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Chapter 8

8. Discussion and Conclusions

8.1. Reactive or Cognitive?

The initial problems remain. Is behaviour in animals and animats primarily or

wholly according to responses mediated by the immediate reaction to impinging

stimuli? Is learning simply a matter of strengthening or weakening the connections

between stimulus and response, as the reactive or situated agent behaviourists

would have us believe? Or is behaviour primarily instigated by “goals” , internal

states of the animat set and satisfied according to the physiological needs of the

animat, with the processes of the animat selecting actions to pursue those goals?

These questions have been hotly debated for nearly a century, with a mountain of

evidence accumulated for both viewpoints. Brooks (1991b) has argued (and many

before him), much of what we observe in animal and human behaviour can be

perfectly adequately explained with a purely stimulus-response analysis. Yet from

the time of Tolman (1932) psychologists have argued that reactive behaviourism is

wholly inadequate to explain the behavioural abili ties of the human species and, as

demonstrated through ingenious experiment, to explain all the behavioural abili ties

of animals.

8.2. Expectancy Model as “Missing Link” in Learning Theory

The Dynamic Expectancy Model may be thought of as the “missing link” between

pure S-R behaviourism and the “cognitive”, goal based, approach. While the

Dynamic Policy Map is created by a goal driven process, utili sing the three part

representation of the � -hypothesis, a purely cognitive notion, immediate behaviour

is selected only on the basis of the current stimulus set, and so may be thought of

as purely reactive. In many experimental designs the two may appear almost

indistinguishable from one another. A similar distinction has been developed in the
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idea of universal planning, which is considered in more detail later in this chapter.

Critically, and in keeping with the observation that reward is most effective if

applied immediately following an event, reinforcement is still applied directly to the

main unit of learning, the � -hypothesis, immediately the outcome (of the

prediction) is known. The adaptive component of the learning process is pure

reinforcement; behaviour due to the combination of these units to produce goal

seeking behaviour by the spreading activation process. Direct reinforcement

relative to a known system “motivation” is not excluded, as demonstrated by the

valence level pre-bias experiments. There is also no restriction to the re-ordering

or strengthening of elements of the Behaviour List � �  in a manner entirely

consistent with a pure S-R behaviourist reinforcement regime.

Given the obvious diversity of both physical and behavioural characteristics across

all the species of the animal kingdom, it would appear idle to suggest that there

would not be a similar diversity of behavioural and learning strategies. Some

animals with simple behavioural strategies may employ no adaptive abili ty, or

limited learning strategies. In others the number and complexity of these strategies

increase, manifest as improved behavioural abili ty. Razran (1971, p. 252) has

proposed an “evolutionary ladder of reactions” , which argues for a correlation

between an animal’s place on the evolutionary scale with the appearance of

experimental evidence for various learning strategies at the different levels. In this

context adoption of different and varied reinforcement strategies, and similar

strategies to varying extents, by different species seems inevitable.

8.2.1. Types of Reinforcer

The conventional view of a reinforcer is related to underlying biological needs,

such as “ food, water or sexual contact for appropriately deprived individuals”

(Bower and Hilgard, 1981, p. 268). It is exactly these needs that can repeatedly be

demonstrated as the motivations or drives to initiate and sustain behaviour. It

makes design sense to learn behaviours relating directly to those aspects that will

be most germane to the everyday existence of the animat. Such primary

reinforcers may be easily identified and categorised into phenomena that do, and

those which do not, act to modify behaviour. In SRS/E, with the valence level pre-
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bias (VLPB) option enabled, any sign placed on the Goal List will subsequently

adopt the role of a primary reinforcer.

It is clear that phenomena other than direct biological need can act as a learning

reinforcer. Such secondary reinforcers may include “money, praise, social

approval, attention, dominance and the spoken exclamation "good"” (Bower and

Hilgard, 1981, p. 268). At a level below even the primary reinforcers, notions of

“pleasure” and “pain” appear to “pre-classify” stimuli and sensations into desirable

phenomena, to be sought and undesirable phenomena, to be avoided. The existence

of specific nerve types to detect “painful” stimuli would indicate that this is a very

primitive mechanism, one it is easy to argue will have a very immediate impact on

the survival rate of an organism. “Pleasure”, on the other hand, seems to be

associated with a much higher level of neural organisation. In this context the

application of expectation satisfaction appears as a bridging reinforcer. Expectation

satisfaction is neither a primary reinforcer - it serves no direct biological need, nor

a secondary reinforcer - as it does not require a social infrastructure implicit in the

list of secondary reinforcers.

8.3. Relationship to Policy Maps and Universal Plans

A feature of the Dynamic Policy Map is that it indicates the most appropriate

action to take in the specific set of circumstances defined by the goal being sought

and by the prevaili ng sensory pattern. In SRS/E this pattern may include elements

from the trace of past sensations. In this respect the action selection mechanism has

many similarities to the policy map described for reinforcement and Q-learning

procedures. These procedures suffer in comparison to the DPM when the goal

definition changes, or the path to the goal becomes blocked or radically altered.

Schoppers (1987, 1989, 1995) develops the notion of universal planning that

addresses the plan/react issue from a different direction.

In Schoppers’ system a conventional planner builds a problem-solution path using

goal reduction operators. The resulting structure is converted into a decision tree.

This may be traversed for each current situation to determine the action

appropriate to the prevaili ng conditions defined by a set of known and

predetermined predicate tests, a cache of pre-formulated step solutions. The
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reactive nature of the universal plan overcomes a form of brittleness inherent in

conventional planning, where failure of any stage during execution causes failure of

the plan as a whole. Universal plans react to successes and failures in activity

without recourse to additional computationally expensive replanning.

Ginsberg (1989) argues against the universal plan as a useful approach. He argues

that the size of the cache will grow exponentially with the number of sensors, that

there will be only a minor computational cost saving, and that this will be at the

expense of greater storage requirements. Ginsberg’s exponential growth argument

is based on the notion that all sensors are independent, and that each sensor may be

connected to every action. He further argues that, unless the “universal plan”

covers all eventualities it should properly be referred to as an approximate

universal plan.

Strict application of the exponential complexity argument is specious. The world is

clearly non-uniform. Were the world “uniform” then it would make no difference

which action was taken under what circumstances, and such is palpably not the

case. All associationist, behaviourist and cognitive models are based on the

exploitation of this non-uniformity. Rivest and Schapire (1990) have presented an

algorithm to detect and utili se equivalence in detectable conditions. Using this

algorithm the 1019 states of the sometime popular children’s toy the Rubik’s Cube

may be reduced to 54 conditions. Yet it may be that important conditions in the

environment are poorly distinguishable, either because they are in some true sense

similar, or because the sensory capabili ties used to differentiate between them are

ineffective. Under these conditions the behavioural (and learning) mechanisms will

be obliged to incorporate a broader spectrum of sensations to disambiguate

between candidate options.

If we view the evolution of species as nature’s “universal plan generator” (as made

manifest in an individual’s ethogram), it becomes clear that these exponential

complexity pre-conditions relating to sensors do not hold. As discussed in an

earlier section, nature apparently tailors and tunes otherwise undifferentiated

sensory apparatus to each task. Tinbergen’s birds responded quite specifically to

certain “predator” silhouettes, but were apparently oblivious to other shapes.

SRS/E and other like systems may take advantage from similarly tuned sensory
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apparatus, but even without this advantage will seek to identify those combinations

of sensations that are significant, and ignore the remainder. In summary there is no

need for sensory apparatus to be uniform or homogeneous.

Classical AI planning systems have two potential advantages over reactive and

policy based approaches. First, they are (or should be) incorporated into formally

correct search procedures. More significantly this implies that the operators defined

must themselves be correct; that is achieve the outcome they promise, under the

conditions they promise them. Second, the classical planner may take different

actions based solely on its current position in its internal solution path, although the

incoming sensor vector is identical. The current detectable conditions are used for

confirmation, or not at all. Purely reactive systems based on the current sensor

vector do not have this advantage. SRS/E addresses this problem by the use of

activation traces and recency values. Other approaches may allow recirculation of

sensory data (for instance, Becker’s proposal to re-circulate kernels into STM,) or

some other method for the explicit recording of past events into the representation.

However, classical AI planning can lead to a form of brittleness. If the operators

are not correct the solution path generated will not be correct. Advantage gained

from the correctness of the search procedure is compromised. SRS/E operators,

the � -hypotheses, are, by their nature, only an estimate of the described transition.

The Dynamic Policy Map allows the SRS/E algorithm to select actions on the basis

of combined probabili ties, as manifest in the cost estimation procedures, and then

to update its confidence in individual � -hypotheses on the basis of the outcome. It

is particularly robust in the face of unexpected outcomes caused, among other

reasons, by faulty or unconfirmed � -hypotheses. It takes advantage of

serendipitous transitions forward to the goal where the cost estimate unexpected

falls; and may continue along some other route to recover from a failure to traverse

the expected path.

In a wide range of circumstances speed of response is the critical issue in

behaviour. The tardy prey, absorbed in careful planning of its escape, might expect

no quarter from the stooping hawk. Perhaps predictably, Schoppers (1989) in his

reply to Ginsberg argues in favour of the increased space utili sation for the cache

to achieve responsiveness. Given the incompleteness of most behavioural
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repertoires, and of the scope of the current generation of formal planners,

“universal plan” may indeed be something of a misnomer.

8.4. One-Shot Learning Phenomena

The SRS/E model clearly demonstrates the one-shot learning phenomena. As soon

as the � -hypotheses is created the animat has a possible path between the two

points in the “cognitive” map represented by the signs “s1” and “s2” embedded in a
� -hypothesis. An effective � -hypothesis becomes rapidly adopted as the path of

choice, and the animat will appear to learn quickly, possibly as a result of a single

trial. Because its outcome is successfully predicted, discovery of an effective

solution also has the effect of suppressing further learning activity related to the

sign “s2” . If, as is more likely, the new � -hypothesis fails to encapsulate all the

conditions necessary for a perfect prediction, further learning may occur at each

instance of an imperfect prediction. At some point it may be that there are

sufficient imperfect � -hypotheses to ensure that every instance of “s2” is predicted,

and learning for this restricted sub-domain will cease, at least temporarily.

This procedure may serve to explain the conundrum (described by Bower and

Hilgard, 1981, p. 341) of why a rapidly learned path is quickly extinguished, yet

one that is learned over an extended period takes longer to disappear. Individual � -

hypotheses are (in SRS/E at least) extinguished at an essentially equal rate, on the

basis of activations, not elapsed time. Where one-shot learning has taken place, a

single � -hypothesis is available to reach the solution while the goal is asserted. No

further � -hypotheses being created as none are required. The observed extinction

time is therefore equivalent to that for a single � -hypothesis. Where several such

alternative, albeit imperfect, � -hypotheses exist, more than one path will be

available through the Dynamic Policy Map. As each path fails, another will be

selected from the recomputed DPM. The animat will continually swap between the

alternatives as the estimated policy cost shifts (at a rate determined by the

parameters previously discussed) due to prediction failures. Eventually one, then

another and finally all the different paths are extinguished and the goal is finally

abandoned as unachievable in the normal way.
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Overall time to extinction, as measured by the count of actions ascribed to

pursuing the goal, is then (in the SRS/E algorithm at least) a function of the

number of alternative paths through the DPM. Alternative paths arise through

imperfect � -hypothesis formulation, which extends learning time. Therefore,

extended learning times lead to extended extinction times. Careful examination of

results from extinction experiments (section 6.5) reveal this effect, which is

particularly apparent in the dual-path extinction procedures (figure 6-17).

Taken to a natural conclusion, SRS/E attempts to build a hypothesis about every

sign it might detect, and also to predict every occurrence of those signs. Under

certain circumstances these conditions can hold true, for instance those described

by some Markov Decision Processes (MDP) worlds. In the finite and deterministic

(FDMSSE) environment the SRS/E algorithm will stabili se with a � -hypothesis to

predict every sign and for every appearance of each possible sign.

8.5. Expectancy Theory and XBL - a Proposal

The development of expectation based learning directly impacts one of the long

standing conundrums associated with machine learning; how to make learning truly

autonomous. Autonomous learning means that the animat or learning program can

learn without any form of external supervision or guidance as to what represents a

“good” or “bad” choice. In the case of the novel Dynamic Expectancy Model

described in this thesis, and tested in the form of the SRS/E algorithm and

implementation, a reinforcement signal is generated internally from successful and

failed predictions.

Generally machine learning algorithms fall into two categories, supervised and

unsupervised learning. In the former category a teacher is on hand to indicate to

the system the appropriateness of its actions and so provide the feedback to guide

the learning mechanism. In the latter case information about the task to be learned

has been embedded in the code. Buchanan, Smith and Johnson (1979) refer to this

component as the critic. The critic compares the outcome of the performance

element, responsible for the overt (and possibly faulty behaviour) with the

predefined desired behaviour and supplies an error or difference signal to a

learning element, which modifies the performance element accordingly. Their
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model of machine learning is a general one, but the form in which each of the

elements appears and the nature of the signals passed between them is particularly

diverse.

Expectation Based Learning (XBL)30, based on the principles laid down for the

Dynamic Expectancy Model, at last releases the etho-engineer31 from the

obligation, but not the option, to specify goal or purpose related criteria for the

learning element. Evaluation of an SRS/E � -hypothesis on the basis of its predictive

abili ty forms a measure of the effectiveness of that � -hypothesis. Its usefulness is a

separate issue, related to the degree to which it enables the performance element to

pursue some pre-defined or otherwise generated purpose. The valence level pre-

bias (VLBP) experiment demonstrates that when learning and performance are

indeed linked, both may be advantaged.

Drescher (1991) suggests the term “Schema Based Learning” be adopted as

appropriate to the class of intermediate level cognitive models. Notwithstanding

the importance of the tri-partite representation adopted by SRS/E, ALP and JCM,

it, however, does not align directly with the notion of expectancy. The satisfaction

of an expectancy is not tied to this particular representational formulation. It is

possible that the notion of an expectation and its subsequent satisfaction may prove

to be applicable to a wide range of other otherwise quite conventional structures

already employed in the fields of Artificial Intelli gence, Machine Learning and

Adaptive Behaviour research.

                                               
30 XBL, rather than EBL, as this term is already in widespread use (“Explanation Based
Learning”, Minton et al, 1990)
31One who engineers ethograms - for want of a more apposite term


