Chapter 6

6. Investigationsand Experimental Results

This chapter describes a series of experiments with the SRS/E program. The
approach hes been to investigate the properties of the dgorithm under highly
controlled conditions, alowing a dea view of the dgorithn's behaviour and
performance Some of the investigations mirror those used to investigate
reinforcement leaning systems from the modern madine leaning paradigm, but
some revive and repea historicd investigations used to disambiguate between
competing theories of natural leaning. It is interesting to note that these issues are
il debated as adively as ever after decales of reseach. There ae significant
differences in the constitution of animals and animats, and some of the procedures
must be modified to refled these. Neverthelessit is hoped that the spirit of the
original experiments is faithfully captured, and some of the lesns and challenges
revealed will make a substantive contribution to this ongoing debate.

The previous chapter described the provisions that have made to enable the
investigator to design and conduct experiments with the SRS/E program and to
analyse and present the results obtained. Sedion 6.2 of this chapter describes a
series of “baseline” experiments in which the performance of the SRS/E algorithm
is compared dredly to the performance of the Dyna-PI algorithm described by
Sutton (1990. The SRS/E agorithm performs the task described by Sutton more
efficiently by a fador of some 40 times. Additiona investigations in this edion
clealy demonstrate the development of the dasscd negatively accéerating
learning curve from the widely varying performance of many individual animats, in
a manner predicted by tlsemulus sampling theories previously mentioned.

Experiments described in sedion 6.3 determine the dfeds of “noise” on the

performance of the SRS/E algorithm. These experiments adopt a definition of noise
provided by Sutton, and clealy indicae that the SRS/E agorithm will lean
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effedive solutions even when presented with high levels of disruptive noise. These
experiments also distinguish between the dfeds of noise on the leaning process
and on animat behaviour. Dired comparison with the Dyna-Pl algorithm was not
possible as Sutton did not report results with his algorithms.

The eperiments described in sedion 6.4 investigate how the SRS/E algorithm
responds to multiple and alternative goals. A number of experimental situations are
explored which demonstrate the flexibility provided by the Dynamic Policy Map
approach adopted by the SRS/E agorithm. In the dternative goal experiments the
animat is required to traverse between a known start and goal Situation, which is
then reversed (such that the start beames the goal and vice versa). In the multiple
goa experiments the animat must visit several, arbitrarily seleded goals. These
tasks are not adiievable with an unmodified Q-leaning agorithm or any of
Sutton’s Dyna dgorithms, asthey all use astatic policy map, and so no comparison
of performance ca be posshle. These experiments therefore highlight a radicd
improvement between existing external reward and the Dynamic Expedancy based
methods of reinforcement learning introduced by this thesis.

The investigations described in sedion 6.5 replicae experimental conditions used
by Sutton to determine the dfeds of blocking known solution paths and opening
new solution paths during individual trials of his Dyna-Q+ dgorithm. Dyna-Q+ isa
spedficdly modified variant of the Dyna-Pl algorithm to addressthese tasks. The
SRS/E algorithm matched the published performance in al the tasks described,
although the method employed by the two algorithms is substantialy different.
SRS/E incorporates an extinction medanism, not present in Q-leaning or the
Dyna dgorithms, which allows the animat to abandon unadievable goal direded
tasks and thus escgpe from potentialy “life” threaening situations. The extinction
mechanism is developed on biologically plausible grounds.

The experiments of sedion 6.6 replicate dasdgc “latent learning” procedures. The
latent learning experiments were the first to demonstrate cnclusively that learning
in animals could take placein the dsence of external reward or reinforcement.
Latent leaning may be ealy demonstrated with the SRS/E algorithm, and this
chapter replicaes the procedures adopted to show the dfeds in anima
experiments. Demonstration of latent leaning by a reinforcement algorithm
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employing the Q-learning or Dyna methods would appea to be highly problematic,
and remains a dalenge to those espousing that school of thought. Similarly
sedion 6.7 describes a replication of the “placeleaning” experiments, in which the
animat must make different responses when placed in apparently identica stimulus
stuations from tria to trial. While the SRS/E algorithm responds to the place
learning challenge in a similar manner to experimental animals, it remains unclea
how a @mnventional reinforcement algorithm based on a static policy map could
achieve this.

It might be noted that Sutton was obliged to employ a family of agorithms, Dyna-
PI, Dyna-Q and Dyna-Q+, to demonstrate the experimental procedures described
in this chapter. A single program implementing the SRS/E algorithm has been used
for the experiments to be described.

6.1. Thelndividual Experiments

The sedions that follow describe aseries of individual experiments that attempt to
charaderise the performance of the SRS/E agorithm in well defined and controlled
environments with particular reference to its leaning cgpabilities. Each sedion is
divided into three major parts. Part one will consider the rationale for the
experimental schedule and describes the method and experimental procedures
adopted for the experiment. As these may be derived from two separate
methodologies, natural leaning and madine leaning, some cae will be taken to
ensure the data is extraded appropriately to identify and acommodate aoss
domain issues. Part two will present the results from spedfic experiments.
Wherever possble this presentation of results will take graphicd or tabular form to
provide for easy assmilation of the main points being investigated. Where a
comparative investigation is being performed (one which replicaes or substantially
adapts part or all of an established procedure) an attempt will be made to present
the SRS/E results in a form refleding that of the origina or source work, where
this does not unduly impad or compromise the aurrent experiments. Part three
discusses the results of the experiment.
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6.2. Basdinelnvestigations

These initial experiments attempt to charaderise the SRS/E algorithm under highly
controlled conditions, and to compare its performance to a well-established
example of reinforcement leaning. Sutton (1990 has extensively investigated a
family of algorithms related to the idea of dynamic programming. To establish a
performance baseline SRS/E is tested under conditions functionally identicd to the
descriptions given for Dyna-Pl and “learning curves’ (indicating improvement in
performance following pradice) obtained. Dyna-Pl is presented by Sutton as
showing substantial performance improvements over previous reinforcement
learning methods.

Dyna-Pl dlternates “adua” movements in its smulated environment with
“hypotheticd experiences’ derived from aworld model creaed from data gathered
during the adual exploration phases. Sutton refers to these periods of hypotheticd
adivity as “planning”; a more gposite term might be “rehearsal”. The three arves
of figure 6-1 indicae the dfed of increasing the ratio of “hypotheticd experience”
relative to “adua experience”. The outer curve, labelled “O panning steps’ is
equivalent to the performance of the underlying leaning agorithm, converging
with the optimal performance line (14 steps/trial) after about 90 trials. Where the
animat is permitted 10“planning” steps interspersed with ead adual trial the airve
reades the optimal value dter some 12 trials. As the ratio increases, the
performance improvement becomes ever more gparent. In effed an equivalent
amount of computation has been performed, although observable adivity is
substantially reduced.

SRS/E retains no additional internal world model. To obtain baeseline leaning
curves SRS/E will be successvely handicgpped by artificially limiting the frequency
with which it can exploit a reagnised leaning (by credion) opportunity. This is
adiieved by manipulating the learning probability rate (Lprob), while learing other
experimental conditions unchanged. Varying the leaning probability rate
introduces smpled leaning, partially emulating the dfeds of spurious or irrelevant
signs being incorporated intiehypotheses.
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Figure 6-1: Results from Sutton’s Dyna-Pl Experiments
(from Sutton, 1991, p. 219)

6.2.1. Description of Procedure

To perform the baseline experiments the first fixed schedule is used, which
automaticdly seleds and initialises the DynawWorld/Standard environment. Four
separate leaning curves are aeded with four different values of the learning
probability rate, 1.0 (all leaning opportunities taken), 0.25 (25% of opportunities
taken), 0.1 (10% of opportunities) and 0.025 (2.5% of opportunities). The other
fadors are held constant for the duration of the experiment. In addition a control
baseline is established indicaing the animats performance without valenced
behaviour. Each curve is the average of 100 separate experimental runs, ead of
100 trials. For ead run a new animat (based on a new random starting sedl) is
placel at the starting point (locaed at X =0, Y = 3) and alowed to run the maze
The number of steps taken to read the goal (at X = 8, Y = 5) are recorded for
each trial.
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At the conclusion of ead tria the animat is returned to the starting point, the goal
ressserted (with a priority of 1.0) and the animat released to traverse the maze
following whatever valenced path is available. In Sutton’s experimental paradigm
reward is assgned and the animat is returned to the starting location when the goa
is reated. As corroborative leaning does not take place in SRSE until
predictions are verified, the animat is alowed to remain undisturbed in the
experimental mazefor an additional 16 exeaution cycles after the goal is readed
before the trial ends. Each curve is therefore composed of 10,000 visits to the goa
location (100runs of 100trials). The antrol line is determined from 2,500 random
walks from start to finish. The complete experiment comprises 42,500 visits to the
goal location. This is comparable to Sutton’s experimental design. The remaining
system and animat parameters were held constant throughout the procedure (Arep
= 0.0, Adisp = 1.0g. = 0.5,8 = 0.2,y* = 0.0,y* = 0.9,y° = 0.1,y* = 0.0).

6.2.2. Resultsand Analysisof Baseline Experiment

Figure 6-2 summarises the results of the baseline leaning experiments. With
leaning probability rate = 1.0 every opportunity to lean by credion is taken. As
the exploration by random walk is protraded die to the seledion of a new random
adion at ead cycle most of the possble u-hypotheses have been creded by the
first time the goal locétion is reatied. The random walk length for the first tria is
highly variable (average of the 100 runs 74325, best 24 steps, longest 4,380). On
being returned to the starting point for a valenced trial to the goa location there is
consequently a good chance that an optimal (there ae many such paths), or nealy
optimal path will be aeaed. The arerage path length for this ond trial is 15.32
(best is 14 steps). Of the 100runs, 53% of the second trial adhieved the optimal 14
step path, 34% the 16 step path, 8% the 18 step path, 4% the 20 step path and one
path of 22 steps. By trial 100the average valenced path length had fallen to 14.96,
still above the achievable best.
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Figure 6-2: Baseline Learning Curves (Lprob = 1.0, 0.25, 0.1 and

With values of Lprob less than unity, the learning curves take on a more traditional
appearance. Discovery of the optimal (or near optimal) path is delayed. The effect
of decreasing the probability that a learning by create event will occur has a quite
distinctive effect on the rate at which performance improves (as indicated by falling

0.025)
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stepg/tria), and on the point at which performance stabilises at its minimal level.
The last animat to find its gable valenced path for Lprob = 0.25 (diamond graph
markers) is at trial 26, the last one for Lprob = 0.1 at trial 56 (triangle markers).
The penultimate animat for Lprob = 0.1 stabili sed at trial 40. This point of stability
has not been readied for the Lprob = 0.025 curve dter 100 trials, four individuals
from the initial 100 animats gill not having found a cmplete valenced path. An
individual animat is defined here & an animat assgned a spedfic vaue to the
pseudo-random number generator seed (rseed) at parturition. This value will
remain unchanged for the individual for the duration of the experiment.

Figure 6-3 details the performance of a seledion of individual animats from the
Lprob = 0.025 curve. The five individuals are seleded on the basis of the total
number of adions they took during the experimental run. Individuals were ordered
acording to the total number of steps taken in the 100 trials, the sub-figures
indicate the “best” (fewest steps), the “worst” (most steps) and the quartile
individuals. The “best”, individual 84, (rseed = 840) made atotal of 8,152 adions
(minimum possble is 1,400 figures exclude the run-on period), stabilising by tria
11. Individual 69 (rseed = 690) had stahili sed by trial 10, but the precaling random
walks had taken more steps. The individua ranked 25h in the population
(individual 68) stabilised on trial 24, 50th (individua 78) at step 42 75th
(individual 9) on trial 56 and the “worst” (individual 99) finally stabilised on tria
116. The net effect is shown in the lower right sub-figure.

For ead trial, where Lprob # 1.0, the transition from a poor solution path to the
nea optimal, stable, one is in most cases quite distinctive and often abrupt - as
though “the penny dropped”. Inspedion of the traceinformation confirms that the
effed is primarily due to the probability with which p-hypotheses at low valence
levels leading to the goal sign are formed. Until these particular u-hypotheses have
been creaed the formation of an effedive Dynamic Policy Map is not possble, and
so the majority of adions remain unvalenced. Even though this final step is not in
placethe leaning of other u-hypotheses is gill taking place Once the nea god
connedions are made, with a probability regulated by Lprob, sufficient u-
hypotheses are invariably available to crede an effedive DPM from start to goal. A
less common effed where ashort “stub” DPM builds out from the goal, which
subsequently conneds to the main body of knowledge is also observed. The overall
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observable effect on measured path lengths of this stub phenomenon in relation to

random walk length is small. This interpretation of the probabilistic nature of the

learning process has much in common with the stimulus sampling theories
promoted by William Estes and others (Bower and Hilgard, 1981, Ch. 8 for
summary of this position).
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Figure 6-3: Contribution of Individual Animatsto Learning Curve
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6.2.3. Discussion

Under the leaning conditions defined by the leaning curve where Lprob = 1 the
performance @mparison with Sutton’s Dyna-Pl system is clea. Where Dyna-Pl
takes approximately 90 trials to read a stable minimum path solution, SRS/E does
so in a single trial aadoss al individuals in the test population. Dyna's poor
performancein these drcumstances arises from two properties. First, reinforcement
is only made & the point the animat reades the goal, and second, the dfeds of
that reinforcement only propagate badk towards the start state labelled “S’ one
level at atime. At a very minimum then the influence of the reinforcing goa state
canot read the starting point until the aimat has made many “forward’
trangitions. It might be cmnjedured that there is a form of “two-steps-bad/one-
step-forward” strategy that would optimally spread the goal’s influence, but this
would be ahighly artificed strategy. In pradice sufficient numbers of propagating
trangtions are not made until a large number of trials have been completed.
Protraded leaning rates are remgnised as a limitation of this class of
reinforcement leaning algorithm (e.g., Wyatt, 1999. The protraded leaning rate
of this class of reinforcement algorithm provides an advantage in terms of noise
immunity. The ladk of immediate commitment alowing an acarate model of the
variability to be @nstructed. SRS/E will be tested in a later experiment to
determine the degree to which leaning rate and task performance degrade under
the noise conditions defined by Sutton.

Isit not the case then that al SRS/E is doing is recording every transition, building
a smple graph and so easlly traversing it? For Lprob = 1.0 the conditions for
leaning are indeel ided under these experimental conditions. Each state is
recognised by a unique and reliable identifier, every adion reliably transitions
between two such states, the u-hypothesis creaion medanism explores exadly this
relationship first, and the animat is permitted to lean ad libitum. Why should
learning be aything other than one-shot when conditions are ided? As these
conditions move toward more redistic drcumstances the expeded, and observed,
leaning performance falls away from this ided case. In doing so they repeaably
demonstrate the forms of the leaning curve so ubiquitously observed in
experiments with animals.



Several reinforcement agorithms clam to adieve optimal performance over a
fixed task of this nature?’, yet SRS/E does not demonstrate perfed performance
even after 100trials under the optimal conditions (Lprob = 1.0, figure 6-2). Recd
that the average path length was 15.32 on the second trial, and improved only
marginally to 1496 after al 100 trials. Why should this be? SRS/E and
reinforcement leaning algorithms make fundamentally different assumptions.
Dyna-PI is st arepetitive task and builds a static policy map. For every condition
an optimal policy adion is ultimately made available. By successvely reducing the
learning rates and adion seledion variability (by reducing the Boltzmann
distribution “temperature”) the policy map stabili ses. Under these @nditions it may
be more germane to enquire how the performance of SRSE improves at al while
the goal is continually ressserted. The answer liesin the 16 run-on cycles following
the animat’s arrival at the goal locaion. Leaning occurs independently of valenced
behaviour and new-hypotheses can be created during this brief period.

SRS/E is gedficdly an agorithm for leaning and behaviour. Goals arise, are
satisfied (or not) and the animat moves on to some different adivity. Once agoal is
asserted the dgorithm pursues it via the best path without additional exploration,
using whatever information is available & the time. The experimental circumstances
described here exclude avy variability due to noise, so that when the god is
continually reassserted without interruption, the animat pursues the path without
variation. Where an optimal path is located first, then all subsequent paths are dso
optimal, where a sub-optimal path is locaed, all subsequent paths will be sub-
optimal. Under normal conditions the aimat would pusue other adivities,
allowing new p-hypotheses to be aeded, and so overal improvement in god
aqquisition would occur over time. There is a detedable crrelation between the
amount of exploration during the random walk exploratory phase and the resulting
average path length under valenced test conditions. Enabling the oscill (y4)
component would explicitly add the dimension of exploratory behaviour, but would
always tend to detract from the performance of optimal solutions.

27 Notably those which reduce to an established dynamic programming technique and are thus
able to exploit the existence of optimal solution proofs (Rb383).
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6.3. TheEffects of Noise

Sutton (1990 defines a test procedure for determining the dfeds of noise on the
Dyna family of reinforcement algorithms. Noise, by Sutton’s definition, perturbs
the proper adion of the animat by altering the dfed of its adions, effedively after
the animat has issued them, and so is completely outside the control of the animat.
Provision for adding this form of noise is made within the SRS/E system. It is
controlled by the adion dispersion probability (Adisp) parameter. Adisp is €leded
by the investigator at the start of ead experimental run. Its use and effeds were
described ealier in chapter five. This ries of experiments is designed to evauate
the dfeds on both leaning and valenced behaviour in SRS/E. Sutton did not
publish noise results for the Dyna algorithms.

6.3.1. Description of Procedure

The experimental procedure described for the baseline experiments was repeaed,
with the exception that Adisp was st to 0.5 (50% of adions changed, 50%
unchanged). The data from the total of 42,500 trials was recorded and plotted as
before. A separate @ntrol line was determined for these experiments. The
complete experimental procedure was then repeaed with Adisp set to 0.75 (75%
of actions unchanged, 25% changed).

6.3.2. Resultsand Analysis of Experiment

Figure 6-4 summarises the results from this investigation for Adisp = 0.5. Two
points are of note. First is that the slope of the leaning curve is not noticedly
different for the results obtained in the noise free situation. Second the average
valenced peth length following stabili sation (as measured by the mean of the last 25
trials for Lprob = 1.0, 0.25 and 0.1, total of 7,500 individua trials) is markedly
higher at 65.84 than that for the noise free cae, at 15.46. There is also more
variability in the valenced path lengths (as determined by the standard deviation,
45.99 as opposed to 1.34 for the noise free cae). The Adisp = 0.75 trials resulted
in amean of 25,19 and a standard deviation of 14.42 wunder the same conditions.
The leaning curves in this case dso showed a similar slope to the Adisp = 1.0 and
0.5 investigations.
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Figure 6-4: Baseline L earning with Noise (Adisp = 0.5, Lprob =

1.0, 0.25, 0.1 and 0.025)

6.3.2.1.Tuning Parametersfor Static Environments

The “standard” set of selection factor values (yl =0.0, yz =0.9, y3 =0.1 and y4 =
0.0) was employed for the a&ove investigations. These settings are gpropriate to a
changing environment, as the st estimate values are biased toward more recent
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events. The experimental environment used here is essentially static, apart from the
introduced noise, the level of which remains constant. The investigation with Adisp
= 0.5 was repeated (for Lprob = 1.0, 0.25, 0.1 and 0.025 over 100 runs each of
100 trials), with the value of y* set to 1.0 (so y° = v = y* = 0.0). Cogt estimates
are therefore directly related to the probability of successful prediction of each p-
hypothesis. The estimates are calculated from the unadjusted count of frequencies
of satisfied expectations to total activations from the cycle on which the p-
hypothesis was created. Figure 6-5 shows the resulting learning curves. Conditions
were identical to the results shown in figure 6-4, except as indicated.
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Figure 6-5: Basdline with Noise (Adisp = 0.5, y* = 1.0)

The average valenced path length following stabilisation (as measured by the mean
of the last 25 trials for Lprob = 1.0, 0.25 and 0.1, atotal of 7,500 individual trials)
is indeed lower, at 56.83 (stddev = 56.18), than for the yz = 0.9 case, (65.84
stepg/trial), but still higher than that for the noise free case (15.46 stepdtrial).
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These results indicae that aterations in the st estimation parameters have some
effed, but that thisis not as pronounced as might have been expeded under these
conditions.

6.3.2.2.The Effects of Noise: L earning or Behaviour?

The question remains whether the deaease in animat goal seeking performance is
primarily due to inacarades in the Dynamic Policy Map, or a cnsequence of the
disruption due to the animat’s individual adion seledions being thwarted by the
noise process This detailed investigation takes a spedfic individual and allows it to
run for 100 trials with the noise parameter Adisp set to 0.5 (to replicae the
baseline run). The investigator then regains manual control of the experiment and
forces the value of Adisp to 1.0 (no dispersive noise), returns the animat to the
start locaion, enables the standard goa and records the number of steps taken.
Figure 6-6 compares the two subsequent trial paths, trial 101 with Adisp = 0.5, and
trial 102 with Adisp = 1.0.

(A) Path with Adisp = 0.5 (trial 101) (A) Path with Adisp = 1.0 (trial 102)

Cycle 7299: Wrldis 6 by 9 Cycle 7314: Wrldis 6 by 9
0 0 0 0 0 1 1 Fxxk 1X 0 0 0 0 0 0 0 1X
0 Q **x* 0 1 5 3 1 0 Q **x* 0 0 0 0 1
2 1 Fxxk 0 1 3 2 3 1 1* 0 0 0 0 1
1 Q **x* 1 1 0 1 3 3 0 1 Fxxk 1 1 1 1 1 1
1 3 1 1 Q **x* 0 0 0 0 1 1 1 Q **x* 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean = 0.914894, std dev = 1.185013 Mean = 0.319149, std dev = 0.483779
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Figure 6-6: a) Path with Adisp = 0.5 (trial 101), b) Adisp = 1.0 (trial 102)

Inspedion of the Valenced Path printout (figure 6-8) from the experiment tracelog
file confirms the soundness of the valenced peth creaed under noise cnditions.
Figure 6-7 shows the policy map generated at the awnclusion of tria 101 Each
locaion shows the gpropriate adion except X=5, Y = 0 (bottom row, fourth badk
from right corner). u-Hypothesis H223 (“*S28<X5Y0> — D — S29<X6Y 0>") has
an estimated cost of 3.0, 14 of the 42 adivations to date having succeealed. The
“corred” u-hypothess, H121 (“S28<X5Y0> — R — S29%<X6Y0>") has an
estimated cost of 4.66, only threeof the 14 trials to date having succealed. Such is
the mnsequence of probabilistic dispersive noise. Eadch adion is sleded
independently, there is no guarantee & any point the ratio of the three possble
adions refleds the 0.5:0.25:0.25 seledion process The location is away from the
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vaenced goa path and consequently these policy recommendations were
developed duing the exploration period. Were this locaion to fall on the valenced
path the system would naturally seled H223 On the assumption it would fail in
75% of cases its estimated cost would eventually rise éove that of H121, which
would then become the preferred choice Note that the majority of other estimated
costs (line four in ead locaion cdl) more dosely refled the expeded value of 2.0.
Figures6-6, 6-7 and6-8 were all extracted from the Iatte,il(: 1.0) investigation.

Policy map at cycle 7299

Fommm e e Fomem e Fomem e Fomme e o o Fomme e Fomme e +
| HI64@4 | H378@.3 | H29@2 |H45@1 |H276@0 | H380@ |H148@ |........ | |
IR IR IR IR |D |D |D [ | coaL |
| 28.44] 26.64] 24.41] 22.28| 20.42| 18.68] 16.38|........ | |
| 1. 80| 2.23| 2.13| 1. 87| 2.00]| 2.00]| 1.700........ | |
Fommme e Fommme e Fommme e Fommme e Fommee e o o Fomee e Fomee e +
|HI@5 |H18@4 |........ | HLO9@L0 | HAB@ | H49@ | H301@ |........ | H93@ |
|D |D [ IR IR |D |D [ |u |
| 29.91] 28.20]........ | 20.96| 18.42] 16.68] 14.68|........ | 2.33|
| 1. 38| 1.62)........ | 2. 55| 1.74] 2.33| 2.18]........ | 2.33|
Fommme e Fommme e Fommme e Fommme e Fommee e o o Fomee e Fomee e +
| H70@4 |HL76@3 |........ | HB05@ | H13@ |HE0@ | HB31@ |........ | 2@ |
IR |D [ IR IR IR |D [ |u |
|  28.53] 26.58|........ | 18.70] 16.52] 14.35] 12.50|........ | 4.52|
| 1. 94| 2.00]........ | 2.18] 2.17]| 1. 85| 1.99)........ | 2.19)
Fommme e Fommme e Fommme e Fommme e Fommee e o o Fomee e Fomee e +
| HI92@3 | H0@2 |........ | HLOO@ | H294@ |H382@ |H383@ |H384@ |H422@ |
|D |D [ IR IR IR IR IR |u |
|  26.66] 24.58|........ |  16.26] 14.45] 12.67|  10.51] 8. 51 6. 59|
| 2.03| 2.17] ... | 1.81] 1. 78] 2.15| 2.00]| 1. 93] 2.06]|
Fommme e Fommme e Fommme e Fommme e Fommee e o o Fomee e Fomee e +
| HI82@2 | H247@1 | HB4@O0 |HI5@ | H286@ |........ | H393@ | H350@ | H346@ |
IR IR IR |u |u [ IR |u |u |
| 24.63] 22.41] 20.45 18.22| 16.06|........ | 12.33]  10.45| 8. 63|
| 2.21] 1. 96| 2.23| 1. 96| 1.61)........ | 1. 88| 1. 93] 2.04]|
Fommme e Fommme e Fommme e Fommme e Fommee e o o Fomee e Fomee e +
| HI85@3 | H205@.2 | H207@1 | H209@0 | H210@ | H223@ | H227@ | H407@ | H426@ |
| R | R | R | R | U | D | R | R |U |
| 25.43] 23.38] 21.51] 19.66| 17.85 17.00] 14.00] 11.65  10.10]
| 2.06]| 1. 87| 1. 85| 1. 81] 1.79] 3.00]| 2. 35| 1. 54] 1. 48]
Fommme e Fommme e Fommme e Fommme e Fommee e o o Fomee e Fomee e +

Figure 6-7: Policy Map at Conclusion of Trial 101

Separate observations from a number of individual runs from both investigations,
and from inspedion of Dynamic Policy Maps (“M” command) confirm that the
effeds on valenced peth length are mainly from the exeaution of the behaviour,
rather than faults in the u-hypothesis creaion processor construction of the policy
map. “Inappropriate” adions gill appea in the DPM, and may do so at any point
in the investigation due to the dhance of long sequences of noise dfeded adions
altering the relative strength of the u-hypotheses relevant to the atievement of any
given locaion in the path. Clealy this is more likely in the cae where leaning is
biased towards receit events. In this instance along sequence of noise dfeded
adions will have adisproportionate dfed at any point in the animat’s existence
Where yl = 1.0 the same sequence of noise dfeded adions will have greder effed
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while the total activations of the affected u-hypothesis is low. In practice the
system has shown itself (over thousands of trials) to be particularly tolerant of
these chance events, re-establishing appropriate paths once the sequence of
anomalous events is ended.

VBP @ 7256 = 285.322, bestcost = 28.5192

GOAL 46, Max val ence level is 16

H70 predicts S5[X1Y3] from SO[ X0Y3] (*active) after R (cost = 1.942029, total = 28.519203)
H176 predicts S6[ X1Y2] from S5[X1Y3] after D (cost = 1.978261, total = 26.577173)

H20 predicts S7[X1Y1] from S6[ X1Y2] after D (cost = 2.169492, total = 24.598913)

2
H247 predicts S22[ X2Y1] from S7[ X1Y1l] after R (cost = 1.942308, total = 22.429422)
H84 predicts S23[ X3Y1] from S22[ X2Y1] after R (cost = 2.246154, total = 20.487114)
HO5 predicts S26[ X3Y2] from S23[ X3Y1] after U (cost = 1.981482, total = 18.240959)
H100 predicts S20[ X4Y2] from S26[ X3Y2] after R (cost = 1.833333, total = 16.259478)
H294 predicts S25[ X5Y2] from S20[ X4Y2] after R (cost = 1.764706, total = 14.426144)
H382 predicts S33[X6Y2] from S25[ X5Y2] after R (cost = 2.152542, total = 12.661438)
H383 predicts S40[ X7Y2] from S33[ X6Y2] after R (cost = 2.012987, total = 10.508896)
H384 predicts S42[ X8Y2] from S40[ X7Y2] after R (cost = 1.934307, total = 8.495909)
HA22 predicts S44[ X8Y3] from S42[ X8Y2] after U (cost = 2.051020, total = 6.561603)
HA92 predicts S45[ X8Y4] from S44[ X8Y3] after U (cost = 2.185185, total = 4.510582)

HA93 predicts S46[ X8Y5] (goal) from S45[X8Y4] after U (cost = 2.325397, total = 2.325397)
Val enced path in 14 steps, estimated cost 28.519203

Figure 6-8: Planned Valenced Path (trial 101)

6.3.3. Discussion

The introduction of dispersive noise into the SRS/E system is undoubtedly
reflected in the performance of the animat under these controlled experimental
conditions. These investigations also confirm that the learned component of the
system is resilient to this form of noise (as is aso claimed for certain Q-learning
systems), actions derived from available p-hypotheses at each choice point
reflecting probabilities from past experience. The system may be made more or less
reactive to change in the environment by the selection of parameters. Sutton
(1990) suggests the possibility that a second order learning phenomena might be
employed to determine the long term applicability to an individual animat of a
particular strategy. Alternatively selection pressures within a population of
individuals might be considered an appropriate strategy.

Dispersive noise, of the form investigated here is only one form of noise. The
current implementation of SRS/E also allows for the introduction of random tokens
into the input token stream. Such tokens emulate the presence of extraneous
events, unrelated to the performance of the task. Using the postulate system
described SRS/E will incorporate these random occurrences into p-hypotheses as a
matter of course. SRSE will be sensitive to this form of noise. First in that it will
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predpitate the formation of spurious u-hypotheses, diluting the Hypothesis List and
adding computational overhead. Sewond in seleding whatever response was
incorporated into the spurious u-hypothesis at the time of its credion,
inappropriate adions will be seleded in pursuit of the airrent top-goal. As the
availability of more dfedive u-hypotheses increases, these spurious p-hypotheses
will contribute lessto the behaviour of the animat and will eventually be expunged
by theu-hypothesis deletion procedures considered in chapter four.

6.4. Alternativeand Multiple Goals

These investigations demonstrate the dfed of the SRS'E system when confronted
with several different goals, either sequentially or smultaneously. The results of
these investigations illustrate the manner in which SRS/E handles goals and
valenced behaviour, and highlights the differences between the Dynamic
Expedancy Model and reinforcement leaning methods that crede astatic policy
map.

6.4.1. Description of Procedure

In investigation one of this experiment naive animats are dlowed an exploration
period in the chosen environment, in this instance DynaWorld/Standard (figure 5-
1). Ead run uses the defined starting point (“S”). The initial unvalenced trial-and-
error exploration period is chosen to alow the animat adequate opportunity to
thoroughly explore its environment (1,000 exeaution cycles). An adion repetition
rate (Arep) value of 0.5 is sleded to reduce initial random-walk time. The
unvalenced time to read the goal is noted. At the end of the exploration period the
animat is returned to the known starting point, and the goal state (“G”) is asserted
with a priority of 1.0. The valenced time to reat to Goal is noted. On reading the
standard goa (“G”) the original starting location (*S") is now asserted as the goal,
with a priority of 1.0, and the valenced time for the animat to re-traverse the
environment noted. To confirm these findings these two traversals are repeaed,
and the respective valenced path times noted.

As a ntrol, investigation two of the dternating goa experiment repeds
investigation one of the experiment with the start and goal locaions reversed at
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every stage in the procedure. The procedure is repeaed 10 times and the results
tabulated. A single instance is sleded and individual paths presented for detailed
discussion.

The third investigation of this experiment presents the animat subjeds with two
goals smultaneoudly. The path generated to read these two goals ould verify
the medhanism by which SRS/E seeks and satisfies elements on the God List G.
Individual naive animats are given an identicd training period to the previous
investigations using the DynaWorld/Standard environment, before being returned
to the start locaion “S’. Two goals are then enabled smultaneously, one of which
isthe original goal (*G”), with a priority of 2.0, and the other chosen to be & some
locaion (“G2” at X =1, Y = 5) on or nea an expeded valenced path between
start and original goal. The goal “G2” is assigned a lower priority (1.0), fi&y9re

g’ (priority 1.0) g' (priority 2.0)

G2 G

H

Figure 6-9: Simultaneous Goal L ocations

Start\A

Graphic 5.12 from monolith\mazes.cdi

6.4.2. Resultsand Analysis of Experiment

Results for the first investigation are shown in table 6-1. The first column indicates
the starting random seed, the second the number of adions taken during the
random walk to read the locaion “G”. The goa is not asserted and so has no
speaal significance to the animat at this gage. The third shows the length of the
valenced peth for the first traversal from “S” to “G”. The fourth column records
the length of the valenced peth returning from “G” (as garting point) to “S” (now
valenced as the goal). The fifth and sixth columns record the valenced peth lengths
from*S’ to “G” (valenced) and then from “G” to “S’ (valenced) respedively. The
animat position is only changed by the investigator once, diredly following the
random-walk period.



Under these essentially ided leaning conditions the initial valenced path from “S’
to “G” is close to the minimum. The variation observed is consistent with the
observation that the 1000random-walk cycles was insufficient to completely build
the full potential Hypothesis List, so solution paths may be sub-optimal. The first
return path (*G” — “S’) consistently requires more ¢ycles than would be expeded
following this level of experience Figure 6-10 details the individual animat paths at
different stages in a single experimental run and indicaes the reason for the
apparently anomalously extended path length. Figure 6-10a records (shown using
the “W” command) the number of visits by the animat to ead location during the
exploratory, unvalenced, random-walk period. The location cdl labelled “X” (X=8,
Y =0) indicates the position of the animat when it was removed by the investigator
to the start locaion for the first valenced run. Figure 6-10b shows the first
valenced path, non-optimal at 16 steps, no doubt as a wnsequence of the greaer
degree of exploration in the upper part of the environment on this particular run.

Seed 1st visit “G” | S>G (1) | G>S (1) | S>G (2) | G>S (2)
10 915 16 23 15 14
20 317 14 28 13 14
30 216 14 18 13 15
40 101 15 15 13 16
50 534 14 19 15 14
60 167 14 14 15 13
70 379 14 18 15 16
80 265 16 27 15 14
90 134 14 33 15 16
100 140 14 29 13 14
Average| 316.8 14.5 22.4 14.4 14.6

Table 6-1: Resultsfor Investigation One of Dual Goal Experiment
Figure 6-10c shows the return path. The animat moves to locaion (X=8, Y=0)

immediately and appeas to beame trapped there for some number of exeaution
cycles, thereby increasing the overall path length to 27 (from a possble 14). Thisis
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an experimental artefad, demonstrating that this emulation of leaning and
behaviour requires as much care in the cnduct of experimental procedure & does
work with red animal subjeds. The forcible movement of the animat to the start
location caused a spurious p-hypothesis (“H167: <X8Y0> — D — <X0Y3>")28 to
be aeaed, which promises a short-cut to the airrent goal locaion. The u-
hypothesis H167 fails to deliver this promise & every trall. Its cost estimate
contribution increases at ead attempt until it exceels that for the dfedive path,
which is adopted at the next DPM rebuild. When this path is again valenced, the
shorter path is adopted immediately, figGr&Oe.

(A) 1000 stepsrandom-walk (rseed = 80

Cycle 1001: Wrld is 6 by 9
95 56 22 47 21 10 27 ***x 5
54 28 x*x* 22 16 12 31 *x** 4
43 42 xxxx* 21 12 6 19 *x*x 36
16 32 ***x 21 16 18 10 6 17
14 13 13 14 14 x*x* 3 2 17
12 20 7 23 5 8 10 15 46X

Mean = 21.297873, std dev = 17.189804

(B)S-»G(1) (©)G-S®
Cycle 1018: Wrld is 6 by 9 Cycle 1046: Wrld is 6 by 9
0 1 1 1 1 1 1 Hxx 1X 0 0 0 0 0 0 Q **xx* 1
O l * Kk kK O O O l * Kk kK l O O * Kk kK O O O O * kK k l
l l * Kk kK O O O l * Kk kK l l 1kakk O O O O * Kk kK l
0 Q **xx* 0 0 0 1 1 1 0 1 Hxx 1 1 1 1 1 2
0 0 0 0 Q **xx* 0 0 0 0 1 1 1 Q **xx* 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
Mean = 0.361702, std dev = 0.483779 Mean = 0.595745, std dev = 1.501772
(D) S—> G (2 (E)G—>S(2
Cycle 1062: Wrld is 6 by 9 Cycle 1077: Wrld is 6 by 9
0 1 1 1 1 1 1 Hxx 1X 0 0 0 0 0 0 Q **xx* 1
O l * Kk kK O O O l * k kK l O O * Kk kK O O O O * Kk kK l
O l * Kk kK O O O l * k kK l 1X l * Kk kK O O O O * Kk kK l
0 Q **xx* 0 0 0 1 1 1 0 1 Hxx 1 1 1 1 1 1
0 0 0 0 Q **xx* 0 0 0 0 1 1 1 Q **xx* 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean = 0.340426, std dev = 0. 483779 Mean = 0.319149, std dev = 0. 483779

monoalith\figures.ppt:dide 5
Figure 6-10: Animat Random and Valenced Paths (investigation 1, rseed = 80)

Table 6-2 records the results of investigation two of this experiment, where the
roles of “S’ and “G” from figure 6-1 are reversed throughout the procedure. The
results are broadly similar to those of investigation one and clealy demonstrate
that these results are independent of the actual start and goal locations.

28'H167 pedicts SO[XOY 3] (goal) from S36[X8Y Q] after D (cost = 1.818182 total = 1.818183":
from the valenced path summary recorded in the experiment trace file.
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Seed 1stvisit “S” | G—=S (1) | S—>G (1) | G—>S (2) | S—>G (2)
10 125 16 33 16 15
20 113 14 28 14 13
30 355 16 22 15 13
40 355 16 24 15 15
50 103 16 29 16 13
60 228 14 35 14 15
70 921 16 15 16 15
80 111 14 15 14 15
90 66 14 18 14 15
100 216 14 17 13 13
Average| 259.3 15.0 23.6 14.7 14.2

Table 6-2: Resultsfor Investigation Two of Dual Goal Experiment

Table 6-3 summarises the results obtained for the smultaneous goal procedures of
investigation three The dfed of setting these two goals is to cause the animat to
vigit ead in turn. In the majority of cases the animat visits the more distant, but
higher priority goal first, and then doubles bad to satisfy the secondary lower
priority goal. The average valenced path length to the first goal is 14.33, and the
average total travel to both goals is 32.44. The disruptive dfeds of the forced
return to “S’ are still apparent. In one instance the goals are visited in the reverse
order (rseed = 80), with valenced path lengths of 3 and 16 respedively. This is
purely because the secondary goal lay on the path taken by the animat to the
primary goal. A goal is stisfied by being adchieved, regardless of whether or not
this was becaise of a valenced adion spedficdly intended to satisfy that goal. The
use of “cloned” animats for parts 1 and 3 of this experiment means the initia
exploratory and first goal paths are identical.
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Seed 1st Visit “G” 1st Goal 2nd Goal
10 915 16 29
20 317 14 39
30 216 14 27
40 101 15 32
50 534 14 27
60 167 14 27
70 379 14 35
80 265 3 16
90 134 14 37
100 140 14 39
Average 316.8 13.2 30.8

Table 6-3: Resultsfor Investigation Three, Simultaneous Goals

Figure 6-11 shows two individual goal paths. Figure 6-11a records the path for
rsead = 30, and is typicd of the situation where the primary goal is visited first,
then the secondary goal. Figure 6-11b shows the situation where the secondary
godl is stisfied first becaise it happens to lie on the valenced path to the primary
goal (rseed = 80).

(A) S— G1— G2 (14/27 steps, seed =30) (B) S— G2 — G1 (3/16 steps, seed = 80)

Cycle 1029: Wrld is 6 by 9 Cycle 1018: Wrld is 6 by 9
0 1 1 1 1 0 Q *H*x 1 0 1 1 1 1 1 1 1X
0 OXx *x* 0 1 1 1 2 0 1 wAwx 0 0 0 1 1
1 0 ** 0 0 0 1 2 1 1 0 0 0 1 * 1
1 0 ** 1 1 1 2 2 2 0 Q *xxx 0 0 0 1 1 1
1 1 1 1 Q *H*x 0 0 0 0 0 0 0 Q *H*x 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean = 0.595745, std dev = 0.684167 Mean = 0.361702, std dev = 0.483779

monolith\figures.ppt:slide 5

Figure 6-11: Sample Simultaneous Goal Paths

6.4.3. Discussion

These investigations iow substantial differences between existing reinforcement
learning methods and the SRS/E algorithm. Goals may be seleded at will from the
avalable dements in the Sign List, and a Dynamic Policy Map built from the
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avail able p-hypotheses to attempt a solution path. A standard reinforcement or Q-
learning algorithm would presumably have to completely rearange the static policy
map over many trials before reasonable performance to the new god is re-
established. As reinforcement does not take place until the danged goa is
adhieved, if that new goal did not fall on the solution path to the previous goal, this
might never happen. This result from the Dynamic Expedancy Model is considered
a significant challenge to conventional reinforcement learning algorithms.

Investigation three of this experiment demonstrates SRS/E’'s flexibility and
effedivenessin handling multiple goals. Much progresshas been made in adapting
reinforcement algorithms to build several policy maps to address multiple goals
(sedion 2.4.2). This approadh krings a severe computational cost penalty as the
number of recrded goals increases, and means that al goals must be identified
before leaning can take place These limitations do not apply to SRS/E. Sedion
7.2 proposes me etensions to SRS/E to modify its goa seeking behaviour to
balance the estimated cost of achieving a goal with the given priority of the goal.

6.5. Multiple-Path, Blocking, Shortcut and Extinction I nvestigations

The individual investigations in this experiment series evaluate the performance of
SRS/E in a range of conditions where multiple paths exist, beacome available, or
cease to be available, between a cnstant start and constant goal location. The first
investigation determines the leaned behaviour of SRS/E in an environment where
two distinct paths, one longer than the other, exist between start and goal
(multiple-path). The aimat has been alowed to adequately explore the
environment fully before the start of the investigation. The investigation further
determines the effect of blocking the preferred route.

In the second investigation the dfeds of blocking one previously explored and
known path, and then two known paths is considered. This investigates the
extinction phenomena, where a goal is abandoned as unattainable. The third
investigation repeas a procedure reported by Sutton (1990 to determine the
enhanced performance of his Dyna-Q+ system, compared with Dyna-Pl, when
presented with the situation where a known short path becomes blocked, and a
previoudy unknown path is relessed (path blocking). Results of this latter
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investigation are presented in a manner comparable to that employed by Sutton.
Finaly the performance of SRS/E and programs from the Dyna family are
considered in a situation where a previously unknown shortcut is introduced.

This series of investigations uses an experimental environment described by Sutton
(1990 and shown in figure 6-12. Start “S” and Goal “G” locaions are the same
throughout the investigation. Obstructions are seledively added or removed duing
individual investigations at the points marked “A” and “B”.

"Changing-World" Maze A "Changing-World" Maze B

G G
S S

"Changing-World" Maze C "Changing-World" Maze D

G G
~ I S
S S

Graphic 5.15 from monolith\mazes.cdi

Figure 6-12: Changing World Environments

6.5.1. Investigation One (Multiple-Path), Procedure

This investigation determines the adions of an animat in an environment with two
known paths, one of which is orter than the other. Under these arcumstances the
animat is expeded to take the shorter of the paths (that of lower estimated policy
cost), but seled the longer path should the shorter become unavailable. In this
investigation the animat is alowed to explore the environment of figure 6-12a for
1000cycles as a random walk with no goal asserted. With Arep is <t to 0.5, this
alows gaifficient time for the environment to be mpletely explored. On
completion of this first phase the aiimat is returned to “S’ and goa “G” assrted
with a priority of 1.0. The investigator confirms that the animat reades the goal by
the shorter of the dternative routes (i.e., vialocaion “A”). The number of stepsis
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noted. The animat is returned to “S” and locaion “B” is blocked. Goal “G” is again
asserted with a priority of 1.0 and the behaviour of the animat noted. The animat is
returned to “S”, “G” asserted and the resulting path noted.

6.5.2. Investigation One, Results and Analysis

Figure 6-13 shows the dfed on animat behaviour of the procedure described for
investigation one. The 1000 cycles of random walk provide ample opportunity for
the animat to discover both available paths (figure 6-133). Figures 6-13b, ¢ and d
show the animat path from “S” to “G” with no additiona obstruction, the first run
after locaion “B” is obstructed and the seawmnd run after “B” is obstructed
respedively. This investigation was repeded with ten individual animats (rseed =
10, 20 .. 90, 100, the instance shown is with individua rseed = 10. With no
dispersive noise and Lprob = 1.0 performance acossthese individuals is constant,
the average first path length being 10 steps, and the third 16 steps. The average
seoond path length is 39.7. Nine of the individuals took 39 steps. One 46 die to the
appeaance of a spurious orter route p-hypothesis introduced by handling duing
the procedure (the forced return move to “S’ fell, by chance in the lower right
catchment area).

(A) 1000 stepsrandom walk (seed =10) (B) Trial One, “S' to“G”

Cycle 1001: Wrld is 6 by 9 Cycle 1012: Wrld is 6 by 9
86 37 29 21 42 19 26 39 50 0 0 0 0 0 0 0 ox 1
68 23 12 10 7 8 13 8 14 0 0 0 0 0 0 0 0 1
40 39 36X 25 22 20 16 4 16 0 0 0 0 0 0 0 0 1
42 **************************** 9 0 **************************** 1
41 12 10 9 6 9 2 2 6 0 0 0 0 0 0 0 0 1
43 12 6 10 5 12 6 7 22 0 0 0 1 1 1 1 1 1

Mean = 21.297873, std dev = 17.758427 Mean = 0.234043, std dev = 0.437595

(C) Location “B” Blocked, “S’ to“G” (D) Trial Three, “S’ to“G”

Cycle 1051: Wrld is 6 by 9 Cycle 1068: Wrld is 6 by 9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1X
1 0 0 0 0 0 0 0 0X 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
D KRRk kAkk kkkk KKk kKK Kkkk KAAK Kkkk U KRRk kAkk kkkk KAk KRKK Kkkk KAAk Kkkk
1 1 1 1 1 1 1 1 13 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0

Mean = 0.847826, std dev = 1.876630 Mean = 0. 369565, std dev = 0.489010

monolith\figures.ppt:slide 7

Figure 6-13: Multiple Path Investigation, Individual rseed = 10
The medanism by which SRSE seleds the original path, and then seleds and

stabili ses on the new path after the obstruction is deteded is graightforward. The
first path is the lowest cost path computed by the Dynamic Policy Map from
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elements in the Hypothesis List. On the seand tria run the DPM indicates the
same path as run one. On reading locaion X=8, Y =1 the previoudly reliable ation
“U” (from H14) fails, and the estimated cost of the step incresses. The animat
repeds this adion until the estimated cost of the faled step raises the total
estimated peth cost above that for the dternative known route via locaion X=0,
Y=2 (in the exemplar instance, 20.27). At this point the DPM is recomputed with
the new shortest route and the animat pursues the new route to the goal.

Figure 6-14 details the st estimate profile of the three valenced paths for the
seleded individual. The overal estimate for the remaining path is $own with
triangle markers. The first series (cycles 1001 to 1011 shows the uninterrupted
path from “S’ to “G” via locdion “B”. The second series (cycles 1012to 1057)
starts smilarly to series one until the blocked location is deteded. Estimated path
cost increases as the ast contribution of the falled u-hypothesis H14 increases
(H14's contribution to the path cost is iown with square markers). Eventually the
estimated cost of the preferred path exceels that of the dternative, then the DPM
policy estimates radicdly change and the animat follows the new path via location
“A” without further interruption (cycles 1030to 1051). The third series (cycles
1052 to 1067) confirms the preference for the new, longer, path.

Estimated Cost Profile

25 + A o Est. cost (H14)
L 20 E'Z a Est. Path Cost
o o N A
E15+ o 4
0 A
LY
;]
o .|
S 5+ d;SEFD

0 % | | | |

1000 1020 1040 1060 1080

Cycle

monolith\results\chngwld\p14.xIs

Figure 6-14: Estimated Cost Profile (Path and H14)



The gparent persistence with which the aimat pursues the newly faled u-
hypothesis (H14) is determined primarily by the extinction rate, . Within a normal
population of individuals one might exped a range of values for this parameter and
so the number of failed attempts to vary between individuals before the dternative
path is adopted. The animat should not necessarily abandon its attempts at a known
path too soon, as there ae many circumstances where ontinued attempts are
indeed better than not doing so. Mott’s ALP robot controller being a cae in point,
the degree of persistence in goal seeking inadequately refleding the rarity of the
events ught. Other strategies could be proposed, including relating the degree of
persistence rate to the existing quality and maturity ofithgpothesis in question.

6.5.3. Investigation One, Discussion

The aility of an animat to seled an alternate, known, route if thwarted in pursuit
of its preferred solution may appea as sanmingly trivial. Yet this ability is an
important discriminator between pure reinforcement learning systems and sensory-
motor and intermediate level cognitive systems. Reinforcement leaning systems
(such as Dyna) which huild a static policy map based on a airrent sensory pattern
would not be expeded to demonstrate the dea shift of behaviour presented by
SRS/E, based as it is on a Dynamic Policy Map. Mimicking this ability therefore
remains a dhalenge to conventional reinforcement learning systems. The distinction
arises from the difference between categorising situations relative to a stable, but
distant, reward and the encapsulation of situation and response & an independent
unit disassociated from external reward.

6.5.4. Investigation Two (Goal Extinction), Procedure

This investigation determines the goal extinction behaviour of the animat when a
single, known, path to the goal is obstructed, so that there is then no path to the
goal. The aimat is alowed to explore the environment shown in figure 6-12b for
1000 cycles (other conditions as for investigation one). The aiimat is returned to
“S’ and the goal location “G” asserted with a priority of 1.0. The aimat’s path to
the goal noted. The animat is returned to “S’, the location “B” blocked (so that
there is no posgble route to the goal) and goal “G” reasserted with priority 1.0.
The behaviour of the animat in pursuing this unattainable goa is noted. The
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investigation is repeaed with the initial conditions from investigation one (figure 6-
12a), where there ae two initially available paths, with both paths being blocked at
the end of the period of random walk exploration. The behaviour of the animat is
noted under these conditions.

6.5.5. Investigation Two, Analysis of Results

Figure 6-15 shows the stages in the goal extinction process Sub-figures 6-15a and
b show the initial stages for this investigation (for the individual rseed = 10), the
random walk exploration and the demonstration of succesdul valenced goal
seeking behaviour given an unblocked path. The path to the goal is blocked at this
step, the animat returned to “S’ and the goal “G” reasserted. Sub-figures 6-15¢c to
h show the stages in the extinction process Initialy valenced goa seeking
behaviour proceals as normal. As there is no aternative path the animat repeés
the failed u-hypothesis (H14) until the estimated cost of the path exceeals that for
the valence break point (VBP) value cdculated from the origina cost estimate
(10.28) for the path. At this point the animat reverts to unvalenced behaviour for a
period regulated by the goal recovery mechanism, figure 6-15d. This period of
exploration allows the animat to discover some new and previously unknown path
to the goal (it would have drealy tried other possble paths had they previously
been identified during the exploration phase).



(A) 1000 stepsrandom walk (seed = 10)

(B) Test Valenced Path, *S’ to “G”

Cycle 1001: World is 6 by 9 Cycle 1012: World is 6 by 9
93 27 31 17 36 20 38 19 44 0 0 0 0 0 0 0 0 1X
52 9 13 7 5 8 14 7 15 0 0 0 0 0 0 0 0 1
79 17 16 8 4 5 14 13 18 0 0 0 0 0 0 0 0 1
khkkhkk Khkhkk Khkhkkhkk khkkk Khkkk *khkkk *khkkk *kkk 32 khkkhkk khkhkkk khkhkkk khkkk Khhkkk *khkkk *kkk *kkk l
43 11 13 11 18 15X 8 8 11 0 0 0 0 0 0 0 0 1
40 16 25 25 17 29 16 13 21 0 0 0 1 1 1 1 1 1
Mean = 21. 760870, std dev = 17.820969 Mean = 0.239130, std dev = 0.442326
(C) Valenced to Step 1039 (D) Unvalenced to Step 1140
Cycle 1039: World is 6 by 9 Cycle 1140: World is 6 by 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
khkkhkk Khhkk Khkhkkhkk khkkhkk Khhkkk Khhkkk *khkkk *hkkk *kkk khkkhkk Khkhkk Khkhkkhkk khkkhkk Khhkkk Khhkkk *khkkk *hkkk *hkkk
0 0 0 0 0 0 0 0 21X 22 16X 6 3 4 9 1 1 7
0 0 0 1 1 1 1 1 1 12 3 6 0 0 2 2 2 5
Mean = 0.600000, std dev = 3.094799 Mean = 2.244444, std dev = 4.553387
(E) Valenced to Step 1159 (F) Unvalenced to Step 1360
Cycle 1159: World is 6 by 9 Cycle 1360: World is 6 by 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
khkkhkk Khhkk khkhkkhkk khkkhkk Khhkkhkk Kkhkkk *khkkk *hkkk *hkkk khkkhkk Khkhkkk Khkhkkhkk khkkhkk Khhkkhkk Khhkkk khkkk *hkkk *hkkk
0 1 1 1 1 1 1 1 12X 45 18 6 3 12 5 16 9 6
0 0 0 0 0 0 0 0 0 27 14 1 1 3 6 12 13 4X
Mean = 0.422222, std dev = 1.782632 Mean = 4.466667, std dev = 8.615232
(G) Valenced to Step 1371 (H) Extinguished at Step 1593
Cycle 1371: World is 6 by 9 Cycle 1593: World is 6 by 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
khkkhkk Khhkk Khkhkkhkk khkkhkk Khhkkhkk Khhkkk khkkk *hkkk *hkkk khkkhkk Khkhkk khkhkkhkk kkhkkk Khhkkhkk Khhkkk *khkkk *hkkk *kkk
0 0 0 0 0 0 0 0 10X 0 4 6 10 10 12 11 9 43
0 0 0 0 0 0 0 0 1 7 2 6 18 13X 11 11 23 26
Mean = 0.244444, std dev = 1.483240 Mean = 4.933333, std dev = 8.667949
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Figure 6-15: Goal Extinction (rseed = 10)

This process is repeated with aternating periods of valenced and unvalenced (trial

and error) behaviour until the total cost estimate for the goal path exceeds the goal

cancellation level, Q, figure 6-15h. At this point g1 is forcibly removed by SRS/E
from the Goal List. The Innate Behaviour List B¢ might reassert the goal, but to
little useful effect. Figure 6-16 records the relative values of the cost estimate for
the goal path and the computed value of VBP. Note in particular that the estimated
cost rises quickly to meet the VBP at the end of each period of unvalenced

behaviour. Note also that the estimated cost can rise during this unvalenced period

due to the animat testing u-hypothesis on the valenced path, but purely as a

consequence of trial and error activities. This is particularly apparent in the latter

stages of the extinction process and is in no small part due to the confined space in

which the animat operates.
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Figure 6-16: Goal Extinction, Comparison of Cost Estimateto VBP

This investigation was repeded with both paths (“A” and “B”) available during the
1000 step random walk exploration phase (figure 6-12a). Both paths are then
blocked before starting the extinction phase (as figure 6-12d). The aimat
behaviour is modified to appeaing to scuttle badk and forth between the two
previoudy effedive paths during the periods of valenced adivity. Figure 6-17
shows the resulting estimated cost and VBP values of this investigation. The insert
to the figure shows the detalled effed of this suttling behaviour. Ead rise in the
cost estimate aises from the animat attempting the blocked u-hypothesis, first at
one end, and then at the other. The animat appeas deaeasingly persistent in its
attempts to traverse eab docked path with ead attempt. Gaps between the rises
indicate the o/cles during which the animat is (under valenced control) travelling
between the two places where the known paths had been locaed. Note that the
cost estimate and VBP are not shown during these periods as they are only
reomputed when an event causes changes in A or & that exceda
REBUI LDPCLI CYTRI P. The net effed is to increase the number of cycles that elapse
before goal extinction takes place Over 10 separate trials (rseed = 10, 20 .. 100
the average time to extinction was 8709 cycles for the single path case, and
1,443.2 cycles for this dual path case.
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Figure 6-17: Goal Extinction (Two Path), Cost Estimate and VBP

6.5.6. Investigation Two, Discussion

Goal extinction phenomena are well documented for natural learning, and are
supported by a wealth of experimental data. The rate at which extinction takes
place appears to be highly variable. Razran (1971, p. 167) points out that under
some operant conditioning regimes pigeons will continue with ineffective pecking
behaviour (introduced with food reward) for over 10,000 events, expending more
energy than would have been obtained from the reward. Classica conditioning
regimes tend to demonstrate much more rapid extinction phenomena (Razran
posits a median conditioning-extinction ratio of 36:1). The number of unrewarded
actions required to produce goal extinction appears to depend on many factors
including experimental conditions and procedures, the nature of the reward, its
presentation and subject animal.

The onset of extinction can be continuously delayed by occasiona reward (as in

variable reward ratio regimes). Such is also the case in SRS/E where a single valid
prediction restores the value of bpos for any u-hypothesis disproportionately to the
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effed of a faled prediction. In its current implementation SRS/E does not
demonstrate aty spontaneous recmvery of extinguished valenced behaviour. Such
phenomena might be implemented by either an explicit second order term in the
cost estimate function or by the incluson of a spedfic habituation process
disadvantaging u-hypotheses used repededly. This would refled Hull’s approad
to the extinction process (sectidr?, eqn.2-1).

The presentation of data in figures 6-16 and 6-17 mirrors that for experimentally
observed extinction patterns in animals (figure 3-1). Note that while these two
presentations appea superficialy similar they are not diredly comparable, though
they may indicate a similarity in underlying medianism. The data in the figures
presented in this chapter record internal values, those for animal experiments
record externaly observed events. Extinction in retural leaning is a subtle
phenomenon, no doubt deserving of a more sophisticaed model that currently
provided for in the SRS/E algorithm.

6.5.7. Investigation Three (Path Blocking), Procedure

This investigation determines the behaviour of an animat when faced with a block
to a known path, but where a previoudy unknown path is smultaneousy made
avalable. To locae the new path the animat must balance eploration of the
environment with exploitation of the previously known, and successul, solution
path. In this investigation the animat is allowed a period of 1,000 cycles of
continuously valenced adivity using the mazeshown in figure 6-12b (shorter path).
The animat is always garted at “S’, with “G” asserted as goal. Once the animat
reates “G”, it is returned to “S” and “G” reassrted. The other investigations in
this experiment allowed random walk exploration during this initial phase. As in
pervious experiments a small number of run-on cycles are permitted to ensure
SRS/E may lean the steps leading dredly to the goal. At cycle 1000the location
“B” is blocked and the previoudly blocked location “A” opened. The animat must
discover the new path and continue to traverse from “S’ to “G” as in the first
phase of the investigation. Figure 6-18 shows the results obtained by Sutton (1990
for this blocking task with the Dyna family of reinforcement learning algorithms.
The procedure used here follows that employed by Sutton. Effeds of dight
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variations in experimental procedure will be noted and discussed. The procedures
for this investigation are available as a fixed schedule within SRS/E.

Cumulative
Reward

0 1000 2000 3000
Time Steps

Graphic 5.21 from monolith\dyna.cdr

Figure 6-18: Average Performance of Dyna Systemson a Blocking Task

From Sutton (1990), p 222.

This investigation retains a awmulative reard of the number of visits to the goal
location, referred to as cumulative reward in figure 6-18. The slope of the line
refleding the frequency with which the goal is achieved. The shorter path alows
the dope to be steeger, aflat period indicaes a sedion in the investigation during
which o “reward” is receved, after locaion “B” is blocked and “A” opened.
Results are plotted as curves recording individual animat performance ad as an
average of many individuals. Results for SRS/E are obtained with no dispersive
noise (Adisp = 1.0), and with 10% dispersive noise (Adisp = 0.9).

6.5.8. Investigation Three, Resultsand Analysis

Figure 6-19 shows 10 individual performance arves for the anditions described
by Sutton for the path docking experiments (rseed = 10, 20... 100). As with figure
6-18 the dlope of ead curve indicaes the path length from “S” to “G”, the stegoer
the dope the more frequently the god is visited. This form of presentation is
analogous to that often used in Skinner box experiments to reard the bar pressng
adivity of experimental animals in relation to reward delivery. Flat sedions on a
curve indicae periods where no reward is obtained. The first flat sedion indicaes
the initial random walk trial and error path to the goal. As Lprob is st to 1.0 in
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these investigations the slope of the aurve represents the length of the leaned path
(sometimes optimal, 7 cases of ten, sometimes not).

The second flat portion represents the time taken for the longer path to be locaed
by trial and error random walk during the unvalenced parts of the goal extinction
process In four of the ten instances (individuals with rseed = 10, 50, 60 and 80
goal extinction took placebefore the dternative route was locaed. The amulative
curve ends abruptly in these caes. Members of the Dyna family of systems do not
employ this mechanism. Of the remaining six individuals four found the shortest
path from “S” to “G”.

Blocking Task (Adisp = 1.0, Arep = 0.5)

200
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Figure 6-19: Investigation Three, Individual “Cumulative Reward”
Curves

Figure 6-20 shows the averaged results of the ten individual trials described above.
The performance of SRS/E under these @nditions is comparable with the best of
the Dyna series, Dyna-Q+, under similar experimental conditions (see discusson
below). Addition of 10% dispersive noise (lower curve) has a consistently adverse
effed on the performance of this gistem. The alvantage of any additiona
exploratory effed being completely masked by the extra dfort required to read
the goa. This finding appeas consistent with previous conclusions about the
effects of dispersive noise.
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Figure 6-20: Investigation Three, Average “Cumulative
Reward” Curves

6.5.9. Investigation Three, Discussion

Being fully aware of the difficulties of taking acarate measurements from a
published graph (figure 6-18), a line drawn tangential to the first portion of the
Dyna-Q+ curve indicates a dope of 10.76 steps/reward and for the second portion
of the arve adope of 182 stepsreward. Minimum path lengths are 10 and 16
respedively. Compensating for run-on cycles cdled for in the aurrent experimental
procedures, SRS/E attains average slope vaues of 10.6 and 1833 respedively. It
would be unreasonable to diredly compare the total number of cumulative rewards
at cycle 3000 (about 150 for DynaQ+, 16033 for SRSE) as the four worst
instances in SRS'E were dandoned die to the extinction process By adjusting the
parameters involved SRS/E could be tailored to allow greaer periods of random
walk exploration during the unvalenced stages of the goal extinction process.

Sutton also tested members of the Dyna family of systems on a shortcut task.
Animats were set arepedaed goal seeking task using mazeC (figure 6-12) in which
only the longer path via “A” is available initidly. After 3,000 cycles the shorter
path “B” is aso made avalable. Dyna-Q+, with its additional exploration
component demonstrated some improvement in performance, indicaing the shorter
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path had been discovered and adopted. SRS/E has no explicit mecdhanism for
exploration during valenced goal seeking behaviour. Consequently, if SRSE is
continuously tasked it will always adopt the best known path. Such wilful
overtasking is a pathologicd case for SRS/E, the system expeds to be presented
with a range of tasks and to have periods where no goal is asserted. Under such
conditions SRS/E has every opportunity to locae and subsequently employ the
shortcut route.

6.6. Latent Learning

The demonstration of latent learning phenomena was a significant step in the
historicd development of leaning theory. Eadch of the major behaviourist learning
theories is based on the notion that leaning takes placein response to a reward (or
conversely a punishment). If it were to be demonstrated that learning had occurred
without any reward then the findings of the behaviourist school would be cdled
into question. Clealy a demonstration of this type would have suited Tolman in the
promotion of his expectancy theory.

A classc “latent learning” experiment is replicated with SRSE. In the origina
Tolman and Honzik (1930 tested three groups of food deprived rats in a maze
apparatus. The first group were dlowed to wander the maze ad obtained a food
reward at the end locaion. The second group were dlowed to wander the maze
but on reading the ed locaion they recaeved no food reward. Each rat was
placal in the maze once per day before being returned to their normal
aceommodation. Once the rat had readed the end location it was prevented (by a
one-way door) from re-entering the body of the maze Sufficient time was allowed
in the end locaion to prevent any reward effeds associated with food availability in
their normal acommodation. On the deventh day (i.e., after 11 runs through the
maze the second group were given accessto food reward in the end locaion. A
third, control, group was allowed to run the mazewith no food reward throughout
the duration of the experiment.

Tolman found that the performance of the second group on the twelfth daily run

(thefirst after the introduction of reward) was as good as or better than that on the
first group that had been rewarded on every run, who had shown a gradua
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improvement in performance Tolman's mazewas constructed from 14 multiple T
units, with doors between the units to prevent the rats retradng their steps in the
maze Tolman interpreted this as clea evidence that reward was not required for
learning to take place Tolman and Honzik’s results are reproduced in figure 6-21.
The measure of performance is the number of errors made by the experimental

animal in traversing the maze.

10—

" No food reward

Average errors

~ - Regularly rewarded

No food reward

T until day 11
| T O T

S I O B
12345678910 12 14 16
Days

Graphic from monolith\latent.cdr
Figure 6-21: Tolman and Honzik’s Latent Learning
Results

adapted from Bower and Hilgard (1981, p. 338)

6.6.1. Description of Procedure

A latent learning schedule is available & a fixed procedure in the SRS/E program.
Figure 6-22 shows the experimental environment seleded for this investigation. It
is charaderised by having three distinct paths of varying length from the defined
start “S’ to defined goal or finishing locaion “G”. The maze arangement used
here differs from that of Tolman and Honzik.

In the procedure 100 “clone” animats are seleded for ead of the three groups
(i.e., eat of the three groups comprises 100 individuals with rseed = 100Q 1001
... 1099. All 16 traversals of the mazeby the first group are valenced. The first 11
traversals of the second group are unvalenced, but the twelfth and subsequent
traversals are. All traversals by the wntrol group are unvalenced. The essential
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parameters are: Arep = 0.5, Adisp = 1.0, Lprob = 0.25, the other leaning
parameters are standard.

Graphic 5.25 from monolith\mazes.cdi

Figure 6-22: The SRS/E Latent L earning Environment

6.6.2. Resultsand Analysis of Experiment

Figure 6-23 shows the results of the experiment, indicating that the esential
properties of the Tolman and Honzik experimental results are present. The first
group show a gradual improvement in performance throughout the procedure. The
second group show a dramatic improvement following the introduction of goal
valencing. The third, control, group shows no significant change in performance
Note the different representation of performance stepdtrial rather than errors. A
logarithmic representation of the performance &is has been used for cosmetic
reasons. Neither of these fadors dould materiadly affed the interpretation of the
results.

The gradual improvement seen in the @ntrol group of Tolman and Honzik’s
results is not replicated by SRS/E. This might be interpreted as evidence that some
other form of reinforcement is available to the anima prior to the main reward
(Bower and Hilgard, 1981 p. 339. Alternatively it might be noted that rats (and
many other mammels) show a quite distinct curiosity29, seeking out the novel and
then ignoring it once it is no longer novel. The design of Tolman and Honzik’s
maze has many dead-ends, which once discovered can be safety ignored in

29As MacCorquodale and Meenl (1953 p. 204 put it “No one who has observed rats during their
early exposure to a maze could dismiss the exploratory disposition as of negligible strength”.
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subsequent traversals of the maze - leading to a reduction in measured error rate.
SRS/E differsin that it responds to novelty, but does not seek it out. An additional
mechanism, such as prioritized sweeping of Moore and Atkeson (1993), might be
adapted for use in SRS/E to demonstrate the gradua improvement findings in the
control group.

Latent Learning
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100 \

Goal always set

10

No goal setuntil trial 11
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Figure 6-23: Resultsof the SRSE Latent L earning Experiment

6.6.3. Discussion

That SRS/E should demonstrate latent learning is hardly in doubt, nor a surprise.
Reinforcement is generated internally, and is not dependent on external reward.
Given therevival of interest in behaviourist and reinforcement learning methods for
machine learning models it is nevertheless a timely reminder that these are well-
trodden paths. Latent learning has been extensively researched. Thistlethwaite
(1951) identifies and evaluates over 30 different latent learning experiments under
a variety of different experimental conditions. MacCorquodale and Meehl (1953)
placed considerable emphasis on the latent learning phenomenon, indeed stating
that it provided the main motivation to add their contribution toward the
formalisation of expectancy theory. MacCorquodale and Meehl note that not all
experiments to demonstrate latent learning actually do so, in part, no doubt, due to
variations in experimental design and procedure. Observation of the latent learning
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phenomenon places a mnsiderable strain on behaviourist and reinforcement based
theories, whereas the dsence of the phenomenon hes little impad on expedancy
based models.

SRS/E’s demonstration of the latent leaning phenomena aises from one by now
well explored propensity - to pursue a known route to a valenced goa in
preference to exploring for a possble better aternative. With group one (aways
valenced) some, typicaly small, proportion of the individuals traverse the mazeto
the goal location by one of the longer paths during the first trial. Once they have
that path, those individuals tend to continue to use it, as their behaviour is always
valenced while in the maze Gradual improvement in performanceis a consequence
of the doice of Lprob = 0.25, and is consistent with the leaning rates previously
shown in the baseline investigations of figure 6-2. Group two has adequate
opportunity to explore the mazeby random walk during the 11 unvalenced trials.
Once the goal locaion beammes vaenced individual animats have invariably
encountered, and so use, the shortest route. Consequently, on average, the
performance of group two exceels that for group one, once the goal is valenced.
The mntrol group have no reason to trea the “goa” differently from any other
location, and show no performance improvement.

6.7. PlaceLearning

Tolman aso devised a place learning experiment, again using rats in an
experimental mazeto demonstrate what he referred to as “inferential expedation”
or “insght” in these aimals (Tolman and Honzik, 193@). In this classc
demonstration experimental rats were placel in a mazeof the form shown in figure
6-24. With adequate experience of the mazerats siow a dea preference for the
shorter of the available routes, path 1. When path 1 was blocked the rats siowed a
distinct preference for path 2 and when path 2 was aso blocked, then the rats
would adopt the longer path 3. The key to the experiment is the pladng of the
block. Tolman argued that if the block was placed at point B arat guided by blind
habit would first try path 2, its choice d this dedsion point being dreded by the
response previoudy associated with the stimulus at that point. However, one
cgpable of cognitive “inferential expedation” or “insight” would conclude that the
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block aso affeded path 2 and would consequently employ path 3 dredly. He
found this to be the case.

Food box
Table
---1-- Block B
Path 1
A --41-- Block A
s, E
C D Path 3

__| Starting place

Graphic 5.27 from monolith\tolmaze.cdr

Figure 6-24: Tolman and Honzik’s “Insight” Maze

adapted from Bower and Hilgard (1981, p. 337)

6.7.1. Description of Procedure

These “insight” experiments are replicaed with SRS/E using the experimental
environment of figure 6-22. The procedure replicates the major functional feaures
of Tolman and Honzik’s “insight” maze In the replicaion of this experiment naive
animats are dowed to explore the mazefor 2,000 cycles by unvalenced random
walk. This allows sufficient time for the animats to explore every path. Each animat
is then given one valenced trial from “S’ (*G” asserted as goa) with no path
blocked to confirm that the animat will seled the most dired route. In the next step
the location at point “A” is blocked. The aimat is returned to “S’ and “G” is
valenced. The number of steps required to traverse the environment to the goal is
noted. The aiimat is returned to “S’, “G” is valenced and the number of steps
required to read the goa locaion again noted. In the next step the block at
location “A” is removed and a block added at location “B”, the animat is returned
to “S’. The goa locaion “G” is valenced and the number of steps to traverse the
modified environment noted. The animat is returned to “S” and the number of steps
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to complete another valenced traversal to the goa locaion again noted. This
experiment uses the standard leaning parameters and Arep = 0.5, Adisp = 1.0,
Lprob =1.0.

6.7.2. Resultsand Analysis of Experiment

Figure 6-25 shows the performance in this experimental procedure by a single
individual (rseed = 10). Sub-figure 6-25a @nfirms that eat path hes been fully
explored, though by no means evenly. Sub-figure (b) confirms the animat takes the
dired route when “G” is valenced. Sub-figure (c) shows the dfea of the first
valenced run after block “A” is st. After 10 failed attempts to traverse path 1, the
animat proceels aong peth 2, as Tolman would have predicted. Sub-figure (d)
confirms the new path on the next valenced run. Sub-figure (€) shows the dfed of
the first valenced run after block “A” is cleaed and block “B” set. Asthe animat is
valenced it follows the known available route (via path two) until the unexpeded
block is encountered at “B”. After a number of falled attempts to traverse the now
blocked location “B” the animat badktradks down path one and round to the goa
location via path three The till onger path involving peth two is ignored. Sub-
figure (f) confirms the new route via path 3 on the next valenced run.
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(A) 2000 stepsrandom walk (seed = 10) (B) Confirm Path 1

Cycle 2001: Wrldis 10 by 10 Cycle 2011: Wrld is 10 by 10

KxkE KKK KKKE AKX QT KKKK KKK KAKX KAKK KRkK Kk A KKKE KKAE KAkk LXFHRE KR K KKK AKX KARK
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P G KEAE KkAE 4] KEKE KKK KAARX 6 *rk* P 0 *Ekx Ekkx 1 kEEE REEkE Kkkk Q *xk*
xxxx 92 51 77 70 67 64 7 33 *xx* ¥x¥x 9 0 0 1 0 0 0 0 *x**
KAkE KKK KKK KRR DD XKKKK KKK KKK KARK KhkK Kk ok KKKE KKAE KAkk 1 KEEE KKk KKK AKX AKX
KAkE kKKK KKK AKX ]QQ KKKK KKK KKK KARK KKkK Kkkx KKKE KKAE KAkk 1 KEEE KKk KKK KKK AKX
Mean = 64. 133331, std dev = 75.047981 Mean = 0.333333, std dev = 0.483046

(C) Add Block “A” (D) Confirm Path 2

Cycle 2036: Wrld is 10 by 10 Cycle 2052: Wrld is 10 by 10

KkkA KKKE KKAE KAkk LXK R R E Kk K KKK KKK KARK KRk A KKKE KKAK KAkK LXFHRE KR K KKK AKX KARK
Kkkx KKKE KKAE KAkk 1 0 0 0 Q k% Kkkx KKKE KKAE KAkk 1 0 ) 0 0 *xk*
Kkkx KKKE KKAE KAkk 1 REEE KEEkE KkkE Q *xk* Kkkx KKKE KKAE KAkk 1 kEEE KEkE KkEK Q k%
Kkkx KKKE KKAE KAkk 1 RERE KEEkE KkkE Q k% Kkkx KKKE KKAK KAkk 1 kEEE KEEkE Kkkk Q k%
Kkkx KKKE KKAE KAkk 1 REEE KRR Kkkk Q **k* Kkkx KKKE KKAE KAkk 1 REEE KRR KkkE Q k%
P 1 1 1 1 kEEE REEkE KkkE Q **k* P 1 1 1 1 kEEE KEEkE KkkE Q **k*
P 1 KEAE KAKEK KKK KKK KXKK KKRK Q *xk* P 1 KRAE kAR KKK KKK KXKK KKAK Q k%
i 1 1 1 10 0 0 0 Q **xx i 1 1 1 1 0 0 0 Q **xx
Kkkx KKKE KKAK KAkk 1 KEEE KKk KKK KKK KARK Kkkx KKKE KKAK KAkk 1 KEEE KKk KKK AKX KARRK
Kkkx KKKE KKAE KAkk 1 KEEE KKk KKK AKX KARK Kkkx KKKE KKAE KAkk 1 KEEE KKk KKK KKK KARK
Mean = 0.862069, std dev = 1.800383 Mean = 0.551724, std dev = 0.525226

(E) Remove Block “A”, Add Block “B” (F) Confirm Path 3
1

Cycle 2098: Wrld is 10 by 10 Cycle 2116: Wrld is 10 by 10

KkkA KKKE KKAK KAkk LXK AR E Kk K KKK KKK KARK KkRA KKKE KKAE KAkk LXFHRE Kk K KKK AKX KARK
Kkkx KKKE KKAE KAkk 1 1 1 1 1 kxkx Kkkx KKKE KKAK KAkk 1 1 1 1 1 kxkx
Kkkx KKKE KKAK KAk KKK AKKE KKKE KAkk 1 kxkx Kkkx KKKE KKAK KAk KKK AKKE KKKE KAkk 1 kxxx
Kkkx KKKE KKAE KAkk 15 **kx kkkx Kkkk 1 kxkx Kk ok KKKE KKAE KAkk O *ErE KxEE ARRR 1 kxkx
Kkkx KKKE KKAE KAkk D KEAE KxKE ARRR 1 kxxx Kk ok KKKE KKAE KAkk O *EAE KxEE ARRR 1 kxkx
P 1 1 1 D KEAE KxRE ARRR 1 kxkx P ) 0 ) O *EAE KxEE ARRR 1 kxkx
P 1 krAE kxkk 1 kEEE REEkE Kkkk 1 kxkx P 0 **kx Akkx O *EAE KxEE ARRR 1 kxkx
P 1 1 1 2 1 1 1 1 kxkx P 0 0 ) 1 1 1 1 1 kxxx
Kkkx KKKE KKAE KAkk 1 KEEE KKk KKK KKK KARK Kk ok KKKE KKAK KAkk 1 KEEE KKk KKK KKK AKX
Kkkx KKKE KKAE KAkk 1 KEEE KKk KKK KKK KARK Kkkx KKKE KKAE KAkk 1 KEEE KKk KKK KKK KARK
Mean = 1.586207, std dev = 2.559633 Mean = 0.620690, std dev = 0.491304
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Figure 6-25: Results from “Insight” Experiment

As with the latent learning experiment the key to succesul demonstration of the
phenomenon under investigation is careful experimental layout and procedure.
Where the latent leaning procedure cdled for careful rationing of experiencein the
maze during the initial stages of the sequence, this procedure cdls for adequate
exploration. Without this the various routes may not be fully known to the animat,
and consequently it will not seled the preferred (by the experimenter in this case)
routes. Other reseachers subsequently found Tolman and Honzik’'s results
repedable, but prone to disruption, apparently due to elements in experimental
design.

6.7.3. Discussion

SRS/E confirms Tolman's view of “insight”. It seems unlikely that Tolman will
have won much approbation from his peeas by the use of the term, implying as it
does, alevel of intelligence well above that normally associated with the laboratory
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rat. Perhaps paradoxicdly, and with the benefit of hindsight, we may seethat this
behaviour is fully explicable in terms of problem solving, at best a minor form of
“indght”. Nevertheless the caabilities demonstrated by Tolman's rats and
replicated by the SRS/E algorithm in this procedure still present considerable
difficulties to the behaviourist and readive ayent schools of thought that promote
reinforcement learning by explicit reward.

6.8. Chapter Summary

This chapter has described a series of experiments that investigate the properties of
the SRS/E algorithm as an implementation of the Dynamic Expedancy Model. To
fadlitate dired comparison with previously published algorithms, Sutton’s (1990
Dyna family of reinforcement leaning programs, the experimental conditions
employed for those previously published works have been replicaed. In the
baseline investigations of sedion 6.2 the performance of the SRSE algorithm was
diredly compared to that of Sutton’'s Dyna-Pl algorithm. SRS/E shows a marked
performance gain over Sutton's agorithm. Under “ided leaning conditions’
SRS/E was clealy able to master the mazetraversal problem within a single trial
(the Lprob = 1.0 curve of figure 6-2), whereas Dyna-PI is recorded as requiring
over 80 trials (the “zero planning steps’ curve of figure 6-1). It may be estimated
that this represents approximately a forty-fold improvement in leaning efficiency,
in terms of the overall number of steps required to master the given task. The
improved curves $rown for Dyna-Pl are adieved by added interna computation,
the degraded curves for SRS/E are aeded by restricting the dfediveness of the
learning process (Lprob < 1.0).

Sutton did not report on the performance of Dyna-Pl in the noise disrupted
environment he described. However, these investigations were performed with the
SRS/E agorithm, and are reported in sedion 6.3. The results obtained are
summarised in figures 6-4 and 6-5. The figures demonstrate that while the rate &
which the task is leaned is not markedly affeded by the aldition of this form of
noise, the overall leaned task performance is degraded by the presence of the
noise. It was subsequently argued in sedion 6.3.2.2 that the Dynamic Policy Map
isindeal corredly formed by the leaning process It is the task performancethat is
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disrupted by the presence of noise in the test trials. When this noise is removed,
animat task performance is restored to near optimal levels.

The dternative and multiple goal experiments described in sedion 6.4 highlight a
significant difference between the Dynamic Expedancy approadh and that of
conventional Q-learning algorithms. By recomputing the policy map on demand it
beoomes clea that any sign known to the system may be treded as a goa and
seleded on some abitrary basis, not just those signs that were assgned as goals
during the leaning process The SRS/E agorithm may therefore aldress stuations
where the animat is faced with goals that vary over time, and where several goals,
of varying priority, must be tackled in an appropriate order.

The investigations of sedion 6.5 explored the response of the SRSE algorithm to
a variety of situations in which different paths from a starting point to a fixed goa
point are presented to the animat. These tasks are essentially beyond the
cgoabilities of conventional Q-leaning algorithms of the form described by
Watkins (1989. The performance of Sutton’s Dyna-Q+ agorithm, an adaptation
of the Q-learning approad, was compared dredly with the unmodified form of the
SRS/E agorithm. Even though the medanism by which new paths are discovered
is radicdly different in the two algorithms, the gparent recorded performance was
generaly very smilar. This is ©smething of a surprise, as it might be thought that
the inclusion of a ntinuoudy adive exploratory component in the Dyna-Q+
algorithm would degrade its otherwise optimal levels of performance Exploration
is only invoked in SRS'E when an obstruction to the policy map path is
encountered. The provision of an extinction mecdhanism in the SRSE agorithm isa
radical departure from the Dyna approach, and has some biological plausibility.

The demonstration of latent leaning, described in sedion 6.6, highlights a
substantive difference between the Dynamic Expedancy Model and previous
reinforcement leaning techniques. Leaning is demonstrated to take placein the
absence of external reward. This result, for which there is a substantial body of
corroborating literature from anima leaning experiments, would be wholly
unexpected from a conventional reinforcement learning mechanism.
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Similarly the place learning experiments, described in section 6.7, demonstrate the
ability of the SRS/E agorithm to negotiate obstructions in its policy path in a
manner that would be unpredicted from any agorithm employing a static policy
map. Again, these results are consistent with findings from well-established animal

learning experiments.
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