
148

Chapter 5

5. Experimental Design and Approach

The implementation of the SRS/E program may be considered to be in two

separate parts. The first part encodes the behavioural and learning activities of the

algorithm discussed in the previous chapter. The second part provides an emulation

of an experimental environment that may be used to investigate the properties of

the algorithm. This chapter considers the nature of this simulated “world” and

describes some of the facili ties available in the SRS/E program to assist the

experimenter investigating the algorithm as implemented.

Communication between these two parts of the program is primarily via a single

sub-routine call, “DoWorldAction()” . This is a manifestation of the abstract

activity described by the “DoAction()” construct of step six of the SRS/E

algorithm (figure 4-13). The “DoWorldAction()” call takes two important

parameters. The first parameter passes an action from the animat to the

environment parts. The action takes the form of a response_string, an ASCII

string extracted from an element of
� �

 representing the action to be taken by the

animat on the current execution cycle. The second parameter returns a sequence of

tokens representing sensory events detected by the animat following completion of

the action supplied in the first parameter. Tokens are returned from the

“environment part” to the “animat part” of the SRS/E program via an input buffer

and recorded in the Input Token List, � � . Each token is defined as a sequence of

characters from the ASCII set. Each token is separated from others in the input

stream by a delineation character. Tokens have no embedded meaning to SRS/E,

but the naming policy that has been adopted here is convenient for experimenter

analysis of the generated trace and log files. Certain of the user interface utili ties

exploit this specific token format, and the adoption of an arbitrarily named but

otherwise equivalent token would disrupt their operation.

149

5.1. Experimental Design

The experimental design used here follows that devised by Sutton (1990) to

investigate the performance of the Dyna-PI, Dyna-Q and Dyna-Q+ algorithms.

Environments for his series of experiments took the form of simple grid mazes,

through which the animat may progress from some starting point to some other

finish or goal point. The animat may not leave the boundaries of the environment

(there is no wrap around), and obstacles may be placed into the maze, making

certain locations unattainable. Blockages may be added at any point throughout the

experimental procedure to test the response of the animat to changing

circumstances. In Sutton’s design the animat may make one of four basic actions,

each translating the animat into an adjacent cell in the grid. These actions,

registered into the Response List
� �

 as “N” , “S” , “W” and “E” , are equivalent to

the actions “UP”, “DOWN”, “LEFT” and “RIGHT” defined by Sutton. Each

action is assigned an action cost value of 1.0.

The simplest of these environments is shown in figure 5-1. It will be referred to as

DynaWorld/Standard in the current work. Several other researchers have used this

environment. Booker (1990) and Riolo (1990) have both described extensions to

classifier systems tested with this environment. Peng and Willi ams (1992) describe

extensions to the original Dyna framework. Littman (1994) investigated

“memoryless” policies, where actions are based solely on current sensation -

“traceless” in SRS/E terms. Each investigator is at liberty to adapt or create their

own new or variant environment, and there are consequently a wide variety of

designs in use.

Figure 5-1: Sutton’s DynaWorld/Standard Environment

150

DynaWorld represents a constrained and restricted experimental environment.

While not appearing overly demanding as a learning task the maze environment

follows in a long tradition of utili sing highly controlled experimental environments.

They have been espoused, in particular, by the behaviourist and instrumental

conditioning schools of research. The latter group in particular place experimental

animals in repeatable situations (as typified by the Skinner box) with the specific

aim of investigating learning phenomena in isolation from other aspects of the

subjects naturally occurring behavioural repertoire. The choice of a maze

environment is also particularly resonant of the research methods employed by

Tolman, of which a number of emulations follow in later sections. All the

investigations performed here use simulated environments.

Several other pre-defined environments are available in the currently implemented

SRS/E program. At the beginning of each experimental run the experimenter may

select from a number of predefined maze patterns. Besides the

DynaWorld/Standard environment Sutton (1990) defined an environment of the

same size, but which is divided into two parts by a row of obstacles. This

“Changing-World” environment is shown in figure 6-12. By selectively removing

or adding blocks the behaviour of the animat may be investigated under several

conditions where previously known paths disappear, and where new paths become

available. A separate maze environment, not due to Sutton, is used in the latent and

place learning experiments described later. This environment is shown in figure 6-

22. It provides the animat with three distinct paths from the start to goal points,

each of different length. The experimenter may, optionally, define environments of

arbitrary size, and add or remove blocked cells as required. The experimenter may

also elect to allow the animat to translate in all eight directions, “N” , “NE”, “E” ,

“SE”, “S” , “SW”, “W” and “NW”. Diagonal actions attract an action cost of 1.414

(i.e.,
�
2). An action that would cause the animat to leave the boundaries of the

environment, or to enter a blocked cell, leaves the animat position unaltered, but

incurs the cost associated with the action. Following Sutton’s definition every cell

in the maze is uniquely and reliably identified. In this implementation cells are

identified by a single token of the form “XnYn”, where “n” is substituted with the

cell’s X (or Y) co-ordinate. Cell co-ordinates are measured from (0,0), the bottom

left hand corner.

151

Animals are notoriously variable in their performance, even in the most controlled

of experimental conditions. The simulated environment holds a number of

significant advantages over experimentation with live animals. First among these is

the abili ty to maintain a high degree of control over the environment and the

animat. Various aspects of the behavioural repertoire can be suppressed where they

would interfere with the progress of the experiment. Motivation, in terms of goal

setting, can be controlled independently of the underlying requirement (for instance

hunger initiating food seeking activity) by manipulating the equivalent drive. The

simulated animat also demonstrates a considerable degree of variabili ty, arising

from the nature of the randomising conditions used. Fortunately a ready supply of

subject animats may be created to achieve a significant or reliable demonstration of

highly variable performance phenomena at little or no cost and far less

inconvenience than their naturally occurring counterparts.

The SRS/E program offers a repeatable experimental situation. From identical

starting conditions the program will run identically over successive trials. Once any

condition varies the course of an experiment will diverge. This facili ty may be used

in several ways. First animats may be effectively “cloned”, taken to some fixed

point in the procedure, which is then modified according to the experimental

schedule to investigate the specific effects of each variation. Second the procedures

may be used in bulk, without constant monitoring and interesting instances

identified from the logged record and replicated for further, more detailed,

investigation. Finally the SRS/E program offers a high degree of visibili ty. The use

of on-screen information display, in conjunction with the recorded logged

information allows the experimenter access to a record of the internal processes

that gave rise to specific behaviours and actions. The type and quantity of

information displayed and recorded has been refined over a period of time to best

reflect what is required for a full analysis. Examples exploiting these facili ties occur

throughout the next chapter.

5.2. The User Interface

With an environment defined and major parameters selected, the investigator may

intervene during each experimental run to control the conditions required by the

schedule. At the conclusion of each execution cycle the investigator may utili se the

152

command interface to make changes, to request diagnostic or analytical

information, or continue the experiment. This interface is presented on a command

line basis, and the options available are shown in the printout of figure 5-2. The

interventions available to the investigator fall into five categories: (1) controlli ng

execution cycles; (2) displaying and recording list information; (3) managing goals;

(4) managing the animat and environment; and (5) accessing SRS/E program

utilities.

5.2.1. Controlling Execution Cycles

Many experimental schedules to be described call for periods where the animat is

free to roam the environment, alternating with goal directed activities. The

investigator may single step (“<enter>”) through the experiment, giving time to

absorb the information about the previous cycle’s activity, or may allow the

experiment to run up to a specified cycle (“<number>”), or for a specific number of

execution cycles (“@<number>”). Certain experimental regimes call for the animat

to be allowed to locate the goal by random walk exploration, prior to detailed

investigation. SRS/E allows the investigator to specify an interrupt condition

(“!<x> <y>”) which returns the program to manual control once the named

location given by the co-ordinates “<x>” and “<y>” has been visited by the animat.

Command: ?
 <enter>: run for one cycle
 <number>: run until cycle <number>
 @<number>: run for <number> cycles
 ! <x> <y>: break when animat reaches <x> <y>
 t: show Token List
 s: show Sign list
 s<token_id>: show signs using <token_id>
 h[<number>]: show Hypothesis <number> or List
 e[filename]: Export hypothesis List
 p: show current Prediction list
 g: show goal list
 g <sign_number>: set goal (G: save temp tally)
 g-<sign_number>: clear goal
 M: show policy Map (m: valence level map)
 w: show World (W[-]: temp tally [and clear]; WT: world tally)
 = <x> <y>: Move Animat to X,Y
 r: move animat to random starting location
 + <x> <y>: Set obstacle at X,Y
 - <x> <y>: Clear obstacle at X,Y
 u: update system settings
 ; (or *): record comment in trace file
 f: - not available (no trace file)
 #: Show partial path
 ?: this Help
 q: quit

Command:

Figure 5-2: The SRS/E Experimenter Command Options

153

In the current program this is tied to the animat entering a specific named cell

(defined by its co-ordinates). Future versions could, more generally, interrupt on

the detection of a specific token, sign, or some combination of these types.

5.2.2. Displaying and Recording List Information

At any command cycle the investigator may display the contents of the Token List

(“t”), the Sign List (“s”), the Hypothesis List (“h”), the Prediction List (“p”), or the

Goal List (“g”). Additionally the investigator may inspect individual signs

associated with a specific token (“s<token_id>”), and individual � -hypotheses

(“h<number>”). The complete Hypothesis List may be exported at any command

cycle in a form suited to later importation to a standard spreadsheet utili ty

(“e[filename]”).

5.2.3. Managing Goals

In addition to viewing the goal list, the investigator may, at any command cycle,

assert (“g<sign_number>”) or clear (“g-<sign_number>”) any goal. Goals may also

be asserted from behaviours coded into the Behaviour List, and are automatically

cleared when the goal is satisfied, or when extinguished by the extinction process.

When asserting a goal the investigator is also prompted to supply a goal priority

for that goal. Whenever a goal is asserted the temporary world tally is cleared. The

world tally records the number of times each cell has been visited since last reset.

The use of the command “G” in place of “g” to assert a goal leaves the tally

unchanged to accumulate values.

5.2.4. Managing the Animat and Environment

The shape and size of the experimental environment is fixed at the start of each

experiment, however the investigator may add (“+<X> <Y>”) or remove (“-<X>

<Y>”) obstructions in the environment. The animat may be moved to a named

location (“=<X> <Y>”), or moved at random to a new starting location (“r”). The

animat may not be placed on a blocked location. When using the random relocation

command the investigator must be careful not to create any unintentional enclosed

pockets of cells into which the animat might become inappropriately trapped.

154

At any command cycle the investigator may display the “World Tally” , showing the

number of visits to each cell either since the experiment started (“WT”), or the

temporary tally (“W”), which records visits to each cell since the goal was last

asserted. The temporary world tally is automatically initialised when a goal is

asserted, or it may be explicitly initialised with the “W-” command. Figure 6-10

demonstrates the use of these commands to record the general movements of the

animat between stages in a single experiment. The “w” command shows the shape

of the environment, currently obstructed cells and the animat position to confirm

the investigator has performed the required steps in the experimental schedule

correctly.

A representation of the current Dynamic Policy Map may be obtained with the

command “M”. An example of this data is shown in figure 6-7. Information about

the � -hypotheses with the best estimated cost path to the top-goal for each cell in

the maze is mapped onto environment co-ordinates. There may be many � -

hypotheses associated with each of the cells that are not represented. The

information presented in the first line of each cell shows the individual � -hypothesis

name and the valence level at which it appears in the DPM. The second line shows

the response action associated with the � -hypothesis. The third shows the

estimated cost for the action according to the prevaili ng evaluation function. The

last line in each cell the total estimated cost of the valenced path to the goal.

Each cell represents the “s1” component of the selected � -hypothesis. Any cell that

has not been visited (through, for instance, insufficient exploration), or which is

blocked is shown blanked. The DPM displayed is that resulting from the most

recent build. If no goal has yet been activated during the current experiment, no

DPM is available and none can be shown. A short form display of the current DPM

is also obtainable with the “m” command, which displays only the � -hypothesis

identity and valence level.

5.2.5. Accessing Utilities

The investigator may change the values of the important system settings at any

point during an experiment using the “u” command. Comments may be recorded to

the trace file (“* ” or “;”). The trace file may be temporarily suspended, and

155

subsequently reactivated if required (“f”). An experiment is concluded with the quit

(“q”) command.

5.3. The System Execution Trace Log

Each time the SRS/E program is run the experimenter has the option to create a

record of all significant activities that occur during that run (the log file), which

may be inspected and analysed in detail after the experiment is concluded. The log

file records the following information. (1) The creation and modification of all � -

hypotheses. (2) All predictions made, at the time of their corroboration. The

resultant cpos, bpos, recency and other significant values for the predicting � -

hypothesis are recorded. (3) Periodic summaries of numbers of � -hypotheses

created and modified. (4) A copy of the valenced path (as figure 4-1) each time the

DPM is recomputed. Trial and error actions are not recorded, but valenced (and

unvalenced) actions are. (5) The experimenter may request at any time a log record

of the complete (or selected elements of) the Token, Sign, Hypothesis, Prediction

or Goal Lists. (6) The system automatically logs important activities, such as goal

activations, satisfactions and extinctions, changes in goal priority, and actions by

the experimenter, that change the environment or animat. The user may also write

“freeform” textual comments to the log at any point.

At the conclusion of the experiment the complete final Sign and Hypothesis Lists

are logged. Log files are automatically “watermarked” with the start and finish

times of the experiment. The current SRS/E program has been augmented with

several routines to display information about the DPM in a manner that relates the

internal representations to the layout of the simulated environment. Where such

representations are recorded in the log they are specific to the simulated

environments, not a general feature of the SRS/E system. They will be introduced

as appropriate when experimental run results are considered.

5.3.1. Processing Log Results

A utili ty program, filter.exe, has been prepared to extract relevant information

from SRS/E log files to facili tate their analysis. Log files (as they are in human

readable form) can grow to an unwieldy size. “filter.exe” contains options to

156

prepare a more concise format for review, as well as to extract data in a form

suited to graphing and tabulating utilities.

5.4. Important Schedule Variables

At the start of each experimental run the investigator is able to define a number of

parameters in addition to specifying the form of the environment. The three most

significant of these variables are: (1) the action repetition rate, abbreviated to

Arep; (2) the action dispersion probability, abbreviated to Adisp; and (3) the

learning probability rate (Lprob,
�

). At the start of each experimental run the

investigator will also be required to select a seed (rseed) for the pseudo-random

number generator26 used. The selection of the same seed allows an experimental

run to be replicated while all other conditions remain equal.

5.4.1. Action Repetition Rate (Arep)

Many of the experiments to be described call for actions to be selected at random

during an initial period of trial and error exploratory behaviour. Sutton adopts the

term random walk to describe this activity. A true random walk can lead to the

animat doubling back on itself to such an extent that exploration of a maze of any

size may take an excessive number of execution cycles, with specific areas

becoming “over explored” . Some of the experiments to be described require that

the animat has the opportunity to partially explore most of the environment. The

action repetition rate parameter increases the probabili ty that the animat will select

a new action at each cycle. With Arep set to 0.0 a new action is selected every

cycle, with Arep set to 1.0 the system would always use the same action. An Arep

value of 0.5 indicates that the same action as the previous one will be selected with

a probabili ty of 0.5 and a new one with a probabili ty of 0.5. Higher values of the

action repetition rate increase the tendency for longer sequences of the same

action.

26The random number generator (“rand()”) supplied with the compiler has been used.

157

Figure 5-3 summarises the effect of the action repetition rate on random walk

length over 2,500 trials for each of four settings, where the animat must traverse

the maze (of figure 6-1) from start to goal in each trial. The figure shows the

number of individual trials (a single traversal) falli ng into “buckets” of 100 steps.

The minimum possible path length is 14 steps. The distribution is skewed, but it

may be seen that an Arep value of 0.0 (new action always) leads to a higher

average path length (841.9 steps), and a considerable number of instances where

the path length reaches a large value than when higher values of Arep are selected.

The average path length for Arep = 0.25 was 589.1, for Arep = 0.5 was 419.5 and

for Arep = 0.75 was 343.4. The minimum random walk length achieved in the

10,000 trials was 19 (Arep = 0.75). Any advantages gained by increased

exploration rates are somewhat offset with higher values of Arep by a tendency for

the animat to become trapped at edges and corners, an effect that has detrimental

effects in some experimental situations.

5.4.2. Action Dispersion Probability (Adisp)

Sutton defines a class of noise for the Dyna environments in which actions made by

the animat are translated into another action (at the interface between animat and

environment) with a given probabili ty p. Actions are translated into either the

10
0

70
0

13
00

19
00

25
00

31
00

37
00

43
00

49
00

Arep = 0.0
Arep = 0.25

Arep = 0.5
Arep = 0.750

200

400

600

N
u

m
b

er
 o

f
T

ri
al

s

Steps to Goal

Effect of Action Repetition Rate (Arep)

Total samples: 2500 per value

Figure 5-3: Effect of Arep on Random-Walk Path Length

158

action one segment clockwise or the one segment anti-clockwise. So, for example,

“UP” will be converted to “LEFT” with a frequency defined by (1-p)/2, or to

“RIGHT” with a frequency defined by (1-p)/2, or left unchanged with a frequency

defined by (p), similarly for the other actions available. The probabili ty with which

this translation occurs is controlled in the SRS/E program by the Adisp parameter.

When Adisp is set to 1.0 all actions are unmodified. With Adisp set to 0.5, 50% of

actions would be unmodified, 25% converted to the action viewed clockwise, 25%

to the action viewed anti-clockwise. The source and destination states are still

recognised correctly in Sutton’s definition. Other forms of “noise” might also be

defined.

5.4.3. Learning Probability Rate (Lprob)

This schedule variable equates directly with the learning probability rate (Lprob,
�

) described previously. The implementation and properties of the learning

probability rate were described in chapter four (section 4.12.8).

5.5. Fixed Schedule Experiments

Several of the experimental procedures to be described call for an intricate or

highly repetitive sequence of steps to be performed so as to appropriately

demonstrate the properties of the system. Where this is the case the SRS/E suite

incorporates program code to set up each trial within the overall experiment and to

record the results obtained for subsequent analysis. Typically, the investigator will

be required to establish basic parameters for the experiment, but will not be

required to directly monitor or intervene in its progress.

Three such fixed schedule experiments have been used in obtaining the results

described later. The first schedule sets the animat to a defined starting position and

counts the number of steps (execution cycles) required for the animat to reach a

defined goal location. Having reached the goal the animat is returned to the start

location and the run restarted. This may be repeated as many times as required.

This fixed schedule is used to provide the comparative results relative to Sutton’s

Dyna algorithms (section 6.2, next chapter), and to investigate the effects of noise

(section 6.3). These procedures were used to determine the results presented in

159

figure 6-3, and to generate control data for a range of subsequent experiments. The

second fixed experimental schedule automates the path-blocking experiments,

presenting results in the style of a cumulative reinforcement curve to allow easy

comparison with Sutton’s results (section 6.5.7). The third fixed schedule

automates the latent learning task (section 6.6), and accumulates results such that

they may be presented in a manner facili tating comparison with those of Tolman

and Honzik (1930). As every fixed schedule experiment starts from known

parameters, it is possible to replicate any particular experimental trial up to a

known point before transferring to manual control. In this way a particular

outcome may be investigated in greater detail or pursued for additional steps if

required. The full trace file may be disabled during the fixed schedule phase to

avoid recording unnecessary detail and subsequently re-enabled during the manual

phase to monitor results in detail.

The next chapter describes and discusses a number of experiments performed with

the SRS/E program.

