis has no

more nor less potential as a valuable item of knowledge than a more recently

created one, which has yet to be tested. Where nothing else is known about the

outcome there is a clear reason to retain the uncorroborated � -hypotheses. Where

other alternatives already exist, and space is becoming at a premium, a Hypothesis

List element falli ng into this category is a clear candidate for deletion - but as a

purely housekeeping consideration.

4.11. The SRS/E Execution Cycle

In the second main part of this chapter the SRS/E algorithm is considered in some

detail as a series of interrelated computational processes. SRS/E must explicitly

balance the demands placed upon it by definitions of innate behaviours provided in

the animat’s ethogram, goal-initiated behaviours, and by the requirement to
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generate new behaviours. Goal-setting, goal-seeking and the learning processes are

all defined or controlled as part of the total ethogram. The extent to which the

animat can create learned behaviours and the degree to which it can override innate

behaviours with learned ones are also defined in the original ethogram. In this way

SRS/E can truly be described as implementing a “scheme for learning and

behaviour”.

4.11.1. Summary of Execution Cycle Steps

Whereas the first part of this chapter described the definition of the various list

types and discussed much of the rationale behind various design choices in the

construction of the current implementation of SRS/E, this part describes the

algorithm primarily from the viewpoint of the manipulations performed on those

lists during an individual execution cycle. Figure 4-6 summarises the main steps in

each SRS/E cycle. Sub-sections summarise these list manipulations with a degree

of formality, utili sing the notation developed earlier. The intention of this algorithm

is to create a situation where each of the lists is sustained on a continuing basis.

In step one the algorithm accepts tokens derived from the animat’s sensors and

transducers. These are converted to the internal symbol form using information

recorded in the Input Token List, and used to evaluate the activation state of all

Sign List elements.

In step two the Prediction List is inspected for any predictions made in the past

which fall due on the current cycle. These predictions are compared with the active

Sign List, and the hypotheses making the predictions are updated, for both

successful and failed expectations. This is the corroboration and reinforcement of

existing � -hypotheses (from postulates H3 and H4).

In step three the algorithm evaluates the Behaviour List to prepare a candidate

action and to determine which, if any, innate behaviours or goals are appropriate in

the prevaili ng circumstances. The SRS/E algorithm requires that the Behaviour List

provide a priority associated with each candidate activity or goal. When the highest

priority activity is greater than the highest priority goal, no goal seeking behaviour

is considered and the algorithm skips immediately to step 6 to perform the chosen
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action. Whenever step three does not actively select any purposive behaviour or

assert a goal a default, exploratory, action will be selected.

In step four the algorithm builds (if required) a Dynamic Policy Map. This is

performed as a spreading activation graph building algorithm. � -Hypotheses that

are known to lead directly to the top-goal are considered to have a valence level of

one, and so define a set of sub-goals (their “s1” component), which in turn act as

sub-goals at valence level two, and so on.

In step five the algorithm matches the current perceived situation, as expressed by

the active Sign List from step one, with the Dynamic Policy Map generated in step

four, to select a candidate action to be performed in step six. Step five must also

cater for situations where there is no intersection between the current policy map

Step 1a) Gather Input Tokens to form 
������

1b) Update � �� �

1c) Cancel satisfied goals from � �
Step 2)   Evaluate past � -experiments from � � t

Step 3a) Select default action candidate from � �
3b) Select innate action and priority from 	 	 
 
 � �
3c) Set goals � �  and priorities from 
 
 � � � �
3d) Innate priority > goal priority? �  to step 6

Step 4)   Build Dynamic Policy Map (DPM) relative to g1

Step 5)   Select valenced action from (DPM �  ������ )
Step 6)   Perform selected candidate action

Step 7)   Perform � -experiments from ������ , update � �
Step 8a) Novel occurrence? �  create hypothesis on � �

8b) Unexpected occurrence? �  create hypothesis on � �
8c) Partially effective hypothesis? �  differentiate to � �
8d) Ineffective hypothesis? �  delete from � �

Step 9)   To step 1

Figure 4-6: Summary of Steps in the SRS/E Execution Cycle
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and any active signs, and for circumstances where the policy map proves ineffective

at providing a goal path.

Having defined an action to take, either as a high-priority innate action, a goal

directed action selected from the Dynamic Policy Map or a default action, this

action is passed to the animat actuators in step six.

Once an action is selected, and given the active Sign List from step one, a sub-set

of the Hypothesis List will be active, able to make a prediction. Active � -

hypotheses take part in � -experiments. Step seven selects all the active � -

hypotheses and causes them to append their prediction about “s2” onto the

Prediction List. A � -hypotheses does not have to have contributed to the action

selected in step six to be considered active (implicit activation).

Step eight concerns itself with the management of the Hypothesis List. In keeping

with the principles defined in the previous chapter. � -Hypotheses may be created,

varied or removed within this step.

Having concluded one cycle (step nine), the algorithm returns to step one and

begins the next. It might again be noted that SRS/E does not provide for any

terminating condition, there is nothing inherent in the basic algorithm that

concludes the continued execution of cycles.

The base SRS/E algorithm, coupled to any behavioural definitions provided by the

originator in the ethogram, is expected to imbue the animat with an appropriate

degree of behavioural autonomy. The new-born animal or human child may require

protection and nurturing, the child may be tutored and educated, but these things

do not compromise our notion that they are autonomous and so ultimately self-

sufficient. Should the undamaged individual require continued nurture, not achieve

a normal degree of self-sufficiency, or be unable to learn without continued tuition,

then it might reasonably be concluded that an adequate level of autonomy had not

been achieved within the ethogram definition. Similarly the ethogram design may

call for a protected maturational period, and as an essentially autonomous learning

system the animat may be teachable, but these do not undermine the defining

behavioural autonomy properties for the ethogram or animat.
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4.12. The SRS/E Algorithm in Detail

Figure 4-7 ill ustrates the major steps in the SRS/E algorithm, the most significant

data pathways and their relationships to the various list structures. Individual steps

in the algorithm are described in greater detail in the sections that follow. Steps

which read from the list structures are indicated with a solid line termination

(“ ” ), those which add to a list structure by a “+” indicator (“ ” ), and those

which remove elements from a list by a “-” termination (“ ” ). Each of the

subsumption points (SP1 and SP2) indicates a stage in the algorithm where a

previously selected candidate action may be replaced (subsumed) by an action of

higher priority.

Figure 4-7: The SRS/E Algorithm
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4.12.1. Step 1: Processing Input Tokens and Signs

Figure 4-8 shows the list management activities undertaken during step 1.0 of the

SRS/E cycle. In step 1.1.1, input token strings are accepted from the input buffer

and converted into the internal token form (
� �
 ). Steps 1.1.2 perform additional

processing on input tokens previously unknown to the system (i.e., any not already

on � � ). The novel token is appended to � �  (step 1.1.2.1). Additionally a new sign is

created from each novel token (step 1.1.2.2) and appended to the temporary list
� � new. Tokens present in the input buffer on the current cycle are assigned to the

active Token List, ������ , (step 1.1.3). New signs created in step 1.1.2.2 are added to

the Sign List (step 1.2). The temporary list 
� � new will be used to drive the learning

process of step 8.1. Once all input tokens have been processed, each sign is

evaluated according to the criteria laid down in equation 4-3, forms 1 through 4.

Every sign meeting the criteria defined for activation are placed on the active Sign

List 
� �� �  (step 1.3). Step 1.4 matches elements on the Goal List ( � � ) to any active

signs (
� �� � ), and automatically cancels satisfied goals.

Initialise 
� � new �  {}; ������  �  {}; 

� �� �  �  {};

1.1 Accept tokens into buffer, for each token_string  do

1.1.1 
� �
  � � � (token_string) [convert input string]

[note: � � (� � ) convert element of type � �  to element of type � � ]

1.1.2 if 
� �
   	  � �  [a token previously unknown to the system]

1.1.2.1 � �  �  � �  + 
� �
   [append 

� �
  to � � ]

1.1.2.2 
� � new �  

� � new + 
� �

(
� �
 ) [create a sign containing 

� �
]

1.1.3 ������  �  ������  + 
� �

1.2 
� �

 �  
� �

 + 
� � new

1.3 For each 
 
   where 
 
   �  
� �

1.3.1  if (EvalSignConjunction( 
 
 ))
� �� �  �  

� �� �  + 
 
  [eqn. 4-3]

1.4 � �  �  � �  - (
� �� �  �  � � ) [cancel satisfied goals]

Figure 4-8: Step One, Token and Sign Processing
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4.12.2. Step 2: Evaluating � � -Experiments on the Basis of Prior Prediction

Once active signs have been determined the algorithm may assess the accuracy of

past predictions falling due on the current execution cycle and so update the

individual � -hypotheses responsible for those predictions (figure 4-9). Steps 2.1

process each element of � �  where the predicted_time is equal to now. Where the

predicted_sign is on ������  the � -hypothesis identified by the Prediction List

element predicting_hypo is updated according to equations 4-8 and 4-11 (step

2.1.1.1). The temporary list � � pred records each sign that was correctly predicted

(step 2.1.1.2). Similarly step 2.1.2.1 updates each � -hypothesis responsible for an

incorrect prediction falling due at the current time, according to equations 4-9 and

4-12. For each failed prediction the system variable rebuildpolicynet is

increased by the amount �  (step 2.1.2.2). Spent predictions are removed from � �
(step 2.1.3). The temporary list 	 	 unexpected records all active signs that were not

predicted by any 
 -hypothesis (step 2.3), these will be used to drive the learning

process of step 8.2.

4.12.3. Step 3: Selecting Innate Behaviours and Setting Goals

The availability of ������  also allows the Behaviour List, 
 
 , to be evaluated (figure 4-

10). The default candidate action, candidate_action, for this cycle is selected

from � �  in step 3.1. In the present scheme the default candidate action is selected at

Initialise � � pred �  {};

2.1 for every � �  ( � �  �  � � ), such that predicted_time( � � ) = now, do

2.1.1 if predicted_sign( � � )  �  ������  [prediction succeeds]

2.1.1.1 Update predicting_hypo( � � )  [according to � , eqn. 4-11]

2.1.1.2 � � pred �  � � pred + predicted_sign( � � )

2.1.2 if predicted_sign( � � )  �  ������  [prediction fails]

2.1.2.1 Update predicting_hypo( � � )  [according to �  , eqn. 4-12]

2.1.2.2 rebuildpolicynet �  rebuildpolicynet + �
2.1.3 � �  �  � �  - � � [remove spent prediction]

2.2 � � unexpected �  ������  - � � pred [record unpredicted signs]

Figure 4-9: Step Two, Evaluation of � � -Experiments
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random from those available. This forms the trial and error (or other default) action

if no other candidate is selected during the current cycle. A list of active

behaviours, 
� � � � � �

, is selected from the primary behaviours part (
� � � �

) of the

Behaviour List on the basis of a match between the condition part and the active

Sign List � �� �  (step 3.2). The action with the highest priority is selected from the

active primary behaviours (
� � � � � �

) and assigned to innate_action according to the

stored behaviour_priority values (step 3.3). The actual priority of that

behaviour is recorded in the variable innate_priority (step 3.4). If

innate_action has a higher priority than the basal level threshold ( � ) it is

adopted as the candidate action, candidate_action, for the current cycle in

preference to the one selected in step 3.1 (step 3.7). The Goal List is built from the

goal setting behaviours part of � �  ( � � � � ) in step 3.5, and the Goal List priority

ordered (according to goal_priority) in step 3.6. SRS/E selects between innate

and goal seeking behaviours on each cycle according to the priority of the top-

goal, g1, and the value recorded in innate_priority (step 3.8). Where an innate

behaviour is selected the algorithm skips directly to perform the candidate action in

step 6 (step 3.8.1).

Initialise �	��	�  
  {};

3.1 candidate_action 
  SelectRandomAction( � � )

3.2 for each � �   where action( � �  ) 
  � � � �  AND condition( � � ) �  ������
3.2.1 � � � � � �  �  � � � � � �  + � � ,

3.3 innate_action �  action(max(behaviour_priority( � � � �   ))) [innate action]

3.4 innate_priority !  max(behaviour_priority( " " # # $ $ ))
3.5 for each % %   where action( % %  ) &  ' ' ( (  AND condition( ) ) ) *  +�,+�,

3.5.1 - -  .  - -  + / / [build Goal List]

3.6 - -  .  order(goal_priority( - - ))  [order Goal List by priorities]

3.7 if(innate_priority > 0 ) [above basal threshold?]

3.7.1 candidate_action .  innate_action

3.8 if(goal_priority(g1) < innate_priority)  [select goal or innate]

3.8.1 skip to step 6.0

Figure 4-10: Step Three: Select Innate Actions and Set Goals
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4.12.4. Step 4: Building the Dynamic Policy Map

Steps 4.1 determine whether the Dynamic Policy Map is to be constructed on this

execution cycle. If the goal g1 is already satisfied, the goal is cancelled (step 4.1.1),

and the next lower priority goal selected (step 4.1.2). If no goal remains on the

Goal List control passes directly to step 6.0 (step 4.2). If the top-goal is unchanged

since the last cycle and the rebuildpolicynet value has not exceeded

REBUILDPOLICYTRIP no change is required and the algorithm skips directly to

valenced action selection in step 5.0 (step 4.3).

Steps 4.4 (stage 1 of the construction) build the first valence level in the DPM. For

all elements (
� �

 ) of the Hypothesis List where the consequence “s2” is equivalent

to g1 the steps 4.4.n are taken. The estimated cost for the transition is obtained

(equation 4-13) and held in 
� � £, the cost estimate value for � -hypothesis 

� �
  (step

4.4.1). The temporary list � � v=2 is built from the context signs “s1” for � -hypotheses

selected (step 4.4.2), these form the sub-goals at the next valence level. The

temporary list � � £ records the estimated policy cost for the � -hypothesis 
� �

  as 
� � £

(step 4.4.3). Similarly the temporary list � � £ records the lowest cost solution found

so far for each sign implicated in the construction of the DPM (step 4.4.4).  If the

context sign “s1” for any instance of 
� �

  is already on the active Sign List ������ , then a

path from the current situation to the goal has been found (step 4.4.5) and the flag

pathavailable is set TRUE. The lowest cost path estimate bestcost is updated if

the estimated cost of this new path is lower than any previously found solution path

from this sign to the top-goal (step 4.4.6). Once pathavailable is asserted the

algorithm might to skip to step 5.0 (i.e., perform the action associated with the

element 
� �

  with the active context sign), or it may continue to build the DPM to

discover possible lower cost paths. Were the animat to be constrained to perform

an action within a given time this flag is an important indicator that a path exists.

The current implementation places no such time constraint on the algorithm.

Steps 4.5-4.8 (stage 2 of the construction) continue the spreading activation

process for successive valence levels, vn+1 (step 4.5), until there are no further

nodes to expand (step 4.6) which terminates the DPM construction. Each node

identified as a sub-goal at the previous valence level is expanded (steps 4.7) in the

manner described for steps 4.4. The temporary list � � £ records the policy value for
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each � -hypothesis by adding the new cost estimate value for the transition to the

previously computed lowest policy value for the sub-goal “s2” (step 4.7.1). The

temporary list 
� � £ is updated to reflect new policy values (step 4.7.2). Whenever a

new sign node or a lower estimated policy cost to a sign node is discovered (step

4.7.3), the sign is established at the new valence level (step 4.7.3.1) and the new or

lower cost is recorded (step 4.7.3.2). The net effect of this process is to categorise

every � -hypothesis, and so each sign “s1” , which is implicated in the DPM by its

lowest estimated policy cost to the top-goal. The flag pathavailable may be set

at any valence level (step 4.7.4). The variable bestcost is updated whenever a

new lowest estimated cost is encountered (step 4.7.5). If there is no intersection of

sub-goal node and ������ , pathavailable remains FALSE and bestcost remains

undefined.
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Initialise 
� � £ �  {}; � � v �  {}; � � £ �  {};

rebuildpolicynet �  0; pathavailable �  FALSE;

bestcost �  MAXVALUE; vn �  1 [valence level one]

Rebuild map if goal changed or ‘rebuild’ greater than threshold

4.1 while (g1 �  ������ )  [top-goal already satisfied]

4.1.1 � �  �  � �  - g1  [so remove]

4.1.2 g1 �  max(goal_priority( � � )) [and select next highest]

4.2 if( � �  = {}) skip to step 6.0  [no goals on Goal List]

4.3 (if g1 = g1@t-1 AND rebuildpolicynet < REBUILDPOLICYTRIP)

skip to step 5.0 [no need to rebuild DPM]

Stage 1 - create first valence level

4.4 for each � �   such that s2( � �  ) = g1 

4.4.1 � � £ �  GetCostEstimate( � �  ) [eqn. 4-13]

4.4.2. � � v+1 �  � � v+1 + s1( � �  ) [record valenced sub-goals]

4.4.3  
� � £ �  

� � £ + � � £   [cost of transition s1 to goal]

4.4.4 � � £ �  s1(� � £) [record sign cost]

4.4.5 if(s1( � �  ) �  ������ )
pathavailable �  TRUE  [path solution found]

4.4.6 if(bestcost > � � £)  bestcost �  � � £

Stage 2 - continue spreading activation until done

4.5 vn �  vn + 1

4.6 if(� � v = {}) skip to step 5.0  [expansion complete]

4.7 for each � �   such that s2( � �  ) �  � � v=vn [expand each sub-goal]

4.7.1 � � £ �  s2(� � £) + GetCostEstimate( � �  ) [eqn. 4-13]

4.7.2 
� � £ �  

� � £ + � � £  [record total cost of path]

4.7.3 if(s1( � �  ) �  � � v OR s1(� � £) > s1(� � £))  [new or better path]

4.7.3.1  � � v+1 �  � � v+1 + s1( � �  ) [new sub-goals]

4.7.3.2 � � £ �  � � £ + s1(� � £) [record lower sign cost]

4.7.4 if(s1( � �  ) �  ������ )
pathavailable �  TRUE [solution path found]

4.7.5 if(bestcost > � � £)  bestcost �  � � £

4.8 return to step 4.5 [expand next valence level]

Figure 4-11: Step Four, Construct Dynamic Policy Map
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4.12.5. Step 5: Selecting a Valenced Action

Steps 5 (figure 4-12) determine whether a valenced action is appropriate, and if so

select the action. These steps also manage the goal extinction process. A value for

the valence break point is determined first. If VBP is already set, this value is used

(step 5.1). Where this is the first instance of a DPM, or the previous valence break

point has been exceeded, a new value for VBP is computed according to equation

4-15 (step 5.3). The valence break point is cleared if no path is found (step 5.2). A

temporary list of � -hypotheses, 
� � #£, is formed from the intersection of those � -

hypotheses with valence (recorded on 
� � £) and whose condition part “s1” is on the

active Sign List ������  (step 5.4). The candidate valenced action, valenced_action,

is extracted from the element of 
� � #£ with the lowest estimated policy cost to the

goal (step 5.5). If the estimated cost of this proposed action is still l ess than VBP,

this valenced action is selected as the overall candidate action,

candidate_action, for the execution cycle (step 5.7). Where there is no

intersection of valenced � -hypotheses and the active Sign List, the candidate action

selected in step 3 will be used. This summary of the algorithm does not detail the

sub-steps for the goal recovery mechanism previously described. Step 5.8

determines if the total estimated cost of the path has exceeded the goal

cancellation level, � , and if so removes the current top-goal from � � .

5.1 VBP �  GetValenceBreakPoint() [establish VBP]

5.2 if (pathavailable = FALSE) VBP �  0 [no path to goal]

5.3 else if (VBP �  0 OR VBP > bestcost)  [compute VBP]

VBP �  bestcost * VALENCEBREAKPOINTFACTOR

5.4 	 	 #£ �  	 	 £ 
  (s1( � �  ) �  
��
�� )  [candidate active signs]

5.5 � �   �  min( 	 	 #£) [select least policy cost]

5.6 valenced_action �  r1( � �  )

5.7 if(policy_value( � �  ) �  VBP) [break-point reached?]

candidate_action �  valenced_action [no, use valenced action]

5.8 if(policy_value( � �  ) �  � )  [goal cancellation level?]

5.8.1 � �  �  � �  - g1 [so cancel top-goal]

Figure 4-12: Step Five, Select Valenced Action
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4.12.6. Step 6: Performing an Action

Figure 4-13 describes the action reification process. The action

candidate_action, selected either as an innate response from the Behaviour List� � � �
 (step 3.3), from the Dynamic Policy Map as a valenced action (step 5.7), or as

a default trial and error action (step 3.1) is sent to the animat’s effectors to be

performed on the current cycle (step 6.1). The element of the Response List finally

selected is recorded on the active Response List ������  for the current execution cycle

(step 6.2).

4.12.7. Step 7: Conducting � � -Experiments

Figure 4-14 describes the steps taken to create the predictive expectations. The

active Hypothesis List ������  is constructed from every 	 -hypothesis where the

context sign “s1” appears on the active Sign List 
��
��  and the action “r1” appears on

the active Response List 
��
��  (step 7.1.1). SRS/E does not distinguish between

actions made as part of the goal seeking process and those made due to innate

behaviour definitions or for any other reason. As a consequence SRS/E

corroborates 	 -hypotheses whenever they establish an expectation. Such

expectations are added to the Prediction List as a triple recording the 	 -hypothesis

responsible for the prediction, the predicted sign, the time at which that sign is

predicted (step 7.1.2). The value t is recovered from the time_shift value

associated with the 	 -hypothesis. These predictions will be corroborated in step 2

of later execution cycles.

6.1 DoAction(candidate_action)  [reify candidate action]

6.2 
��
��  �  candidate_action [record in trace]

Figure 4-13: Step Six, Perform Action

initialise ������  �  {};

7.1 for all � �  , such that s1( � �  ) �  ������  AND r1( � �  ) �  ������
7.1.1 ������  �  ������  + � �    [record activation]

7.1.2 � �  �  � �  + � � ( � �  , s2( � �  ), now + t) [make prediction]

Figure 4-14: Step Seven: Conduct � � -Experiments
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4.12.8. Step 8: Hypothesis Creation and Management

Steps 8.1 (figure 4-15) are concerned with the creation of new � -hypotheses when

a novel event is detected. These steps are triggered when the temporary list � � new is

not empty. Elements were placed on � � new in step 1.2. A new � -hypothesis is

created from a context sign (“s1”) selected from the Sign List activation trace

record (step 8.1.2), from an action (“r1”) selected from the Response List

activation trace (step 8.1.3), and the novel sign extracted from � � new (“s2”), (step

8.1.4). The newly formulated � -hypothesis is added to the Hypothesis List (step

8.1.5) and its values set to reflect the creation bonus previously described. As the
� -hypothesis is created from a novel sign, there is no possibili ty that it will

duplicate an existing � -hypothesis. The timebase shift is achieved by predicting the

occurrence of “s2” n cycles in the future, where the “s1” and “r1” values were

previously extracted from the respective activation traces n cycles in the past. The

relative time shift, +t, is recorded in the � -hypothesis time_shift value.

The creation of a new � -hypothesis may affect the structure of the DPM, and so

the system value rebuildpolicynet is incremented by �  to hasten or trigger a

DPM rebuild (step 8.1.6). The novel sign is removed from � � new (step 8.1.7), and

steps 8.1 repeated until this list is empty. An explicit sampling learning strategy is

implemented by omitting steps 8.1.2 to 8.1.6 for one or more of the signs on � � new

according to a frequency set by the learning probability rate. The learning

probability rate will also be referred to by the abbreviation Lprob and by the

symbol ( � � . When the learning probability rate is 1.0 every opportunity to create a
� -hypothesis will be used, if it were set to 0.0 no � -hypothesis creation would

occur. In electing to implement a sampling strategy at this point any sign passed

over will only seed a new � -hypothesis as a result of the process described in steps

8.2, as it will not reappear on � � new.

Steps 8.2 create new � -hypotheses when unexpected signs are detected. Elements

were added to the temporary list � � unexpected in step 2.2. The basic mechanism for � -

hypothesis creation is identical to that described in steps 8.1. In a sampling strategy

( �  < 1.0) passed over signs can reappear on 	 	 unexpected again (as they may remain

unpredicted), and so be the subject of this process on a subsequent execution cycle.
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Steps 8.3 (figure 4-16) describe the specialisation process by which individual � -
hypotheses are made more specific in their application. Extra specificity is achieved

by adding discriminant terms to the context sign conjunction (“s1”). The current

definition selects � -hypotheses that are: (1) active; (2) exceed the maturity

threshold ( � ), in that they have been tested many times; and (3) have an

indeterminate confidence probabili ty values (hypo_prob, or bpos) falli ng between

the upper ( � ) and lower ( � ) confidence bounds. A selected � -hypothesis must be

active to ensure that the additional elements added to the conjunction are drawn

from the set of extant events at the time of modification (i.e., those falli ng within

the range defined by the respective activation traces).

Creation on the basis of novelty

8.1 for each � � new such that ( � � new �  {}AND � � new �  � � new)

8.1.1 if (rand(0.0 .. 1.0) > � ) skip to step 8.1.7

8.1.2 s1 	  Select( � � x �  ��
��
 @-t)

8.1.3 r1 	  Select( � � x �  
�

�
 @-t)

8.1.4 s2 	  � � new

8.1.5 � �  	  � �  + � � (s1,r1,s2@+t), where s1 �  s2

8.1.6 rebuildpolicynet 	  rebuildpolicynet + �
8.1.7 � � new 	  � � new - � � new

Creation on the basis of unpredicted event

8.2 for each � � unexpected such that ( � � unexpected �  {}AND � � unexpected �  � � unexpected)

8.2.1 if (rand(0.0 .. 1.0) > � ) skip to step 8.2.7

8.2.2 s1 	  Select( � � x �  ��
��
 @-t)

8.2.3 r1 	  Select( � � x �  
�

�
 @-t)

8.2.4 s2 	  � � unexpected

8.2.5 � �  	  � �  + � � (s1,r1,s2@+t), where s1 �  s2

8.2.6 rebuildpolicynet 	  rebuildpolicynet + �
8.2.7 � � unexpected 	  � � unexpected - � � unexpected

Figure 4-15: Step Eight, Hypothesis Creation



145

A new context sign is created by adding an additional term to the existing context

sign conjunction (step 8.3.1). This new term may be drawn from the Input Token

List, the Sign List, the Response List or the Hypothesis List. It may take any of the

four forms described in equation 4-3. Action (step 8.3.2) and consequence (step

8.3.3) parts are copied from the existing � -hypothesis. The new � -hypothesis is

appended to the Hypothesis List (step 8.3.4). The original � -hypothesis is not

removed, and will compete with the new one. The new sign created in step 8.3.3 is

appended to the Sign List (step 8.3.5). On its first subsequent activation the new

sign will appear as a candidate on � � unexpected, as there is no � -hypothesis to predict

it. This mechanism therefore provides a continuing source of new signs to drive the

learning process indefinitely.

Step 8.4 (figure 4-17) defines the criteria for � -hypothesis deletion. � -Hypotheses

that persistently fail to make effective predictions may be removed. The degree of

maturity should be high and the corroboration measures should indicate that the � -
hypothesis has little or no predictive value. � -Hypotheses are deleted by simply

removing them from the Hypothesis List (Step 8.6).

Specialisation (differentiation)

8.3 for all � �  , such that � �  � �  ������  AND hypo_maturity( � �  ) > �
AND hypo_prob( 	 	  ) > 
  AND hypo_prob( 	 	  ) < �

8.3.1 s1 �  
 
 (s1( 	 	  ) + � � @-t) [differentiate s1]

8.3.2 r1 �  r1( 	 	  ) [copy action]

8.3.3 s2 �  s2( 	 	  ) [copy s2]

8.3.4 � �  �  � �  + � � (s1,r1,s2@+t) [install new � -hypothesis]

8.3.5 � �  �  � �  + s1 [install new sign in � � ]
8.3.6 rebuildpolicynet �  rebuildpolicynet + �

Figure 4-16: Step Eight, Hypothesis Management - Specialisation
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4.13. Implementation

The SRS/E algorithm is implemented in Microsoft Visual C++ and runs as a text

only Window under Microsoft Windows v3.1 or Windows 95. Each of the major

lists and their associated functions are defined as object classes. The use of the

term “list” here does not imply the use of a list processing language such as LISP.

Elements of these Lists are allocated and reallocated dynamically, typically stored

and indexed as array members. In the interests of efficiency this implementation

eschews conventional object oriented message passing in favour of cross-class

access functions.

4.14. SRS/E - A Computer Based Expectancy Model

In this chapter the Dynamic Expectancy Model developed in chapter three of this

thesis has been translated into a single algorithm, SRS/E. MacCorquodale and

Meehl (1953) recognised that their expectancy theory postulates were “ incomplete,

tentative and nonsufficient” . Becker’s JCM was only presented as a proposal for

implementation. Mott achieved a substantive implementation of ALP, but was

heavily constrained by the timesharing technology available at the time, and by the

generally impoverished nature of the robot interface he employed. Drescher

provides scant indication of the results for his claimed implementation, beyond an

indication of the extensive computational resources required to sustain the marginal

attribution process.

Deletion (forgetting) under competition

initialise 
� � # �  {};

8.4 for all � �  , such that � �  � �  ������  AND hypo_maturity( � �  ) > �
 AND hypo_prob( 	 	  ) < 


8.4.1 � � # �  � � # + 	 	  [build candidate list]

8.5 	 	 delete �  min(hypo_prob( � � #)) [select a deletion candidate]

8.6 � �  �  � �  - 	 	 delete [update Hypothesis List]

8.7 rebuildpolicynet �  rebuildpolicynet + 


Figure 4-17: Step Eight, Hypothesis Management - Forgetting
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The SRS/E algorithm, and its implementation, stands as a “proof by existence”, a

working model created from the postulates presented in chapter three. The SRS/E

algorithm claims to be “sufficient” in this respect, and as an implementation at least

one step beyond “tentative”. Each of the postulates contributes a small component

part of the whole. The processes are less tightly coupled than, say, Watkins’ Q-

learning; a repetitive application of a simple reinforcement transfer rule. More

tightly coupled than, say, the idea implicit in Minsky’s (1985) notion of a “society

of mind” . The relatively large number of Dynamic Expectancy Model postulates,

and so algorithmic steps, reflects the apparent need to construct a balanced and

functional mechanism; in much the same manner as an automobile design requires

many coupled systems to achieve an acceptable level of usabili ty, safety, reliabili ty,

maintainabili ty and performance. It may be that further work will demonstrate that

the system is still overspecified, and elements may be deleted without affecting

overall functionality.

Yet SRS/E does not claim completeness. There is still a substantial “back-

catalogue” of published research describing a huge range of phenomena that must

eventually be explained or incorporated into a larger single model of the animat. In

keeping with an idea that evolution adds capabili ties to the best of previous

generations and proto-typical species it seems inevitable that extra postulates,

rather than simplification, will be found necessary.

The next chapter describes an experimental environment to investigate the

properties of the SRS/E algorithm as implemented.


