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Chapter 6

6. Investigations and Experimental Results

This chapter describes a series of experiments with the SRS/E program. The

approach has been to investigate the properties of the algorithm under highly

controlled conditions, allowing a clear view of the algorithm’s behaviour and

performance. Some of the investigations mirror those used to investigate

reinforcement learning systems from the modern machine learning paradigm, but

some revive and repeat historical investigations used to disambiguate between

competing theories of natural learning. It is interesting to note that these issues are

still debated as actively as ever after decades of research. There are significant

differences in the constitution of animals and animats, and some of the procedures

must be modified to reflect these. Nevertheless it is hoped that the spirit of the

original experiments is faithfully captured, and some of the lessons and challenges

revealed will make a substantive contribution to this ongoing debate.

The previous chapter described the provisions that have made to enable the

investigator to design and conduct experiments with the SRS/E program and to

analyse and present the results obtained. Section 6.2 of this chapter describes a

series of “baseline” experiments in which the performance of the SRS/E algorithm

is compared directly to the performance of the Dyna-PI algorithm described by

Sutton (1990). The SRS/E algorithm performs the task described by Sutton more

efficiently by a factor of some 40 times. Additional investigations in this section

clearly demonstrate the development of the classical negatively accelerating

learning curve from the widely varying performance of many individual animats, in

a manner predicted by the stimulus sampling theories previously mentioned.

Experiments described in section 6.3 determine the effects of “noise” on the

performance of the SRS/E algorithm. These experiments adopt a definition of noise

provided by Sutton, and clearly indicate that the SRS/E algorithm will l earn
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effective solutions even when presented with high levels of disruptive noise. These

experiments also distinguish between the effects of noise on the learning process

and on animat behaviour. Direct comparison with the Dyna-PI algorithm was not

possible as Sutton did not report results with his algorithms.

The experiments described in section 6.4 investigate how the SRS/E algorithm

responds to multiple and alternative goals. A number of experimental situations are

explored which demonstrate the flexibili ty provided by the Dynamic Policy Map

approach adopted by the SRS/E algorithm. In the alternative goal experiments the

animat is required to traverse between a known start and goal situation, which is

then reversed (such that the start becomes the goal and vice versa). In the multiple

goal experiments the animat must visit several, arbitrarily selected goals. These

tasks are not achievable with an unmodified Q-learning algorithm or any of

Sutton’s Dyna algorithms, as they all use a static policy map, and so no comparison

of performance can be possible. These experiments therefore highlight a radical

improvement between existing external reward and the Dynamic Expectancy based

methods of reinforcement learning introduced by this thesis.

The investigations described in section 6.5 replicate experimental conditions used

by Sutton to determine the effects of blocking known solution paths and opening

new solution paths during individual trials of his Dyna-Q+ algorithm. Dyna-Q+ is a

specifically modified variant of the Dyna-PI algorithm to address these tasks. The

SRS/E algorithm matched the published performance in all the tasks described,

although the method employed by the two algorithms is substantially different.

SRS/E incorporates an extinction mechanism, not present in Q-learning or the

Dyna algorithms, which allows the animat to abandon unachievable goal directed

tasks and thus escape from potentially “ life” threatening situations. The extinction

mechanism is developed on biologically plausible grounds.

The experiments of section 6.6 replicate classic “ latent learning” procedures. The

latent learning experiments were the first to demonstrate conclusively that learning

in animals could take place in the absence of external reward or reinforcement.

Latent learning may be easily demonstrated with the SRS/E algorithm, and this

chapter replicates the procedures adopted to show the effects in animal

experiments. Demonstration of latent learning by a reinforcement algorithm
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employing the Q-learning or Dyna methods would appear to be highly problematic,

and remains a challenge to those espousing that school of thought. Similarly

section 6.7 describes a replication of the “place learning” experiments, in which the

animat must make different responses when placed in apparently identical stimulus

situations from trial to trial. While the SRS/E algorithm responds to the place

learning challenge in a similar manner to experimental animals, it remains unclear

how a conventional reinforcement algorithm based on a static policy map could

achieve this.

It might be noted that Sutton was obliged to employ a family of algorithms, Dyna-

PI, Dyna-Q and Dyna-Q+, to demonstrate the experimental procedures described

in this chapter. A single program implementing the SRS/E algorithm has been used

for the experiments to be described.

6.1. The Individual Experiments

The sections that follow describe a series of individual experiments that attempt to

characterise the performance of the SRS/E algorithm in well defined and controlled

environments with particular reference to its learning capabili ties. Each section is

divided into three major parts. Part one will consider the rationale for the

experimental schedule and describes the method and experimental procedures

adopted for the experiment. As these may be derived from two separate

methodologies, natural learning and machine learning, some care will be taken to

ensure the data is extracted appropriately to identify and accommodate cross-

domain issues. Part two will present the results from specific experiments.

Wherever possible this presentation of results will take graphical or tabular form to

provide for easy assimilation of the main points being investigated. Where a

comparative investigation is being performed (one which replicates or substantially

adapts part or all of an established procedure) an attempt will be made to present

the SRS/E results in a form reflecting that of the original or source work, where

this does not unduly impact or compromise the current experiments. Part three

discusses the results of the experiment.
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6.2. Baseline Investigations

These initial experiments attempt to characterise the SRS/E algorithm under highly

controlled conditions, and to compare its performance to a well-established

example of reinforcement learning. Sutton (1990) has extensively investigated a

family of algorithms related to the idea of dynamic programming. To establish a

performance baseline SRS/E is tested under conditions functionally identical to the

descriptions given for Dyna-PI and “learning curves” (indicating improvement in

performance following practice) obtained. Dyna-PI is presented by Sutton as

showing substantial performance improvements over previous reinforcement

learning methods.

Dyna-PI alternates “actual” movements in its simulated environment with

“hypothetical experiences” derived from a world model created from data gathered

during the actual exploration phases. Sutton refers to these periods of hypothetical

activity as “planning” ; a more apposite term might be “rehearsal” . The three curves

of figure 6-1 indicate the effect of increasing the ratio of “hypothetical experience”

relative to “actual experience”. The outer curve, labelled “0 planning steps” is

equivalent to the performance of the underlying learning algorithm, converging

with the optimal performance line (14 steps/trial) after about 90 trials. Where the

animat is permitted 10 “planning” steps interspersed with each actual trial the curve

reaches the optimal value after some 12 trials. As the ratio increases, the

performance improvement becomes ever more apparent. In effect an equivalent

amount of computation has been performed, although observable activity is

substantially reduced.

SRS/E retains no additional internal world model. To obtain baseline learning

curves SRS/E will be successively handicapped by artificially limiting the frequency

with which it can exploit a recognised learning (by creation) opportunity. This is

achieved by manipulating the learning probabili ty rate (Lprob), while leaving other

experimental conditions unchanged. Varying the learning probabili ty rate

introduces sampled learning, partially emulating the effects of spurious or irrelevant

signs being incorporated into � -hypotheses.
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6.2.1. Description of Procedure

To perform the baseline experiments the first fixed schedule is used, which

automatically selects and initialises the DynaWorld/Standard environment. Four

separate learning curves are created with four different values of the learning

probability rate, 1.0 (all learning opportunities taken), 0.25 (25% of opportunities

taken), 0.1 (10% of opportunities) and 0.025 (2.5% of opportunities). The other

factors are held constant for the duration of the experiment. In addition a control

baseline is established indicating the animats’ performance without valenced

behaviour. Each curve is the average of 100 separate experimental runs, each of

100 trials. For each run a new animat (based on a new random starting seed) is

placed at the starting point (located at X = 0, Y = 3) and allowed to run the maze.

The number of steps taken to reach the goal (at X = 8, Y = 5) are recorded for

each trial.

\monolith\mazes\graphic 5.4

Figure 6-1: Results from Sutton’s Dyna-PI Experiments
(from Sutton, 1991, p. 219)
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At the conclusion of each trial the animat is returned to the starting point, the goal

reasserted (with a priority of 1.0) and the animat released to traverse the maze

following whatever valenced path is available. In Sutton’s experimental paradigm

reward is assigned and the animat is returned to the starting location when the goal

is reached. As corroborative learning does not take place in SRS/E until

predictions are verified, the animat is allowed to remain undisturbed in the

experimental maze for an additional 16 execution cycles after the goal is reached

before the trial ends. Each curve is therefore composed of 10,000 visits to the goal

location (100 runs of 100 trials). The control line is determined from 2,500 random

walks from start to finish. The complete experiment comprises 42,500 visits to the

goal location. This is comparable to Sutton’s experimental design. The remaining

system and animat parameters were held constant throughout the procedure (Arep

= 0.0, Adisp = 1.0, �  = 0.5, 
�
 = 0.2, � 1 = 0.0, � 2 = 0.9, � 3 = 0.1, � 4 = 0.0).

6.2.2. Results and Analysis of Baseline Experiment

Figure 6-2 summarises the results of the baseline learning experiments. With

learning probabili ty rate = 1.0 every opportunity to learn by creation is taken. As

the exploration by random walk is protracted due to the selection of a new random

action at each cycle most of the possible � -hypotheses have been created by the

first time the goal location is reached. The random walk length for the first trial is

highly variable (average of the 100 runs 743.25, best 24 steps, longest 4,380). On

being returned to the starting point for a valenced trial to the goal location there is

consequently a good chance that an optimal (there are many such paths), or nearly

optimal path will be created. The average path length for this second trial is 15.32

(best is 14 steps). Of the 100 runs, 53% of the second trial achieved the optimal 14

step path, 34% the 16 step path, 8% the 18 step path, 4% the 20 step path and one

path of 22 steps. By trial 100 the average valenced path length had fallen to 14.96,

still above the achievable best.
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With values of Lprob less than unity, the learning curves take on a more traditional

appearance. Discovery of the optimal (or near optimal) path is delayed. The effect

of decreasing the probability that a learning by create event will occur has a quite

distinctive effect on the rate at which performance improves (as indicated by falling
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Figure 6-2: Baseline Learning Curves (Lprob = 1.0, 0.25, 0.1 and

0.025)
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steps/trial), and on the point at which performance stabili ses at its minimal level.

The last animat to find its stable valenced path for Lprob = 0.25 (diamond graph

markers) is at trial 26, the last one for Lprob = 0.1 at trial 56 (triangle markers).

The penultimate animat for Lprob = 0.1 stabili sed at trial 40. This point of stabili ty

has not been reached for the Lprob = 0.025 curve after 100 trials, four individuals

from the initial 100 animats still not having found a complete valenced path. An

individual animat is defined here as an animat assigned a specific value to the

pseudo-random number generator seed (rseed) at parturition. This value will

remain unchanged for the individual for the duration of the experiment.

Figure 6-3 details the performance of a selection of individual animats from the

Lprob = 0.025 curve. The five individuals are selected on the basis of the total

number of actions they took during the experimental run. Individuals were ordered

according to the total number of steps taken in the 100 trials, the sub-figures

indicate the “best” (fewest steps), the “worst” (most steps) and the quartile

individuals. The “best” , individual 84, (rseed = 840) made a total of 8,152 actions

(minimum possible is 1,400, figures exclude the run-on period), stabili sing by trial

11. Individual 69 (rseed = 690) had stabili sed by trial 10, but the preceding random

walks had taken more steps. The individual ranked 25th in the population

(individual 68) stabili sed on trial 24, 50th (individual 78) at step 42, 75th

(individual 9) on trial 56 and the “worst” (individual 99) finally stabili sed on trial

116. The net effect is shown in the lower right sub-figure.

For each trial, where Lprob 
�
 1.0, the transition from a poor solution path to the

near optimal, stable, one is in most cases quite distinctive and often abrupt - as

though “the penny dropped”. Inspection of the trace information confirms that the

effect is primarily due to the probabili ty with which � -hypotheses at low valence

levels leading to the goal sign are formed. Until these particular � -hypotheses have

been created the formation of an effective Dynamic Policy Map is not possible, and

so the majority of actions remain unvalenced. Even though this final step is not in

place the learning of other � -hypotheses is still taking place. Once the near goal

connections are made, with a probabili ty regulated by Lprob, sufficient � -

hypotheses are invariably available to create an effective DPM from start to goal. A

less common effect where a short “stub” DPM builds out from the goal, which

subsequently connects to the main body of knowledge is also observed. The overall
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observable effect on measured path lengths of this stub phenomenon in relation to

random walk length is small. This interpretation of the probabilistic nature of the

learning process has much in common with the stimulus sampling theories

promoted by William Estes and others (Bower and Hilgard, 1981, Ch. 8 for

summary of this position).
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Figure 6-3: Contribution of Individual Animats to Learning Curve
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6.2.3. Discussion

Under the learning conditions defined by the learning curve where Lprob = 1 the

performance comparison with Sutton’s Dyna-PI system is clear. Where Dyna-PI

takes approximately 90 trials to reach a stable minimum path solution, SRS/E does

so in a single trial across all individuals in the test population. Dyna’s poor

performance in these circumstances arises from two properties. First, reinforcement

is only made at the point the animat reaches the goal, and second, the effects of

that reinforcement only propagate back towards the start state labelled “S” one

level at a time. At a very minimum then the influence of the reinforcing goal state

cannot reach the starting point until the animat has made many “forward”

transitions. It might be conjectured that there is a form of “two-steps-back/one-

step-forward” strategy that would optimally spread the goal’s influence, but this

would be a highly artificed strategy. In practice sufficient numbers of propagating

transitions are not made until a large number of trials have been completed.

Protracted learning rates are recognised as a limitation of this class of

reinforcement learning algorithm (e.g., Wyatt, 1995). The protracted learning rate

of this class of reinforcement algorithm provides an advantage in terms of noise

immunity. The lack of immediate commitment allowing an accurate model of the

variabili ty to be constructed. SRS/E will be tested in a later experiment to

determine the degree to which learning rate and task performance degrade under

the noise conditions defined by Sutton.

Is it not the case then that all SRS/E is doing is recording every transition, building

a simple graph and so easily traversing it? For Lprob = 1.0 the conditions for

learning are indeed ideal under these experimental conditions. Each state is

recognised by a unique and reliable identifier, every action reliably transitions

between two such states, the � -hypothesis creation mechanism explores exactly this

relationship first, and the animat is permitted to learn ad libitum. Why should

learning be anything other than one-shot when conditions are ideal? As these

conditions move toward more realistic circumstances the expected, and observed,

learning performance falls away from this ideal case. In doing so they repeatably

demonstrate the forms of the learning curve so ubiquitously observed in

experiments with animals.
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Several reinforcement algorithms claim to achieve optimal performance over a

fixed task of this nature27, yet SRS/E does not demonstrate perfect performance

even after 100 trials under the optimal conditions (Lprob = 1.0, figure 6-2). Recall

that the average path length was 15.32 on the second trial, and improved only

marginally to 14.96 after all 100 trials. Why should this be? SRS/E and

reinforcement learning algorithms make fundamentally different assumptions.

Dyna-PI is set a repetitive task and builds a static policy map. For every condition

an optimal policy action is ultimately made available. By successively reducing the

learning rates and action selection variabili ty (by reducing the Boltzmann

distribution “temperature”) the policy map stabili ses. Under these conditions it may

be more germane to enquire how the performance of SRS/E improves at all while

the goal is continually reasserted. The answer lies in the 16 run-on cycles following

the animat’s arrival at the goal location. Learning occurs independently of valenced

behaviour and new � -hypotheses can be created during this brief period.

SRS/E is specifically an algorithm for learning and behaviour. Goals arise, are

satisfied (or not) and the animat moves on to some different activity. Once a goal is

asserted the algorithm pursues it via the best path without additional exploration,

using whatever information is available at the time. The experimental circumstances

described here exclude any variabili ty due to noise, so that when the goal is

continually reasserted without interruption, the animat pursues the path without

variation. Where an optimal path is located first, then all subsequent paths are also

optimal, where a sub-optimal path is located, all subsequent paths will be sub-

optimal. Under normal conditions the animat would pursue other activities,

allowing new � -hypotheses to be created, and so overall improvement in goal

acquisition would occur over time. There is a detectable correlation between the

amount of exploration during the random walk exploratory phase and the resulting

average path length under valenced test conditions. Enabling the oscill  ( � 4)

component would explicitly add the dimension of exploratory behaviour, but would

always tend to detract from the performance of optimal solutions.

                                               
27 Notably those which reduce to an establi shed dynamic programming technique and are thus
able to exploit the existence of optimal solution proofs (Ross, 1983).
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6.3. The Effects of Noise

Sutton (1990) defines a test procedure for determining the effects of noise on the

Dyna family of reinforcement algorithms. Noise, by Sutton’s definition, perturbs

the proper action of the animat by altering the effect of its actions, effectively after

the animat has issued them, and so is completely outside the control of the animat.

Provision for adding this form of noise is made within the SRS/E system. It is

controlled by the action dispersion probabili ty (Adisp) parameter. Adisp is selected

by the investigator at the start of each experimental run. Its use and effects were

described earlier in chapter five. This series of experiments is designed to evaluate

the effects on both learning and valenced behaviour in SRS/E. Sutton did not

publish noise results for the Dyna algorithms.

6.3.1. Description of Procedure

The experimental procedure described for the baseline experiments was repeated,

with the exception that Adisp was set to 0.5 (50% of actions changed, 50%

unchanged). The data from the total of 42,500 trials was recorded and plotted as

before. A separate control line was determined for these experiments. The

complete experimental procedure was then repeated with Adisp set to 0.75 (75%

of actions unchanged, 25% changed).

6.3.2. Results and Analysis of Experiment

Figure 6-4 summarises the results from this investigation for Adisp = 0.5. Two

points are of note. First is that the slope of the learning curve is not noticeably

different for the results obtained in the noise free situation. Second the average

valenced path length following stabili sation (as measured by the mean of the last 25

trials for Lprob = 1.0, 0.25 and 0.1, total of 7,500 individual trials) is markedly

higher at 65.84 than that for the noise free case, at 15.46. There is also more

variabili ty in the valenced path lengths (as determined by the standard deviation,

45.99 as opposed to 1.34 for the noise free case). The Adisp = 0.75 trials resulted

in a mean of 25.19 and a standard deviation of 14.42 under the same conditions.

The learning curves in this case also showed a similar slope to the Adisp = 1.0 and

0.5 investigations.
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6.3.2.1. Tuning Parameters for Static Environments

The “standard” set of selection factor values ( � 1 = 0.0, � 2 = 0.9, � 3 = 0.1 and � 4 =

0.0) was employed for the above investigations. These settings are appropriate to a

changing environment, as the cost estimate values are biased toward more recent
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Figure 6-4: Baseline Learning with Noise (Adisp = 0.5, Lprob =

1.0, 0.25, 0.1 and 0.025)
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events. The experimental environment used here is essentially static, apart from the

introduced noise, the level of which remains constant. The investigation with Adisp

= 0.5 was repeated (for Lprob = 1.0, 0.25, 0.1 and 0.025 over 100 runs each of

100 trials), with the value of � 1 set to 1.0 (so � 2 = � 3 = � 4 = 0.0). Cost estimates

are therefore directly related to the probability of successful prediction of each � -

hypothesis. The estimates are calculated from the unadjusted count of frequencies

of satisfied expectations to total activations from the cycle on which the � -

hypothesis was created. Figure 6-5 shows the resulting learning curves. Conditions

were identical to the results shown in figure 6-4, except as indicated.
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The average valenced path length following stabilisation (as measured by the mean

of the last 25 trials for Lprob = 1.0, 0.25 and 0.1, a total of 7,500 individual trials)

is indeed lower, at 56.83 (stddev = 56.18), than for the � 2 = 0.9 case, (65.84

steps/trial), but still higher than that for the noise free case (15.46 steps/trial).

Baseline (Gamma1 = 1.0, Adisp = 0.5)

0

200

400

600

800

1000

1200

0 20 40 60 80 100

Trials

A
ve

ra
g

e 
st

ep
s/

tr
ia

l

1

0.25

0.1

0.025

control

monolith\results\gamma1\base_g1.xls

Figure 6-5: Baseline with Noise (Adisp = 0.5, � � 1 = 1.0)
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These results indicate that alterations in the cost estimation parameters have some

effect, but that this is not as pronounced as might have been expected under these

conditions.

6.3.2.2. The Effects of Noise: Learning or Behaviour?

The question remains whether the decrease in animat goal seeking performance is

primarily due to inaccuracies in the Dynamic Policy Map, or a consequence of the

disruption due to the animat’s individual action selections being thwarted by the

noise process. This detailed investigation takes a specific individual and allows it to

run for 100 trials with the noise parameter Adisp set to 0.5 (to replicate the

baseline run). The investigator then regains manual control of the experiment and

forces the value of Adisp to 1.0 (no dispersive noise), returns the animat to the

start location, enables the standard goal and records the number of steps taken.

Figure 6-6 compares the two subsequent trial paths, trial 101 with Adisp = 0.5, and

trial 102 with Adisp = 1.0.

Inspection of the Valenced Path printout (figure 6-8) from the experiment trace log

file confirms the soundness of the valenced path created under noise conditions.

Figure 6-7 shows the policy map generated at the conclusion of trial 101. Each

location shows the appropriate action except X=5, Y = 0 (bottom row, fourth back

from right corner). � -Hypothesis H223 (“S28<X5Y0> �  D �  S29<X6Y0>”) has

an estimated cost of 3.0, 14 of the 42 activations to date having succeeded. The

“correct” � -hypothesis, H121 (“S28<X5Y0> �  R �  S29<X6Y0>”) has an

estimated cost of 4.66, only three of the 14 trials to date having succeeded. Such is

the consequence of probabili stic dispersive noise. Each action is selected

independently, there is no guarantee at any point the ratio of the three possible

actions reflects the 0.5:0.25:0.25 selection process. The location is away from the

Cycle 7299: World is 6 by 9
   0    0    0    0    0    1    1 ****    1X
   0    0 ****    0    1    5    3 ****    1 
   2    1 ****    0    1    3    2 ****    3 
   1    0 ****    1    1    0    1    3    3 
   1    3    1    1    0 ****    0    0    0 
   0    2    0    0    0    0    0    0    0 
Mean = 0.914894, std dev = 1.185013

Cycle 7314: World is 6 by 9
   0    0    0    0    0    0    0 ****    1X
   0    0 ****    0    0    0    0 ****    1 
   1    1 ****    0    0    0    0 ****    1 
   0    1 ****    1    1    1    1    1    1 
   0    1    1    1    0 ****    0    0    0 
   0    0    0    0    0    0    0    0    0 
Mean = 0.319149, std dev = 0.483779

(A) Path with Adisp = 0.5 (trial 101) (A) Path with Adisp = 1.0 (trial 102)

monolith\figures.ppt:slide 4

Figure 6-6: a) Path with Adisp = 0.5 (trial 101), b) Adisp = 1.0 (trial 102)
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valenced goal path and consequently these policy recommendations were

developed during the exploration period. Were this location to fall on the valenced

path the system would naturally select H223. On the assumption it would fail in

75% of cases its estimated cost would eventually rise above that of H121, which

would then become the preferred choice. Note that the majority of other estimated

costs (line four in each location cell) more closely reflect the expected value of 2.0.

Figures 6-6, 6-7 and 6-8 were all extracted from the latter (� 1 = 1.0) investigation.

Separate observations from a number of individual runs from both investigations,

and from inspection of Dynamic Policy Maps (“M” command) confirm that the

effects on valenced path length are mainly from the execution of the behaviour,

rather than faults in the � -hypothesis creation process or construction of the policy

map. “Inappropriate” actions still appear in the DPM, and may do so at any point

in the investigation due to the chance of long sequences of noise affected actions

altering the relative strength of the � -hypotheses relevant to the achievement of any

given location in the path. Clearly this is more likely in the case where learning is

biased towards recent events. In this instance a long sequence of noise affected

actions will have a disproportionate effect at any point in the animat’s existence.

Where � 1 = 1.0 the same sequence of noise affected actions will have greater effect

Policy map at cycle 7299
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|H164@14 |H378@13 |H29@12  |H45@11  |H276@10 |H380@9  |H148@8  |........|        |
|R       |R       |R       |R       |D       |D       |D       |........| GOAL   |
|   28.44|   26.64|   24.41|   22.28|   20.42|   18.68|   16.38|........|        |
|    1.80|    2.23|    2.13|    1.87|    2.00|    2.00|    1.70|........|        |
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|H1@15   |H18@14  |........|H109@10 |H48@9   |H49@8   |H301@7  |........|H493@1  |
|D       |D       |........|R       |R       |D       |D       |........|U       |
|   29.91|   28.20|........|   20.96|   18.42|   16.68|   14.68|........|    2.33|
|    1.38|    1.62|........|    2.55|    1.74|    2.33|    2.18|........|    2.33|
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|H70@14  |H176@13 |........|H305@9  |H213@8  |H50@7   |H331@6  |........|H492@2  |
|R       |D       |........|R       |R       |R       |D       |........|U       |
|   28.53|   26.58|........|   18.70|   16.52|   14.35|   12.50|........|    4.52|
|    1.94|    2.00|........|    2.18|    2.17|    1.85|    1.99|........|    2.19|
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|H192@13 |H20@12  |........|H100@8  |H294@7  |H382@6  |H383@5  |H384@4  |H422@3  |
|D       |D       |........|R       |R       |R       |R       |R       |U       |
|   26.66|   24.58|........|   16.26|   14.45|   12.67|   10.51|    8.51|    6.59|
|    2.03|    2.17|........|    1.81|    1.78|    2.15|    2.00|    1.93|    2.06|
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|H182@12 |H247@11 |H84@10  |H95@9   |H286@8  |........|H393@6  |H350@5  |H346@4  |
|R       |R       |R       |U       |U       |........|R       |U       |U       |
|   24.63|   22.41|   20.45|   18.22|   16.06|........|   12.33|   10.45|    8.63|
|    2.21|    1.96|    2.23|    1.96|    1.61|........|    1.88|    1.93|    2.04|
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|H185@13 |H205@12 |H207@11 |H209@10 |H210@9  |H223@8  |H227@7  |H407@6  |H426@5  |
|R       |R       |R       |R       |U       |D       |R       |R       |U       |
|   25.43|   23.38|   21.51|   19.66|   17.85|   17.00|   14.00|   11.65|   10.10|
|    2.06|    1.87|    1.85|    1.81|    1.79|    3.00|    2.35|    1.54|    1.48|
+--------+--------+--------+--------+--------+--------+--------+--------+--------+

Figure 6-7: Policy Map at Conclusion of Trial 101
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while the total activations of the affected � -hypothesis is low. In practice the

system has shown itself (over thousands of trials) to be particularly tolerant of

these chance events, re-establishing appropriate paths once the sequence of

anomalous events is ended.

6.3.3. Discussion

The introduction of dispersive noise into the SRS/E system is undoubtedly

reflected in the performance of the animat under these controlled experimental

conditions. These investigations also confirm that the learned component of the

system is resilient to this form of noise (as is also claimed for certain Q-learning

systems), actions derived from available � -hypotheses at each choice point

reflecting probabilities from past experience. The system may be made more or less

reactive to change in the environment by the selection of parameters. Sutton

(1990) suggests the possibility that a second order learning phenomena might be

employed to determine the long term applicability to an individual animat of a

particular strategy. Alternatively selection pressures within a population of

individuals might be considered an appropriate strategy.

Dispersive noise, of the form investigated here is only one form of noise. The

current implementation of SRS/E also allows for the introduction of random tokens

into the input token stream. Such tokens emulate the presence of extraneous

events, unrelated to the performance of the task. Using the postulate system

described SRS/E will incorporate these random occurrences into � -hypotheses as a

matter of course. SRS/E will be sensitive to this form of noise. First in that it will

VBP @ 7256 = 285.322, bestcost = 28.5192
GOAL 46, Max valence level is 16
H70 predicts S5[X1Y3] from S0[X0Y3] (*active) after R (cost = 1.942029, total = 28.519203)
H176 predicts S6[X1Y2] from S5[X1Y3] after D (cost = 1.978261, total = 26.577173)
H20 predicts S7[X1Y1] from S6[X1Y2] after D (cost = 2.169492, total = 24.598913)
H247 predicts S22[X2Y1] from S7[X1Y1] after R (cost = 1.942308, total = 22.429422)
H84 predicts S23[X3Y1] from S22[X2Y1] after R (cost = 2.246154, total = 20.487114)
H95 predicts S26[X3Y2] from S23[X3Y1] after U (cost = 1.981482, total = 18.240959)
H100 predicts S20[X4Y2] from S26[X3Y2] after R (cost = 1.833333, total = 16.259478)
H294 predicts S25[X5Y2] from S20[X4Y2] after R (cost = 1.764706, total = 14.426144)
H382 predicts S33[X6Y2] from S25[X5Y2] after R (cost = 2.152542, total = 12.661438)
H383 predicts S40[X7Y2] from S33[X6Y2] after R (cost = 2.012987, total = 10.508896)
H384 predicts S42[X8Y2] from S40[X7Y2] after R (cost = 1.934307, total = 8.495909)
H422 predicts S44[X8Y3] from S42[X8Y2] after U (cost = 2.051020, total = 6.561603)
H492 predicts S45[X8Y4] from S44[X8Y3] after U (cost = 2.185185, total = 4.510582)
H493 predicts S46[X8Y5] (goal) from S45[X8Y4] after U (cost = 2.325397, total = 2.325397)
Valenced path in 14 steps, estimated cost 28.519203

Figure 6-8: Planned Valenced Path (trial 101)
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precipitate the formation of spurious � -hypotheses, diluting the Hypothesis List and

adding computational overhead. Second in selecting whatever response was

incorporated into the spurious � -hypothesis at the time of its creation,

inappropriate actions will be selected in pursuit of the current top-goal. As the

availabili ty of more effective � -hypotheses increases, these spurious � -hypotheses

will contribute less to the behaviour of the animat and will eventually be expunged

by the � -hypothesis deletion procedures considered in chapter four.

6.4. Alternative and Multiple Goals

These investigations demonstrate the effect of the SRS/E system when confronted

with several different goals, either sequentially or simultaneously. The results of

these investigations ill ustrate the manner in which SRS/E handles goals and

valenced behaviour, and highlights the differences between the Dynamic

Expectancy Model and reinforcement learning methods that create a static policy

map.

6.4.1. Description of Procedure

In investigation one of this experiment naïve animats are allowed an exploration

period in the chosen environment, in this instance DynaWorld/Standard (figure 5-

1). Each run uses the defined starting point (“S”). The initial unvalenced trial-and-

error exploration period is chosen to allow the animat adequate opportunity to

thoroughly explore its environment (1,000 execution cycles). An action repetition

rate (Arep) value of 0.5 is selected to reduce initial random-walk time. The

unvalenced time to reach the goal is noted. At the end of the exploration period the

animat is returned to the known starting point, and the goal state (“G”) is asserted

with a priority of 1.0. The valenced time to reach to Goal is noted. On reaching the

standard goal (“G”) the original starting location (“S”) is now asserted as the goal,

with a priority of 1.0, and the valenced time for the animat to re-traverse the

environment noted. To confirm these findings these two traversals are repeated,

and the respective valenced path times noted.

As a control, investigation two of the alternating goal experiment repeats

investigation one of the experiment with the start and goal locations reversed at
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every stage in the procedure. The procedure is repeated 10 times and the results

tabulated. A single instance is selected and individual paths presented for detailed

discussion.

The third investigation of this experiment presents the animat subjects with two

goals simultaneously. The path generated to reach these two goals should verify

the mechanism by which SRS/E seeks and satisfies elements on the Goal List 
� �

.

Individual naïve animats are given an identical training period to the previous

investigations using the DynaWorld/Standard environment, before being returned

to the start location “S” . Two goals are then enabled simultaneously, one of which

is the original goal (“G”), with a priority of 2.0, and the other chosen to be at some

location (“G2” at X = 1, Y = 5) on or near an expected valenced path between

start and original goal. The goal “G2” is assigned a lower priority (1.0), figure 6-9.

6.4.2. Results and Analysis of Experiment

Results for the first investigation are shown in table 6-1. The first column indicates

the starting random seed, the second the number of actions taken during the

random walk to reach the location “G”. The goal is not asserted and so has no

special significance to the animat at this stage. The third shows the length of the

valenced path for the first traversal from “S” to “G”. The fourth column records

the length of the valenced path returning from “G” (as starting point) to “S” (now

valenced as the goal). The fifth and sixth columns record the valenced path lengths

from “S” to “G” (valenced) and then from “G” to “S” (valenced) respectively. The

animat position is only changed by the investigator once, directly following the

random-walk period.

Graphic 5.12 from monolith\mazes.cdr

Figure 6-9: Simultaneous Goal Locations



180

Under these essentially ideal learning conditions the initial valenced path from “S”

to “G” is close to the minimum. The variation observed is consistent with the

observation that the 1000 random-walk cycles was insufficient to completely build

the full potential Hypothesis List, so solution paths may be sub-optimal. The first

return path (“G” �  “S”) consistently requires more cycles than would be expected

following this level of experience. Figure 6-10 details the individual animat paths at

different stages in a single experimental run and indicates the reason for the

apparently anomalously extended path length. Figure 6-10a records (shown using

the “W” command) the number of visits by the animat to each location during the

exploratory, unvalenced, random-walk period. The location cell labelled “X” (X=8,

Y=0) indicates the position of the animat when it was removed by the investigator

to the start location for the first valenced run. Figure 6-10b shows the first

valenced path, non-optimal at 16 steps, no doubt as a consequence of the greater

degree of exploration in the upper part of the environment on this particular run.

Figure 6-10c shows the return path. The animat moves to location (X=8, Y=0)

immediately and appears to become trapped there for some number of execution

cycles, thereby increasing the overall path length to 27 (from a possible 14). This is

Seed 1st visit “G” S� G (1) G� S (1) S� G (2) G� S (2)

10 915 16 23 15 14

20 317 14 28 13 14

30 216 14 18 13 15

40 101 15 15 13 16

50 534 14 19 15 14

60 167 14 14 15 13

70 379 14 18 15 16

80 265 16 27 15 14

90 134 14 33 15 16

100 140 14 29 13 14

Average 316.8 14.5 22.4 14.4 14.6

Table 6-1: Results for Investigation One of Dual Goal Experiment
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an experimental artefact, demonstrating that this emulation of learning and

behaviour requires as much care in the conduct of experimental procedure as does

work with real animal subjects. The forcible movement of the animat to the start

location caused a spurious � -hypothesis (“H167: <X8Y0> �  D �  <X0Y3>”)28 to

be created, which promises a short-cut to the current goal location. The � -

hypothesis H167 fails to deliver this promise at every trail. Its cost estimate

contribution increases at each attempt until i t exceeds that for the effective path,

which is adopted at the next DPM rebuild. When this path is again valenced, the

shorter path is adopted immediately, figure 6-10e.

Table 6-2 records the results of investigation two of this experiment, where the

roles of “S” and “G” from figure 6-1 are reversed throughout the procedure. The

results are broadly similar to those of investigation one and clearly demonstrate

that these results are independent of the actual start and goal locations.

                                               
28“H167 predicts S0[X0Y3] (goal) from S36[X8Y0] after D (cost = 1.818182, total = 1.818182)” :
from the valenced path summary recorded in the experiment trace file.

Cycle 1001: World is 6 by 9
  95   56   22   47   21   10   27 ****    5 
  54   28 ****   22   16   12   31 ****    4 
  43   42 ****   21   12    6   19 ****   36 
  16   32 ****   21   16   18   10    6   17 
  14   13   13   14   14 ****    3    2   17 
  12   20    7   23    5    8   10   15   46X
Mean = 21.297873, std dev = 17.189804

Cycle 1018: World is 6 by 9
   0    1    1    1    1    1    1 ****    1X
   0    1 ****    0    0    0    1 ****    1 
   1    1 ****    0    0    0    1 ****    1 
   0    0 ****    0    0    0    1    1    1 
   0    0    0    0    0 ****    0    0    0 
   0    0    0    0    0    0    0    0    0 
Mean = 0.361702, std dev = 0.483779

Cycle 1046: World is 6 by 9
   0    0    0    0    0    0    0 ****    1 
   0    0 ****    0    0    0    0 ****    1 
   1    1X****    0    0    0    0 ****    1 
   0    1 ****    1    1    1    1    1    2 
   0    1    1    1    0 ****    0    0    2 
   0    0    0    0    0    0    0    0   10 
Mean = 0.595745, std dev = 1.501772

Cycle 1062: World is 6 by 9
   0    1    1    1    1    1    1 ****    1X
   0    1 ****    0    0    0    1 ****    1 
   0    1 ****    0    0    0    1 ****    1 
   0    0 ****    0    0    0    1    1    1 
   0    0    0    0    0 ****    0    0    0 
   0    0    0    0    0    0    0    0    0 
Mean = 0.340426, std dev = 0.483779

Cycle 1077: World is 6 by 9
   0    0    0    0    0    0    0 ****    1 
   0    0 ****    0    0    0    0 ****    1 
   1X   1 ****    0    0    0    0 ****    1 
   0    1 ****    1    1    1    1    1    1 
   0    1    1    1    0 ****    0    0    0 
   0    0    0    0    0    0    0    0    0 
Mean = 0.319149, std dev = 0.483779

(A) 1000 steps random-walk (rseed = 80)

(B) S � �  G (1) (C) G � �  S (1)

(D) S � �  G (2) (E) G � �  S (2)

monolith\figures.ppt:slide 5

Figure 6-10: Animat Random and Valenced Paths (investigation 1, rseed = 80)
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Table 6-3 summarises the results obtained for the simultaneous goal procedures of

investigation three. The effect of setting these two goals is to cause the animat to

visit each in turn. In the majority of cases the animat visits the more distant, but

higher priority goal first, and then doubles back to satisfy the secondary lower

priority goal. The average valenced path length to the first goal is 14.33, and the

average total travel to both goals is 32.44. The disruptive effects of the forced

return to “S” are still apparent. In one instance the goals are visited in the reverse

order (rseed = 80), with valenced path lengths of 3 and 16 respectively. This is

purely because the secondary goal lay on the path taken by the animat to the

primary goal. A goal is satisfied by being achieved, regardless of whether or not

this was because of a valenced action specifically intended to satisfy that goal. The

use of “cloned” animats for parts 1 and 3 of this experiment means the initial

exploratory and first goal paths are identical.

Seed 1st visit “S” G� S (1) S� G (1) G� S (2) S� G (2)

10 125 16 33 16 15

20 113 14 28 14 13

30 355 16 22 15 13

40 355 16 24 15 15

50 103 16 29 16 13

60 228 14 35 14 15

70 921 16 15 16 15

80 111 14 15 14 15

90 66 14 18 14 15

100 216 14 17 13 13

Average 259.3 15.0 23.6 14.7 14.2

Table 6-2: Results for Investigation Two of Dual Goal Experiment



183

Figure 6-11 shows two individual goal paths. Figure 6-11a records the path for

rseed = 30, and is typical of the situation where the primary goal is visited first,

then the secondary goal. Figure 6-11b shows the situation where the secondary

goal is satisfied first because it happens to lie on the valenced path to the primary

goal (rseed = 80).

6.4.3. Discussion

These investigations show substantial differences between existing reinforcement

learning methods and the SRS/E algorithm. Goals may be selected at will from the

available elements in the Sign List, and a Dynamic Policy Map built from the

Seed 1st Visit “G” 1st Goal 2nd Goal

10 915 16 29

20 317 14 39

30 216 14 27

40 101 15 32

50 534 14 27

60 167 14 27

70 379 14 35

80 265 3 16

90 134 14 37

100 140 14 39

Average 316.8 13.2 30.8

Table 6-3: Results for Investigation Three, Simultaneous Goals

Cycle 1029: World is 6 by 9
   0    1    1    1    1    0    0 ****    1 
   0    0X****    0    1    1    1 ****    2 
   1    0 ****    0    0    0    1 ****    2 
   1    0 ****    1    1    1    2    2    2 
   1    1    1    1    0 ****    0    0    0 
   0    0    0    0    0    0    0    0    0 
Mean = 0.595745, std dev = 0.684167

Cycle 1018: World is 6 by 9
   0    1    1    1    1    1    1 ****    1X
   0    1 ****    0    0    0    1 ****    1 
   1    1 ****    0    0    0    1 ****    1 
   0    0 ****    0    0    0    1    1    1 
   0    0    0    0    0 ****    0    0    0 
   0    0    0    0    0    0    0    0    0 
Mean = 0.361702, std dev = 0.483779

(A) S � �  G1 � �  G2 (14/27 steps, seed = 30) (B) S � �  G2 � �  G1 (3/16 steps, seed = 80)

monolith\figures.ppt:slide 5

Figure 6-11: Sample Simultaneous Goal Paths
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available � -hypotheses to attempt a solution path. A standard reinforcement or Q-

learning algorithm would presumably have to completely rearrange the static policy

map over many trials before reasonable performance to the new goal is re-

established. As reinforcement does not take place until the changed goal is

achieved, if that new goal did not fall on the solution path to the previous goal, this

might never happen. This result from the Dynamic Expectancy Model is considered

a significant challenge to conventional reinforcement learning algorithms.

Investigation three of this experiment demonstrates SRS/E’s flexibili ty and

effectiveness in handling multiple goals. Much progress has been made in adapting

reinforcement algorithms to build several policy maps to address multiple goals

(section 2.4.2). This approach brings a severe computational cost penalty as the

number of recorded goals increases, and means that all goals must be identified

before learning can take place. These limitations do not apply to SRS/E. Section

7.2 proposes some extensions to SRS/E to modify its goal seeking behaviour to

balance the estimated cost of achieving a goal with the given priority of the goal.

6.5. Multiple-Path, Blocking, Shortcut and Extinction Investigations

The individual investigations in this experiment series evaluate the performance of

SRS/E in a range of conditions where multiple paths exist, become available, or

cease to be available, between a constant start and constant goal location. The first

investigation determines the learned behaviour of SRS/E in an environment where

two distinct paths, one longer than the other, exist between start and goal

(multiple-path). The animat has been allowed to adequately explore the

environment fully before the start of the investigation. The investigation further

determines the effect of blocking the preferred route.

In the second investigation the effects of blocking one previously explored and

known path, and then two known paths is considered. This investigates the

extinction phenomena, where a goal is abandoned as unattainable. The third

investigation repeats a procedure reported by Sutton (1990) to determine the

enhanced performance of his Dyna-Q+ system, compared with Dyna-PI, when

presented with the situation where a known short path becomes blocked, and a

previously unknown path is released (path blocking). Results of this latter
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investigation are presented in a manner comparable to that employed by Sutton.

Finally the performance of SRS/E and programs from the Dyna family are

considered in a situation where a previously unknown shortcut is introduced.

This series of investigations uses an experimental environment described by Sutton

(1990) and shown in figure 6-12. Start “S” and Goal “G” locations are the same

throughout the investigation. Obstructions are selectively added or removed during

individual investigations at the points marked “A” and “B”.

6.5.1. Investigation One (Multiple-Path), Procedure

This investigation determines the actions of an animat in an environment with two

known paths, one of which is shorter than the other. Under these circumstances the

animat is expected to take the shorter of the paths (that of lower estimated policy

cost), but select the longer path should the shorter become unavailable. In this

investigation the animat is allowed to explore the environment of figure 6-12a for

1000 cycles as a random walk with no goal asserted. With Arep is set to 0.5, this

allows sufficient time for the environment to be completely explored. On

completion of this first phase the animat is returned to “S” and goal “G” asserted

with a priority of 1.0. The investigator confirms that the animat reaches the goal by

the shorter of the alternative routes (i.e., via location “A”). The number of steps is

Graphic 5.15 from monolith\mazes.cdr

Figure 6-12: Changing World Environments
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noted. The animat is returned to “S” and location “B” is blocked. Goal “G” is again

asserted with a priority of 1.0 and the behaviour of the animat noted. The animat is

returned to “S”, “G” asserted and the resulting path noted.

6.5.2. Investigation One, Results and Analysis

Figure 6-13 shows the effect on animat behaviour of the procedure described for

investigation one. The 1000 cycles of random walk provide ample opportunity for

the animat to discover both available paths (figure 6-13a). Figures 6-13b, c and d

show the animat path from “S” to “G” with no additional obstruction, the first run

after location “B” is obstructed and the second run after “B” is obstructed

respectively. This investigation was repeated with ten individual animats (rseed =

10, 20 .. 90, 100), the instance shown is with individual rseed = 10. With no

dispersive noise and Lprob = 1.0 performance across these individuals is constant,

the average first path length being 10 steps, and the third 16 steps. The average

second path length is 39.7. Nine of the individuals took 39 steps. One 46 due to the

appearance of a spurious shorter route � -hypothesis introduced by handling during

the procedure (the forced return move to “S” fell, by chance, in the lower right

catchment area).

The mechanism by which SRS/E selects the original path, and then selects and

stabili ses on the new path after the obstruction is detected is straightforward. The

first path is the lowest cost path computed by the Dynamic Policy Map from

Cycle 1001: World is 6 by 9
  86   37   29   21   42   19   26   39   50 
  68   23   12   10    7    8   13    8   14 
  40   39   36X  25   22   20   16    4   16 
  42 **** **** **** **** **** **** ****    9 
  41   12   10    9    6    9    2    2    6 
  43   12    6   10    5   12    6    7   22 
Mean = 21.297873, std dev = 17.758427

Cycle 1012: World is 6 by 9
   0    0    0    0    0    0    0    0X   1 
   0    0    0    0    0    0    0    0    1 
   0    0    0    0    0    0    0    0    1 
   0 **** **** **** **** **** **** ****    1 
   0    0    0    0    0    0    0    0    1 
   0    0    0    1    1    1    1    1    1 
Mean = 0.234043, std dev = 0.437595

Cycle 1051: World is 6 by 9
   1    1    1    1    1    1    1    1    1 
   1    0    0    0    0    0    0    0    0X
   1    0    0    0    0    0    0    0    0 
   1 **** **** **** **** **** **** **** **** 
   1    1    1    1    1    1    1    1   13 
   0    0    0    1    1    1    1    1    1 
Mean = 0.847826, std dev = 1.876630

Cycle 1068: World is 6 by 9
   1    1    1    1    1    1    1    1    1X
   1    0    0    0    0    0    0    0    0 
   1    0    0    0    0    0    0    0    0 
   1 **** **** **** **** **** **** **** **** 
   1    1    1    1    0    0    0    0    0 
   0    0    0    1    0    0    0    0    0 
Mean = 0.369565, std dev = 0.489010

(A) 1000 steps random walk (seed = 10) (B) Tr ial One, “ S” to “ G”

(C) Location “ B” Blocked, “ S” to “ G” (D) Tr ial Three, “ S” to “ G”

monolith\figures.ppt:slide 7

Figure 6-13: Multiple Path Investigation, Individual rseed = 10
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elements in the Hypothesis List. On the second trial run the DPM indicates the

same path as run one. On reaching location X=8, Y=1 the previously reliable action

“U” (from H14) fails, and the estimated cost of the step increases. The animat

repeats this action until the estimated cost of the failed step raises the total

estimated path cost above that for the alternative known route via location X=0,

Y=2 (in the exemplar instance, 20.27). At this point the DPM is recomputed with

the new shortest route and the animat pursues the new route to the goal.

Figure 6-14 details the cost estimate profile of the three valenced paths for the

selected individual. The overall estimate for the remaining path is shown with

triangle markers. The first series (cycles 1001 to 1011) shows the uninterrupted

path from “S” to “G” via location “B” . The second series (cycles 1012 to 1051)

starts similarly to series one until the blocked location is detected. Estimated path

cost increases as the cost contribution of the failed � -hypothesis H14 increases

(H14’s contribution to the path cost is shown with square markers). Eventually the

estimated cost of the preferred path exceeds that of the alternative, then the DPM

policy estimates radically change and the animat follows the new path via location

“A” without further interruption (cycles 1030 to 1051). The third series (cycles

1052 to 1067) confirms the preference for the new, longer, path.
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Figure 6-14: Estimated Cost Profile (Path and H14)
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The apparent persistence with which the animat pursues the newly failed � -

hypothesis (H14) is determined primarily by the extinction rate, � . Within a normal

population of individuals one might expect a range of values for this parameter and

so the number of failed attempts to vary between individuals before the alternative

path is adopted. The animat should not necessarily abandon its attempts at a known

path too soon, as there are many circumstances where continued attempts are

indeed better than not doing so. Mott’s ALP robot controller being a case in point,

the degree of persistence in goal seeking inadequately reflecting the rarity of the

events sought. Other strategies could be proposed, including relating the degree of

persistence rate to the existing quality and maturity of the � -hypothesis in question.

6.5.3. Investigation One, Discussion

The abili ty of an animat to select an alternate, known, route if thwarted in pursuit

of its preferred solution may appear as seemingly trivial. Yet this abili ty is an

important discriminator between pure reinforcement learning systems and sensory-

motor and intermediate level cognitive systems. Reinforcement learning systems

(such as Dyna) which build a static policy map based on a current sensory pattern

would not be expected to demonstrate the clear shift of behaviour presented by

SRS/E, based as it is on a Dynamic Policy Map. Mimicking this abili ty therefore

remains a challenge to conventional reinforcement learning systems. The distinction

arises from the difference between categorising situations relative to a stable, but

distant, reward and the encapsulation of situation and response as an independent

unit disassociated from external reward.

6.5.4. Investigation Two (Goal Extinction), Procedure

This investigation determines the goal extinction behaviour of the animat when a

single, known, path to the goal is obstructed, so that there is then no path to the

goal. The animat is allowed to explore the environment shown in figure 6-12b for

1000 cycles (other conditions as for investigation one). The animat is returned to

“S” and the goal location “G” asserted with a priority of 1.0. The animat’s path to

the goal noted. The animat is returned to “S” , the location “B” blocked (so that

there is no possible route to the goal) and goal “G” reasserted with priority 1.0.

The behaviour of the animat in pursuing this unattainable goal is noted. The
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investigation is repeated with the initial conditions from investigation one (figure 6-

12a), where there are two initially available paths, with both paths being blocked at

the end of the period of random walk exploration. The behaviour of the animat is

noted under these conditions.

6.5.5. Investigation Two, Analysis of Results

Figure 6-15 shows the stages in the goal extinction process. Sub-figures 6-15a and

b show the initial stages for this investigation (for the individual rseed = 10), the

random walk exploration and the demonstration of successful valenced goal

seeking behaviour given an unblocked path. The path to the goal is blocked at this

step, the animat returned to “S” and the goal “G” reasserted. Sub-figures 6-15c to

h show the stages in the extinction process. Initially valenced goal seeking

behaviour proceeds as normal. As there is no alternative path the animat repeats

the failed � -hypothesis (H14) until the estimated cost of the path exceeds that for

the valence break point (VBP) value calculated from the original cost estimate

(10.28) for the path. At this point the animat reverts to unvalenced behaviour for a

period regulated by the goal recovery mechanism, figure 6-15d. This period of

exploration allows the animat to discover some new and previously unknown path

to the goal (it would have already tried other possible paths had they previously

been identified during the exploration phase).
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This process is repeated with alternating periods of valenced and unvalenced (trial

and error) behaviour until the total cost estimate for the goal path exceeds the goal

cancellation level, 
�

, figure 6-15h. At this point g1 is forcibly removed by SRS/E

from the Goal List. The Innate Behaviour List � � � �  might reassert the goal, but to

little useful effect. Figure 6-16 records the relative values of the cost estimate for

the goal path and the computed value of VBP. Note in particular that the estimated

cost rises quickly to meet the VBP at the end of each period of unvalenced

behaviour. Note also that the estimated cost can rise during this unvalenced period

due to the animat testing � -hypothesis on the valenced path, but purely as a

consequence of trial and error activities. This is particularly apparent in the latter

stages of the extinction process and is in no small part due to the confined space in

which the animat operates.

Cycle 1001: World is 6 by 9
  93   27   31   17   36   20   38   19   44 
  52    9   13    7    5    8   14    7   15 
  79   17   16    8    4    5   14   13   18 
**** **** **** **** **** **** **** ****   32 
  43   11   13   11   18   15X   8    8   11 
  40   16   25   25   17   29   16   13   21 
Mean = 21.760870, std dev = 17.820969

Cycle 1012: World is 6 by 9
   0    0    0    0    0    0    0    0    1X
   0    0    0    0    0    0    0    0    1 
   0    0    0    0    0    0    0    0    1 
**** **** **** **** **** **** **** ****    1 
   0    0    0    0    0    0    0    0    1 
   0    0    0    1    1    1    1    1    1 
Mean = 0.239130, std dev = 0.442326

Cycle 1039: World is 6 by 9
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
**** **** **** **** **** **** **** **** **** 
   0    0    0    0    0    0    0    0   21X
   0    0    0    1    1    1    1    1    1 
Mean = 0.600000, std dev = 3.094799

Cycle 1140: World is 6 by 9
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
**** **** **** **** **** **** **** **** **** 
  22   16X   6    3    4    9    1    1    7 
  12    3    6    0    0    2    2    2    5 
Mean = 2.244444, std dev = 4.553387

Cycle 1159: World is 6 by 9
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
**** **** **** **** **** **** **** **** **** 
   0    1    1    1    1    1    1    1   12X
   0    0    0    0    0    0    0    0    0 
Mean = 0.422222, std dev = 1.782632

Cycle 1360: World is 6 by 9
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
**** **** **** **** **** **** **** **** **** 
  45   18    6    3   12    5   16    9    6 
  27   14    1    1    3    6   12   13    4X
Mean = 4.466667, std dev = 8.615232

Cycle 1371: World is 6 by 9
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
**** **** **** **** **** **** **** **** **** 
   0    0    0    0    0    0    0    0   10X
   0    0    0    0    0    0    0    0    1 
Mean = 0.244444, std dev = 1.483240

Cycle 1593: World is 6 by 9
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
   0    0    0    0    0    0    0    0    0 
**** **** **** **** **** **** **** **** **** 
   0    4    6   10   10   12   11    9   43 
   7    2    6   18   13X  11   11   23   26 
Mean = 4.933333, std dev = 8.667949

(A) 1000 steps random walk (seed = 10) (B) Test Valenced Path, “ S” to “G”

(C) Valenced to Step 1039 (D) Unvalenced to Step 1140

(E) Valenced to Step 1159

(G) Valenced to Step 1371

(F) Unvalenced to Step 1360

(H) Extinguished at Step 1593

monolith\figures.ppt:slide 8

Figure 6-15: Goal Extinction (rseed = 10)
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This investigation was repeated with both paths (“A” and “B”) available during the

1000 step random walk exploration phase (figure 6-12a). Both paths are then

blocked before starting the extinction phase (as figure 6-12d). The animat

behaviour is modified to appearing to scuttle back and forth between the two

previously effective paths during the periods of valenced activity. Figure 6-17

shows the resulting estimated cost and VBP values of this investigation. The insert

to the figure shows the detailed effect of this scuttling behaviour. Each rise in the

cost estimate arises from the animat attempting the blocked � -hypothesis, first at

one end, and then at the other. The animat appears decreasingly persistent in its

attempts to traverse each blocked path with each attempt. Gaps between the rises

indicate the cycles during which the animat is (under valenced control) travelli ng

between the two places where the known paths had been located. Note that the

cost estimate and VBP are not shown during these periods as they are only

recomputed when an event causes changes in �  or �  that exceed

REBUILDPOLICYTRIP. The net effect is to increase the number of cycles that elapse

before goal extinction takes place. Over 10 separate trials (rseed = 10, 20 .. 100)

the average time to extinction was 870.9 cycles for the single path case, and

1,443.2 cycles for this dual path case.
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Figure 6-16: Goal Extinction, Comparison of Cost Estimate to VBP
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6.5.6. Investigation Two, Discussion

Goal extinction phenomena are well documented for natural learning, and are

supported by a wealth of experimental data. The rate at which extinction takes

place appears to be highly variable. Razran (1971, p. 167) points out that under

some operant conditioning regimes pigeons will continue with ineffective pecking

behaviour (introduced with food reward) for over 10,000 events, expending more

energy than would have been obtained from the reward. Classical conditioning

regimes tend to demonstrate much more rapid extinction phenomena (Razran

posits a median conditioning-extinction ratio of 36:1). The number of unrewarded

actions required to produce goal extinction appears to depend on many factors

including experimental conditions and procedures, the nature of the reward, its

presentation and subject animal.

The onset of extinction can be continuously delayed by occasional reward (as in

variable reward ratio regimes). Such is also the case in SRS/E where a single valid

prediction restores the value of bpos for any � -hypothesis disproportionately to the
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monolith\figures.ppt: slide 9 (monolith\robtest\chngwld\extnct2c.xls)

Figure 6-17: Goal Extinction (Two Path), Cost Estimate and VBP
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effect of a failed prediction. In its current implementation SRS/E does not

demonstrate any spontaneous recovery of extinguished valenced behaviour. Such

phenomena might be implemented by either an explicit second order term in the

cost estimate function or by the inclusion of a specific habituation process

disadvantaging � -hypotheses used repeatedly. This would reflect Hull’s approach

to the extinction process (section 2.2, eqn. 2-1).

The presentation of data in figures 6-16 and 6-17 mirrors that for experimentally

observed extinction patterns in animals (figure 3-1). Note that while these two

presentations appear superficially similar they are not directly comparable, though

they may indicate a similarity in underlying mechanism. The data in the figures

presented in this chapter record internal values, those for animal experiments

record externally observed events. Extinction in natural learning is a subtle

phenomenon, no doubt deserving of a more sophisticated model that currently

provided for in the SRS/E algorithm.

6.5.7. Investigation Three (Path Blocking), Procedure

This investigation determines the behaviour of an animat when faced with a block

to a known path, but where a previously unknown path is simultaneously made

available. To locate the new path the animat must balance exploration of the

environment with exploitation of the previously known, and successful, solution

path. In this investigation the animat is allowed a period of 1,000 cycles of

continuously valenced activity using the maze shown in figure 6-12b (shorter path).

The animat is always started at “S” , with “G” asserted as goal. Once the animat

reaches “G”, it is returned to “S” and “G” reasserted. The other investigations in

this experiment allowed random walk exploration during this initial phase. As in

pervious experiments a small number of run-on cycles are permitted to ensure

SRS/E may learn the steps leading directly to the goal. At cycle 1000 the location

“B” is blocked and the previously blocked location “A” opened. The animat must

discover the new path and continue to traverse from “S” to “G” as in the first

phase of the investigation. Figure 6-18 shows the results obtained by Sutton (1990)

for this blocking task with the Dyna family of reinforcement learning algorithms.

The procedure used here follows that employed by Sutton. Effects of slight
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variations in experimental procedure will be noted and discussed. The procedures

for this investigation are available as a fixed schedule within SRS/E.

This investigation retains a cumulative record of the number of visits to the goal

location, referred to as cumulative reward in figure 6-18. The slope of the line

reflecting the frequency with which the goal is achieved. The shorter path allows

the slope to be steeper, a flat period indicates a section in the investigation during

which no “reward” is received, after location “B” is blocked and “A” opened.

Results are plotted as curves recording individual animat performance and as an

average of many individuals. Results for SRS/E are obtained with no dispersive

noise (Adisp = 1.0), and with 10% dispersive noise (Adisp = 0.9).

6.5.8. Investigation Three, Results and Analysis

Figure 6-19 shows 10 individual performance curves for the conditions described

by Sutton for the path blocking experiments (rseed = 10, 20 ... 100). As with figure

6-18 the slope of each curve indicates the path length from “S” to “G”, the steeper

the slope the more frequently the goal is visited. This form of presentation is

analogous to that often used in Skinner box experiments to record the bar pressing

activity of experimental animals in relation to reward delivery. Flat sections on a

curve indicate periods where no reward is obtained. The first flat section indicates

the initial random walk trial and error path to the goal. As Lprob is set to 1.0 in

Graphic 5.21 from monolith\dyna.cdr

Figure 6-18: Average Performance of Dyna Systems on a Blocking Task

From Sutton (1990), p 222.
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these investigations the slope of the curve represents the length of the learned path

(sometimes optimal, 7 cases of ten, sometimes not).

The second flat portion represents the time taken for the longer path to be located

by trial and error random walk during the unvalenced parts of the goal extinction

process. In four of the ten instances (individuals with rseed = 10, 50, 60 and 80)

goal extinction took place before the alternative route was located. The cumulative

curve ends abruptly in these cases. Members of the Dyna family of systems do not

employ this mechanism. Of the remaining six individuals four found the shortest

path from “S” to “G”.

Figure 6-20 shows the averaged results of the ten individual trials described above.

The performance of SRS/E under these conditions is comparable with the best of

the Dyna series, Dyna-Q+, under similar experimental conditions (see discussion

below). Addition of 10% dispersive noise (lower curve) has a consistently adverse

effect on the performance of this system. The advantage of any additional

exploratory effect being completely masked by the extra effort required to reach

the goal. This finding appears consistent with previous conclusions about the

effects of dispersive noise.

Blocking Task (Adisp = 1.0, Arep = 0.5)
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monolith\robtest\blocking\block1.xls

Figure 6-19: Investigation Three, Individual “Cumulative Reward”

Curves
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6.5.9. Investigation Three, Discussion

Being fully aware of the difficulties of taking accurate measurements from a

published graph (figure 6-18), a line drawn tangential to the first portion of the

Dyna-Q+ curve indicates a slope of 10.76 steps/reward and for the second portion

of the curve a slope of 18.2 steps/reward. Minimum path lengths are 10 and 16

respectively. Compensating for run-on cycles called for in the current experimental

procedures, SRS/E attains average slope values of 10.6 and 18.33 respectively. It

would be unreasonable to directly compare the total number of cumulative rewards

at cycle 3000 (about 150 for Dyna-Q+, 160.33 for SRS/E) as the four worst

instances in SRS/E were abandoned due to the extinction process. By adjusting the

parameters involved SRS/E could be tailored to allow greater periods of random

walk exploration during the unvalenced stages of the goal extinction process.

Sutton also tested members of the Dyna family of systems on a shortcut task.

Animats were set a repeated goal seeking task using maze C (figure 6-12) in which

only the longer path via “A” is available initially. After 3,000 cycles the shorter

path “B” is also made available. Dyna-Q+, with its additional exploration

component demonstrated some improvement in performance, indicating the shorter

Blocking Task Averages
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10% noise

monolith\robtest\blocking\averages.xls

Figure 6-20: Investigation Three, Average “Cumulative

Reward” Curves
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path had been discovered and adopted. SRS/E has no explicit mechanism for

exploration during valenced goal seeking behaviour. Consequently, if SRS/E is

continuously tasked it will always adopt the best known path. Such wilful

overtasking is a pathological case for SRS/E, the system expects to be presented

with a range of tasks and to have periods where no goal is asserted. Under such

conditions SRS/E has every opportunity to locate and subsequently employ the

shortcut route.

6.6. Latent Learning

The demonstration of latent learning phenomena was a significant step in the

historical development of learning theory. Each of the major behaviourist learning

theories is based on the notion that learning takes place in response to a reward (or

conversely a punishment). If it were to be demonstrated that learning had occurred

without any reward then the findings of the behaviourist school would be called

into question. Clearly a demonstration of this type would have suited Tolman in the

promotion of his expectancy theory.

A classic “ latent learning” experiment is replicated with SRS/E. In the original

Tolman and Honzik (1930) tested three groups of food deprived rats in a maze

apparatus. The first group were allowed to wander the maze and obtained a food

reward at the end location. The second group were allowed to wander the maze,

but on reaching the end location they received no food reward. Each rat was

placed in the maze once per day before being returned to their normal

accommodation. Once the rat had reached the end location it was prevented (by a

one-way door) from re-entering the body of the maze. Sufficient time was allowed

in the end location to prevent any reward effects associated with food availabili ty in

their normal accommodation. On the eleventh day (i.e., after 11 runs through the

maze) the second group were given access to food reward in the end location. A

third, control, group was allowed to run the maze with no food reward throughout

the duration of the experiment.

Tolman found that the performance of the second group on the twelfth daily run

(the first after the introduction of reward) was as good as or better than that on the

first group that had been rewarded on every run, who had shown a gradual



198

improvement in performance. Tolman’s maze was constructed from 14 multiple T

units, with doors between the units to prevent the rats retracing their steps in the

maze. Tolman interpreted this as clear evidence that reward was not required for

learning to take place. Tolman and Honzik’s results are reproduced in figure 6-21.

The measure of performance is the number of errors made by the experimental

animal in traversing the maze.

6.6.1. Description of Procedure

A latent learning schedule is available as a fixed procedure in the SRS/E program.

Figure 6-22 shows the experimental environment selected for this investigation. It

is characterised by having three distinct paths of varying length from the defined

start “S” to defined goal or finishing location “G”. The maze arrangement used

here differs from that of Tolman and Honzik.

In the procedure 100 “clone” animats are selected for each of the three groups

(i.e., each of the three groups comprises 100 individuals with rseed = 1000, 1001

... 1099). All 16 traversals of the maze by the first group are valenced. The first 11

traversals of the second group are unvalenced, but the twelfth and subsequent

traversals are. All traversals by the control group are unvalenced. The essential

Graphic from monolith\latent.cdr

Figure 6-21: Tolman and Honzik’s Latent Learning

Results

adapted from Bower and Hilgard (1981, p. 338)
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parameters are: Arep = 0.5, Adisp = 1.0, Lprob = 0.25, the other learning

parameters are standard.

6.6.2. Results and Analysis of Experiment

Figure 6-23 shows the results of the experiment, indicating that the essential

properties of the Tolman and Honzik experimental results are present. The first

group show a gradual improvement in performance throughout the procedure. The

second group show a dramatic improvement following the introduction of goal

valencing. The third, control, group shows no significant change in performance.

Note the different representation of performance, steps/trial rather than errors. A

logarithmic representation of the performance axis has been used for cosmetic

reasons. Neither of these factors should materially affect the interpretation of the

results.

The gradual improvement seen in the control group of Tolman and Honzik’s

results is not replicated by SRS/E. This might be interpreted as evidence that some

other form of reinforcement is available to the animal prior to the main reward

(Bower and Hilgard, 1981, p. 339). Alternatively it might be noted that rats (and

many other mammals) show a quite distinct curiosity29, seeking out the novel and

then ignoring it once it is no longer novel. The design of Tolman and Honzik’s

maze has many dead-ends, which once discovered can be safety ignored in

                                               
29As MacCorquodale and Meehl (1953, p. 204) put it “No one who has observed rats during their
early exposure to a maze could dismiss the exploratory disposition as of negligible strength”.

Graphic 5.25 from monolith\mazes.cdr

Figure 6-22: The SRS/E Latent Learning Environment
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subsequent traversals of the maze - leading to a reduction in measured error rate.

SRS/E differs in that it responds to novelty, but does not seek it out. An additional

mechanism, such as prioritized sweeping of Moore and Atkeson (1993), might be

adapted for use in SRS/E to demonstrate the gradual improvement findings in the

control group.

6.6.3. Discussion

That SRS/E should demonstrate latent learning is hardly in doubt, nor a surprise.

Reinforcement is generated internally, and is not dependent on external reward.

Given the revival of interest in behaviourist and reinforcement learning methods for

machine learning models it is nevertheless a timely reminder that these are well-

trodden paths. Latent learning has been extensively researched. Thistlethwaite

(1951) identifies and evaluates over 30 different latent learning experiments under

a variety of different experimental conditions. MacCorquodale and Meehl (1953)

placed considerable emphasis on the latent learning phenomenon, indeed stating

that it provided the main motivation to add their contribution toward the

formalisation of expectancy theory. MacCorquodale and Meehl note that not all

experiments to demonstrate latent learning actually do so, in part, no doubt, due to

variations in experimental design and procedure. Observation of the latent learning
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Figure 6-23: Results of the SRS/E Latent Learning Experiment
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phenomenon places a considerable strain on behaviourist and reinforcement based

theories, whereas the absence of the phenomenon has little impact on expectancy

based models.

SRS/E’s demonstration of the latent learning phenomena arises from one by now

well explored propensity - to pursue a known route to a valenced goal in

preference to exploring for a possible better alternative. With group one (always

valenced) some, typically small, proportion of the individuals traverse the maze to

the goal location by one of the longer paths during the first trial. Once they have

that path, those individuals tend to continue to use it, as their behaviour is always

valenced while in the maze. Gradual improvement in performance is a consequence

of the choice of Lprob = 0.25, and is consistent with the learning rates previously

shown in the baseline investigations of figure 6-2. Group two has adequate

opportunity to explore the maze by random walk during the 11 unvalenced trials.

Once the goal location becomes valenced individual animats have invariably

encountered, and so use, the shortest route. Consequently, on average, the

performance of group two exceeds that for group one, once the goal is valenced.

The control group have no reason to treat the “goal” differently from any other

location, and show no performance improvement.

6.7. Place Learning

Tolman also devised a place learning experiment, again using rats in an

experimental maze to demonstrate what he referred to as “ inferential expectation”

or “ insight” in these animals (Tolman and Honzik, 1930b). In this classic

demonstration experimental rats were placed in a maze of the form shown in figure

6-24. With adequate experience of the maze rats show a clear preference for the

shorter of the available routes, path 1. When path 1 was blocked the rats showed a

distinct preference for path 2 and when path 2 was also blocked, then the rats

would adopt the longer path 3. The key to the experiment is the placing of the

block. Tolman argued that if the block was placed at point B a rat guided by blind

habit would first try path 2, its choice at this decision point being directed by the

response previously associated with the stimulus at that point. However, one

capable of cognitive “ inferential expectation” or “ insight” would conclude that the
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block also affected path 2 and would consequently employ path 3 directly. He

found this to be the case.

6.7.1. Description of Procedure

These “insight” experiments are replicated with SRS/E using the experimental

environment of figure 6-22. The procedure replicates the major functional features

of Tolman and Honzik’s “ insight” maze. In the replication of this experiment naïve

animats are allowed to explore the maze for 2,000 cycles by unvalenced random

walk. This allows sufficient time for the animats to explore every path. Each animat

is then given one valenced trial from “S” (“G” asserted as goal) with no path

blocked to confirm that the animat will select the most direct route. In the next step

the location at point “A” is blocked. The animat is returned to “S” and “G” is

valenced. The number of steps required to traverse the environment to the goal is

noted. The animat is returned to “S” , “G” is valenced and the number of steps

required to reach the goal location again noted. In the next step the block at

location “A” is removed and a block added at location “B” , the animat is returned

to “S” . The goal location “G” is valenced and the number of steps to traverse the

modified environment noted. The animat is returned to “S” and the number of steps

Graphic 5.27 from monolith\tolmaze.cdr

Figure 6-24: Tolman and Honzik’s “Insight” Maze

adapted from Bower and Hilgard (1981, p. 337)
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to complete another valenced traversal to the goal location again noted. This

experiment uses the standard learning parameters and Arep = 0.5, Adisp = 1.0,

Lprob = 1.0.

6.7.2. Results and Analysis of Experiment

Figure 6-25 shows the performance in this experimental procedure by a single

individual (rseed = 10). Sub-figure 6-25a confirms that each path has been fully

explored, though by no means evenly. Sub-figure (b) confirms the animat takes the

direct route when “G” is valenced. Sub-figure (c) shows the effect of the first

valenced run after block “A” is set. After 10 failed attempts to traverse path 1, the

animat proceeds along path 2, as Tolman would have predicted. Sub-figure (d)

confirms the new path on the next valenced run. Sub-figure (e) shows the effect of

the first valenced run after block “A” is cleared and block “B” set. As the animat is

valenced it follows the known available route (via path two) until the unexpected

block is encountered at “B” . After a number of failed attempts to traverse the now

blocked location “B” the animat backtracks down path one and round to the goal

location via path three. The still l onger path involving path two is ignored. Sub-

figure (f) confirms the new route via path 3 on the next valenced run.
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As with the latent learning experiment the key to successful demonstration of the

phenomenon under investigation is careful experimental layout and procedure.

Where the latent learning procedure called for careful rationing of experience in the

maze during the initial stages of the sequence, this procedure calls for adequate

exploration. Without this the various routes may not be fully known to the animat,

and consequently it will not select the preferred (by the experimenter in this case)

routes. Other researchers subsequently found Tolman and Honzik’s results

repeatable, but prone to disruption, apparently due to elements in experimental

design.

6.7.3. Discussion

SRS/E confirms Tolman’s view of “ insight” . It seems unlikely that Tolman will

have won much approbation from his peers by the use of the term, implying as it

does, a level of intelli gence well above that normally associated with the laboratory

(A) 2000 steps random walk (seed = 10) (B) Confirm Path 1

(C) Add Block “ A” (D) Confirm Path 2

(E) Remove Block “ A” , Add Block “ B” (F) Confirm Path 3

Cycle 2001: World is 10 by 10
**** **** **** ****  337 **** **** **** **** **** 
**** **** **** ****   55    5    3   22   15 **** 
**** **** **** ****   84 **** **** ****    6 **** 
**** **** **** ****   73 **** **** ****    1 **** 
**** **** **** ****   84 **** **** ****   19 **** 
****   25    4   21  119 **** **** ****   18 **** 
****    6 **** ****  141 **** **** ****    6 **** 
****   92   51   77   70   67   64    7   33 **** 
**** **** **** ****  221X**** **** **** **** **** 
**** **** **** ****  198 **** **** **** **** **** 
Mean = 64.133331, std dev = 75.047981

Cycle 2011: World is 10 by 10
**** **** **** ****    1X**** **** **** **** **** 
**** **** **** ****    1    0    0    0    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
****    0    0    0    1 **** **** ****    0 **** 
****    0 **** ****    1 **** **** ****    0 **** 
****    0    0    0    1    0    0    0    0 **** 
**** **** **** ****    1 **** **** **** **** **** 
**** **** **** ****    1 **** **** **** **** **** 
Mean = 0.333333, std dev = 0.483046

Cycle 2036: World is 10 by 10
**** **** **** ****    1X**** **** **** **** **** 
**** **** **** ****    1    0    0    0    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
****    1    1    1    1 **** **** ****    0 **** 
****    1 **** **** **** **** **** ****    0 **** 
****    1    1    1   10    0    0    0    0 **** 
**** **** **** ****    1 **** **** **** **** **** 
**** **** **** ****    1 **** **** **** **** **** 
Mean = 0.862069, std dev = 1.800383

Cycle 2052: World is 10 by 10
**** **** **** ****    1X**** **** **** **** **** 
**** **** **** ****    1    0    0    0    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
**** **** **** ****    1 **** **** ****    0 **** 
****    1    1    1    1 **** **** ****    0 **** 
****    1 **** **** **** **** **** ****    0 **** 
****    1    1    1    1    0    0    0    0 **** 
**** **** **** ****    1 **** **** **** **** **** 
**** **** **** ****    1 **** **** **** **** **** 
Mean = 0.551724, std dev = 0.525226

Cycle 2098: World is 10 by 10
**** **** **** ****    1X**** **** **** **** **** 
**** **** **** ****    1    1    1    1    1 **** 
**** **** **** **** **** **** **** ****    1 **** 
**** **** **** ****   15 **** **** ****    1 **** 
**** **** **** ****    2 **** **** ****    1 **** 
****    1    1    1    2 **** **** ****    1 **** 
****    1 **** ****    1 **** **** ****    1 **** 
****    1    1    1    2    1    1    1    1 **** 
**** **** **** ****    1 **** **** **** **** **** 
**** **** **** ****    1 **** **** **** **** **** 
Mean = 1.586207, std dev = 2.559633

Cycle 2116: World is 10 by 10
**** **** **** ****    1X**** **** **** **** **** 
**** **** **** ****    1    1    1    1    1 **** 
**** **** **** **** **** **** **** ****    1 **** 
**** **** **** ****    0 **** **** ****    1 **** 
**** **** **** ****    0 **** **** ****    1 **** 
****    0    0    0    0 **** **** ****    1 **** 
****    0 **** ****    0 **** **** ****    1 **** 
****    0    0    0    1    1    1    1    1 **** 
**** **** **** ****    1 **** **** **** **** **** 
**** **** **** ****    1 **** **** **** **** **** 
Mean = 0.620690, std dev = 0.491304

monolith\figures.ppt:slide 10

Figure 6-25: Results from “Insight” Experiment
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rat. Perhaps paradoxically, and with the benefit of hindsight, we may see that this

behaviour is fully explicable in terms of problem solving, at best a minor form of

“insight” . Nevertheless, the capabili ties demonstrated by Tolman’s rats and

replicated by the SRS/E algorithm in this procedure still present considerable

difficulties to the behaviourist and reactive agent schools of thought that promote

reinforcement learning by explicit reward.

6.8. Chapter Summary

This chapter has described a series of experiments that investigate the properties of

the SRS/E algorithm as an implementation of the Dynamic Expectancy Model. To

facili tate direct comparison with previously published algorithms, Sutton’s (1990)

Dyna family of reinforcement learning programs, the experimental conditions

employed for those previously published works have been replicated. In the

baseline investigations of section 6.2 the performance of the SRS/E algorithm was

directly compared to that of Sutton’s Dyna-PI algorithm. SRS/E shows a marked

performance gain over Sutton’s algorithm. Under “ ideal learning conditions”

SRS/E was clearly able to master the maze traversal problem within a single trial

(the Lprob = 1.0 curve of figure 6-2), whereas Dyna-PI is recorded as requiring

over 80 trials (the “zero planning steps” curve of figure 6-1). It may be estimated

that this represents approximately a forty-fold improvement in learning efficiency,

in terms of the overall number of steps required to master the given task. The

improved curves shown for Dyna-PI are achieved by added internal computation,

the degraded curves for SRS/E are created by restricting the effectiveness of the

learning process (Lprob < 1.0).

Sutton did not report on the performance of Dyna-PI in the noise disrupted

environment he described. However, these investigations were performed with the

SRS/E algorithm, and are reported in section 6.3. The results obtained are

summarised in figures 6-4 and 6-5. The figures demonstrate that while the rate at

which the task is learned is not markedly affected by the addition of this form of

noise, the overall learned task performance is degraded by the presence of the

noise. It was subsequently argued in section 6.3.2.2 that the Dynamic Policy Map

is indeed correctly formed by the learning process. It is the task performance that is
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disrupted by the presence of noise in the test trials. When this noise is removed,

animat task performance is restored to near optimal levels.

The alternative and multiple goal experiments described in section 6.4 highlight a

significant difference between the Dynamic Expectancy approach and that of

conventional Q-learning algorithms. By recomputing the policy map on demand it

becomes clear that any sign known to the system may be treated as a goal and

selected on some arbitrary basis, not just those signs that were assigned as goals

during the learning process. The SRS/E algorithm may therefore address situations

where the animat is faced with goals that vary over time, and where several goals,

of varying priority, must be tackled in an appropriate order.

The investigations of section 6.5 explored the response of the SRS/E algorithm to

a variety of situations in which different paths from a starting point to a fixed goal

point are presented to the animat. These tasks are essentially beyond the

capabili ties of conventional Q-learning algorithms of the form described by

Watkins (1989). The performance of Sutton’s Dyna-Q+ algorithm, an adaptation

of the Q-learning approach, was compared directly with the unmodified form of the

SRS/E algorithm. Even though the mechanism by which new paths are discovered

is radically different in the two algorithms, the apparent recorded performance was

generally very similar. This is something of a surprise, as it might be thought that

the inclusion of a continuously active exploratory component in the Dyna-Q+

algorithm would degrade its otherwise optimal levels of performance. Exploration

is only invoked in SRS/E when an obstruction to the policy map path is

encountered. The provision of an extinction mechanism in the SRS/E algorithm is a

radical departure from the Dyna approach, and has some biological plausibility.

The demonstration of latent learning, described in section 6.6, highlights a

substantive difference between the Dynamic Expectancy Model and previous

reinforcement learning techniques. Learning is demonstrated to take place in the

absence of external reward. This result, for which there is a substantial body of

corroborating literature from animal learning experiments, would be wholly

unexpected from a conventional reinforcement learning mechanism.
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Similarly the place learning experiments, described in section 6.7, demonstrate the

ability of the SRS/E algorithm to negotiate obstructions in its policy path in a

manner that would be unpredicted from any algorithm employing a static policy

map. Again, these results are consistent with findings from well-established animal

learning experiments.


