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Abstract

This thesis presents a novel form of leaning by reinforcement. Existing
reinforcement learning algorithms rely on the provision of external reward signals
to drive the leaning algorithm. This new agorithm relies on reinforcing signals
generated internally within the dgorithm. The dgorithm, SRS/E, described here
generates expedancies (u-hypotheses), ead of which gives rise to a spedfic
prediction when the anditions relevant to the expedancy are encountered (the p-
experiment). The dgorithm subsequently tests these predictions against adua
events and so generates reinforcement signals to corroborate or rejed individua
expedancies. This procedure dlows for self-contained, completely unsupervised
leaning to an extent not possble with previous reinforcement procedures. The
SRS/E algorithm is derived from a number of postulates that constitute a new
Dynamic Expectancy Modeleveloped in this thesis.

In contrast to the static policy map generated by existing Q-leaning based
reinforcement algorithms, which limit leaning to one goal, the SRS/E agorithm
generates a Dynamic Policy Map (DPM) from leaned expedancies whenever a
new goal is €leded by the system. This new approac retains the alvantages of
readivity to the environment inherent in existing reinforcement algorithms, while
substantially increasing the system’s flexibility in responding to varying
circumstances and requirements. Also in contrast to previous reinforcement
systems, goals may be seleded arbitrarily and are not limited to those which were
asociated with reward during the leaning steps. This new method allows multiple
goals to be pursued either simultaneously or sequentially.

The single SRS/E implementation has been compared dredly to the published
results from of a family of reinforcement based algorithms, Dyna-PI, Dyna-Q and
Dyna-Q+ (Sutton, 1990, themselves extensions to the groundbre&king Q-learning
algorithm (Watkins, 1989. Under equivalent “ided leaning conditions’ the SRS/E
algorithm was found to outperform the equivalent Dyna reinforcement program to
lean a smple mazetask by a fador of some 40:1. The SRS/E leaning agorithm
was also found to be robust when tested under controlled “noise” conditions.
SRS/E was also compared dredly to Sutton’s Dyna-Q+ dgorithm on a range of
aternative path and route blocking tasks and was found to offer a smilar
performance, but SRS/E employs a “biologicdly plausible” extinction medhanism,
mirroring findings from animal behaviour research.

Finally SRS/E was tested with experimental designs for “latent leaning” and “place
leaning”, drawn diredly from animal leaning reseach. Both are regarded as
presenting severe dallenges to conventiona reinforcement leaning theories.
SRS/E performs well on both tasks, and in a manner consistent with findings from
animal experiments.
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Chapter 1

1. The Behaviour of Animals and Animats

Man has long sought to understand what constitutes life, and to understand the
nature of living things. The new discipline of Artificial Life (Langton, 1989 Levy,
1992 Brooks and Maes, 1999 ads as a focus for reseach into a diverse set of
topics relating to the modelling and understanding of life and the properties of
living things. Artificial Life concerns itself with many aspeds of those organisms
we reagnise & living entities. These apeds include evolution, morphology,
swarming behaviours, behavioural models and learning, even the nature of life
itself. The ideathat “living” entities might yet be anstructed artificially remains
highly speaulative and contentious, only in part due to the difficulties in agreeng a
satisfadory definition of what does and what does not congtitute the necessary
properties of being aive. There is more general agreament that simulation can
gredly add to our overall understanding of the nature of the structure and
behaviour of living things. This work concerns itself with the behavioura
properties of the individual. It will therefore touch upon the broader issies
addressed by Artificial Life only in passing.

One question has engaged the minds of psychologists and those interested in a
greaer understanding of animal behaviour for decades. Is the behaviour of animals
inherently driven by the aurrent state of the world as perceived through the senses,
or is it direded by goals, internaly generated needs or requirements of the
organism? Huge amounts of evidence supporting these two disparate viewpoints
has been acawmulated. It is an argument that is far from being resolved and one
that has gilled over into the newer domains of Computer Science and Artificial
Intelligence, where another generation of scientists is pondering the question and
proposing new models of behaviour in an attempt to resolve the issie. The
guestion was the subjed of a meding that invited this new generation of



reseachers to dedare and defend their position - “models or behaviours’ (Aylett,
1994). Pardleling this question is that of how learning is to be atieved in either of
these possble situations. These problems have recently found renewed expresson
in an areaof study broadly categorised as the “smulation of adaptive behaviour”
(Meyer and Wilson, 1991 Meyer, Roitblat and Wilson, 1993 CIliff, Husbands,
Meyer and Wilson, 1994 Maes, Mataric, Meyer, Polladk and Wilson, 1996. The
debate is set to continue.

1.1. Three Componentsof Natural Intelligence

For the purposes of this thesis behaviour will be divided into three broad
caegories: (1) capabilities inherent to the individual from the moment it comes into
being; (2) cgpabilities it may aaquire a aresult of interadion with its environment;
and (3) cagpabilities aqquired by processng or reformulating information or
cgoabilities derived in any of the three caegories. The first caegory will be
referred to as “innate capabilities’, the second as “leaned capabilities’, and the
third will encompassa range of abili ties broadly categorised as “problem solving”,
and “inductive” and “deductive inference”. Some, possbly all, elements of the
processes supporting caegories (2) and (3) may also be an innate processinherent
to the individual. Information from any caegory can potentialy be utilised and
exploited by any of the cdegories. Therefore the dement of self and cross
reference of the cdegoriesisintentional. The “intelligence” of the individual will be
based on some cmbination of these three basic adivities (undoubtedly supported
by many other adivities of the individual and its gructure). Intelligence will not be
defined here by any spedfic ability, but rather by the degreeor extent to which the
individual can rea¢ and adapt to the drcumstances that impinge upon it. One
prevailing view holds that an individual can be mnsidered intelligent solely on the
basis of cgpabilities defined in the first caegory. Others argue that any useful
degree of inteligence ca only be displayed in individuals with significant
cgoabilities in caegories (2) and (3). This work will concentrate on the nature of
intelligence & it arises from caegories (1) and (2). This chapter and chapter two
will consider the gproaches adopted by others. Perhaps interestingly, these
cgpabilities may arise ather as a result of an evolutionary or a aeaiona process
with little impact on the observable performance of the individual under study.

10



The term animat (Wilson, 1985 1991) will be used throughout this work to
indicae an artificial or smulated model of an animal. The term will aso
occasionaly be used to denote properties shared by these smulated and natural
animals. Spedficadly the term animat is used in preference to agent, which is used
by various authors to refer varioudy to either an individual, or to component parts
of anindividual. The term animat is not intended to represent any spedfic organism
or spedes type. The term ethogram will be used to represent a description, in
operationa form, of the behavioura cgpabilities of the animat in ead of the three
cdegories a the moment it becomes a free standing individual. The term
“ethogram”, after etholody is apparently due to Kirqi1991, p. 167).

1.2. Reactive Modelsof Intelligence

This sdion considers me of the isaues relating to the first category of intelli gent
behaviour, varioudy named behaviour based (Maes, 1993, reactive, or situated
agent models of behaviour (Agre, 1999. Brooks (1991a) view of intelligence
without reason and his (Brooks, 1991b) intelligence without representation
arguments follow in a long tradition of stimulus-response (S-R) behaviourism. All
argue that the majority of observed and apparently intelligent behaviour may be
ascribed to innate, pre-programmed, processes available to the individual. This
viewpoint is not without its critics, Kirsh (1997) for instance Category (1), innate,
cgpabilities of the individual derived from an evolutionary processare shared by all
members of the same spedes (allowing for some variation between individuals).
Individuals derived by a aediona process aayuire innate intelligence from their
constructor. Similarly, we may be impressed by the alvice from an expert system
and yet be avare that the intelligence displayed is dill derived from the knowledge
of a human expert. In both cases the intelligence seans diluted. To a cetain extent
cgpabilities derived in this first category may be regarded as “intelli gence without

intelligence”.

Innate intelligence is not, however, defined by degree The behavioural repertoire
of an insed may be cmpletely mapped, and its ability or inability to read to any
situation comprehensively modelled. At a distant end of this sde Pinker (1994

1(OED): ethology n. Science of character formation; science of animal behaviour
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argues that human language dility, for all its complexity, is primarily innate. He
cites much evidence that all undamaged humans develop language ailities to a
largely uniform level of complexity by smply interading with others, esentialy
regardlessof (and possbly in spite of) any form of educaion or teading. Spedfics
of vocabulary and grammar are environmentally determined, but vocabulary and
grammar develop in al undamaged individuals as a matter of course during their
infancy. Notwithstanding differences in their vocd tradsiit is clea that, while non-
human primates may be taught a limited vocabulary of symbols, attempts to teah
or adivate ayy dggnificant tendency to structured grammar remain largely
unsuccesdul (Premadk, 1976. Where significant progress has been reported this
has lead to suggestions of observer bias.

The innate behavioural repertoire of many spedes has been extensively studied.
Where this is done primarily by observation of the aima in its natural
surroundings, the term ethology is often used. An alternative goproacdh, adopted by
behavioural scientists, places the subjed anima in controlled experimenta
conditions to investigate the subjed’s readions. Innate behaviour patterns are
reasonably investigated by the former procedure, but aspeds of leaning and
problem solving are often better researched by the latter method. This appeas in
part due to the wide range of innate adivities a subjed may perform, masking or
hiding specific learning phenomenon under investigation.

1.3. Action Sdection M echanisms

Action Selection Mechanisms (ASM) attempt to provide amodel to understand
how behaviour is generated in response to the aurrent requirements of the animal.
These ae spedfic implementations of caegory (1) notion of intelligence, that of
unleaned or innate behaviour. They do so in a manner intended to illuminate the
properties observed of living creaures. The systems discussed here tend toward
the modelling of natural systems, but are not drawn exclusively from those that do
so. For largely historicd reasons these models concentrate on a variety of non-
primate vertebrate spedes, including smal mammals, birds and fish, whose
behaviour may be dosely observed and recorded. Tyrrell (1993 Ch. 8) provides a
useful summary of a variety of adion sdedion medianisms drawn from both
natural and artificial examples. Despite the huge body of observational evidence
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from the discipline of ethology and the subsequent introduction of computers
allowing detailed smulation and testing of the various theories, there is gill much
controversy as to which of the many possble achitedures represents the most
appropriate description.

Tinbergen (1951, Ch. 5) devised a model for the organisation of behaviour based
on observations by himself and others of a variety of spedes, including the digger
wasp, the threespined sticklebadk and the turkey. Tinbergen's model is a
hierarchic control model of adion seledion. The aedure is embodied with several
central “instincts’. Figure 1-1 models that of the reproductive instinct of the three-
spined stickleback. Eadh central instinctive behaviour is inherently part of the
creaure, but it is not always manifest. Reproductive behaviour in the sticklebad is
a omplex set of adivities gread over a period of many weeks during the breeding
season. Onceinitiated, say by the onset of warmer weaher or lengthening hours of
daylight in the spring, second level behaviours become adive. In this model such
behaviours are normally inhibited by a blocking medhanism. When circumstances
appropriate to the conduct of some aped of the innate behaviour are sensed an
innate releasing mechanism (IRM) removes the block, so enabling behaviours at a
lower level in the hierarchy. These sub-ordinate behaviours may then also be
released by their IRMs, shown in figure 1-1 as grey coloured areas, when the
conditions appropriate for their use ae encountered. Lorenz had ealier proposed a
simple hydromedanicd analogy to illustrate the operation of the IRM (Lorenz,
1950).

Tinbergen distinguishes between appetitive actions, those which establish the
conditions needed to continue or complete a sequence of behaviours and
consummatory actions, which appea to “satisfy” the motivation for the adion
sequence and so complete it. Level 3 subordinate behaviours represent these
appetitive and consummetory behaviours, and are observed and recorded by the
ethologist. These behaviour units are mnsidered to be fixed action patterns (FAP),
groups of low level adions that may be initiated to complete some asped of the
overal instinct. Level 3 behaviour units may themselves be further sub-divided into
the w-ordination of, for example, fin (level 4), and fin ray (level 5) movements,
muscle activations (level 6) and so on.
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Figure 1-1: Tinbergen’s Principle of Hierarchical Organisation

adapted from Tinbergen (1951), p. 104 & p. 124

Baegends (1976 presents a hierarchicd model to acount for the incubation
behaviour of the herring gul. This model adds inhibition between superimposed
control centres (level 2 behaviours), in which adive caitres sippressthe dfeds of
others. Friedman (1967 prepared a @mputer model and smulation of the
concepts of innate behaviour. He retained the notion of an innate releaser
medhanism, but argued that viewing level 3 behaviours as fixed adion patterns was
too smplistic. To counter this apparent oversmplification Friedman introduced
behavior units, behaviour patterns controlled and maintained by feedbadk loops at
level 3. His g/stem was tested with a smulated artificial animal, ADROIT. Travers
(1989 presents a mwmputer smulation of the sticklebad<’s innate reproductive
behaviour; Halam, Hallam and Halperin (1994 a smulation of aspeds of
behaviour in th&amese fighting fish.

Rodney Brooks has described the subsumption architecture (Brooks, 1986. While
not strictly an ethologicdly inspired model of behaviour it has proved influential in
the design of subsequent readive axd behavioural models. Figure 1-2 illustrates
some of the main feaures of the subsumption architedure. In a conventional model
of robot task behaviour, Brooks argues, behaviour is decomposed into functional

modules guch as “perception”, “modelling”, “planning”, and so on. Each module
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will be involved in the completion of many different task types. In a subsumption
architedure the robot control system is decomposed into individual task-achieving
modules, a “level of competence”. Lower levels being responsible for simpler or
more primitive adivities. Eadh level is nevertheless responsible for a complete
behaviour, having accessto the sensory information it requires and the adility to
send ingtructions to aduators. Examples of such behaviours include “obstade
avoidance” (level 0), “wandering behaviour” (level 1), “explorational and map
building behaviour” (level 2), up to, say, the aility to reason about objeds in the
world and create plans.

level 3
]
) 4
b 4
level 2
]
b 4
b 4
level 1
]
b 4 ) 4
Sensors level O » Actuators

Figure 1-2: Brooks’ Subsumption Architecture

adapted from Brooks (1986), p. 17 & p.18

In Brooks model ead level is creded as a finite state machine. Every higher layer
may subsume the behaviour of a lower layer, by modifying its input information
(shown as a drcled “S” on the input side of ead layer in figure 1-2) and therefore
adapt the lower level behaviour to its requirements. Alternatively the higher level
may inhibit the output of lower layers to take control of the output behaviour
(shown as a drcled “1” on the output side of ead layer in the figure). Brooks
(1990 describes the behavior language, which allows behaviours defined in terms
of the subsumption architedure to be complied into the native ade for a variety of
procesor types including the Motorola 68000and 68HC11, Hitachi 6301 and to
Common Lisp.

Tyrrell (1993 argues that adions are not best seleded on an al or nothing basis.
Rather eath module should contribute “evidence” for one or more of the possble
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adions available to the animat, with a “winner-take-all” strategy in placeto seled
the final outcome to be sent to the aduators. His model is based on one devised by
Rosenblatt and Payton to automaticdly control and navigate a mobile vehicle
(Rosenblatt and Payton, 1989 Payton, Rosenblatt and Keirsey, 1990. Rosenblatt
and Payton's model overcame the potential loss of data in the subsumption
architedure by alowing ead behaviour module to feed (positive or negative)
activations via weighted links to summation points for each action type.

Brooks subsumption architecure proposal is reminiscent of Paul Madean's triune
brain hypothesis (Albus, 1981, p. 184). Each of three layers represents a stage in
the evolution of the modern mammalian brain. All the layers have accesto sensory
medhanisms and motor outputs and are organised as a @ntrol hierarchy. The inner
layer, layer one, is the primitive reptilian brain, equipped with reflexive and
instinctive behaviours. Built over this primitive layer is the “old mammelian” brain,
providing additional attributes, elements of planning, predictive ailities and some
elements of memory. In turn the third layer, or “new mammalian” brain provides
another set of cgabilities including the sophisticaed manipulation of arbitrary
symbols and concepts, language and a distinct model of self. Asin the subsumption
architedure, eat layer has accessto information available to alower layer but may
also intercept and override the output of a lower layer.

Maes describes a bottom-up medanism for adion seledion (Maes, 1989 1991,
1993, which, while being primarily a computer based animat controller, addresses
the problems of adion seledion from a broadly ethologica viewpoint. Figure 1-3
illustrates the main points of her adion seledion model. The animat has a number
of innate motivations (or, synonymously, goals), which are in turn conneded to
consummeatory adivities. Consummatory adivities will, if performed, lead to a
reduction or satisfadion of the dtached motivation; eaing assuages hunger,
drinking dlakes thirst and so on. Consummetory adivities may in turn be linked to
appetitive adivities, ones that prepare the animat to complete the behaviour. Some
appetitive adivities lead dredly to a cmnsummatory adivity; others are linked into
chains of adivities that lead the animat closer to the motivating goal. Thus eding
food is preferable to moving towards food that can be seen, which in turn is
preferable to moving to a locaion where food is remembered to be locaed, to
having to explore for food.
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Figure 1-3: Maes’ Action Selection Architecture

adapted from Maes (1991), p. 240 & p. 242

Activities are linked by a network of predecessor links (“*—<"), a list of pre-
conditions necessary to initiate an adivity and by successor links (*-——<”), add-list
conditions arising as a mnsequence of performing the adivity. Activities may also
inhibit other adivities with a conflictor link (“—0"). At any time eab of the
motivations will be daraderised by a level of adivation, a degree of “hunger”,
“thirg”, “fea”, etc. Motivation adivations gpread throughout the network of
adivities through the predecesor links, the adivation level being relative to the
strength of the motivation and to the number and type of links between motivation
and adivity. At the same time gpetitive and consummetory adivities attain a level
of adivation based on the degreeto which their preconditions are met, either by
adivation via their predecesor links, or diredly from sensory conditions
asociated with the adivity. Activation spreads in two diredions, along both
predecesor and adivator links, inhibition via conflictor links. At any time, then,
the animat may seled an adion based on both its current neads and the prevaili ng
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environmental circumstances in which it finds itself. Tyrrell (1994 implemented
and tested Maes' adion seledion medanism with a wide range of parameters and
concluded that there were some significant drawbadks to the mechanism she had
described.

Action seledion medanisms only address the first category of intelligence &
described previoudy. They are an important part of the process but insufficient to
acount for the range of phenomena observed. The next sedions concentrate on
the second category, that of learning and learned behaviour.

1.4. Arriving at a Definition of Learning

It has not proved easy to generate an all embradng definition of exadly what does,
and what does not, congtitute the process of leaning. Leaning is by no means
synonymous with change; it is clealy a form of change, but one that makes “useful
changes in the workings of our minds’” (Minsky, 1985 p. 120). This definition is
impredse and incomplete. Simon (1983 extends the definition to “learning
denotes changes in the system that are adaptive in the sense they enalde the
system to do the same task or tasks drawn from the same popuation more
efficiently the next time.” Razran (1971, p17) suggests that a “comnonsense view
of learning” would be “profit through experience” but immediately qualifies this
to “more or less permanent central modifications of a reaction a reactions
throughreacting andinteracting d reacting.” He then further excludes transient
changes auch asfatigue and sensory or effedor adaptation. Razran and Simon have
both identified a dea property of learning systems - they improve what they do by
doing what they do.

Bowerand Hilgard’s(1981, p. 11) definition of learning develops the theme:

“Learning refers to the dhange in asubjed’s behavior or behavior patential to a

given stuation krough abou by the subjed’ s repeated experiences in that
stuation, provided that the behavior change @annd be exylained onthe basis of

the subjed’ s native resporse tendencies, maturation, or temporary states (such as

fatigue, drunkenness, drives, and so’on).
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This definition amplifies the notion of change predpitated by experience and made
manifest in behaviour. Thus category (2) intelligenceis distinguished from category
(3) intelligence in that the dange is mediated by the recept of externd
information, rather than a reprocessng of internally held knowledge. The
distinction becomes increasingly blurred as previoudy leaned information is itself
reformulated. This last definition also introduces an element of permanence, or at
least semi-permanent change, which does not readily revert to the previous
condition without further experience within the environment. It is clea from these
definitions that while leaning is a change in behaviour, not all changesin behaviour
can be regarded as leaning. Chapter two reviews possble behavioural mecdanisms
that can be described as leaning, the next sedions consider some forms of
behavioural change that are excluded by the definitions.

1.4.1. What isNot Learning

Bower and Hilgard's definition also excludes a number of other sources of change
that should not be dasdfied as leaning. These sources of temporary change, such
as fatigue or the influence of drugs, are essentialy reversible ad the aiimal will

revert to its original behaviour once the dfeds of the influence date2. Similarly,

the dfeds of habituation and sensitisation are normally excluded from definitions
of leaning. There ae many situations in which an organism will come to read less
frequently or with lessvigour to a particular sensation apparently only due to the
frequency of presentation of that stimulus. The organism “habituates’ with resped
to the stimulus. An organism may also rea¢ more vigorously to a stimulus that has
been withheld for an abnormal period. The organism is “sensitised” with resped to
the stimulus. Both conditions are transitory and readion reverts to normal levels

once the stimulus regime is stabilised.

Maturation, on the other hand, does represent a permanent change, but one that
also fals outside the definition of leaning. Maturation represents behavioura
changes in the organism that take place ssentially independently of the individual

2Which is not to say that the organism will not modify its behaviour as a consequence of these
influences. A drinker might subsequently imbibe more due to the pleasing effeds of inebriation,
or less due to the mnsequences of a hang-over. In either case the intoxicating effeds of the
alcohol ingested may be considered essentially transient.
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organism’'s experience in its environment. Such behavioural changes mirror
physicd changes due to growth, and may be linked to or co-ordinated with the
development of physicd attributes. As an example of the maturation process
Altman and Sudarshan (19795 investigated the development of readions to
different environmental situations in new-born rat pups, showing the gpeaance of
successvely more complex behaviour patterns during the first weeks of life. These
changes are gparently pre-programmed to occur in the organism, in much the
same manner that innate tendencies appea as pre-programmed readions to spedfic
stimuli.

Imprinting may be wnsidered as a speda case of maturation, in which the
individual is pre-programmed to incorporate an external stimulus as releaser or
trigger for some other pre-programmed behaviours. Only the stimulus adopted
varies between individuals of the spedes, the medhanism to adopt some stimulus
(often within recognisable limits), and the readions it will subsequently elicit
appea to be pre-programmed. Imprinting was first recognised by the ehologist
Konrad Lorenz (19031989. He noticed that graylag goose chicks, which normally
follow their mothers, would follow a human in preference to their mother if
exposed to a human individual at a aiticd stage in their development. Imprinting is
charaderised by atypicdly rather narrow sensitive period, during which the dfed
develops easlly. Ducklings (Hess 1959 are most sensitive to the dfed at between
13to 16 hours after hatching. Attempts to imprint before 5 hours or after 21 hours
from hatching invariably fail. The imprinting phenomenon hes been widely
reseached and has been demonstrated in a variety of avian and mammalian spedes
(Dewsbury 1978, pp. 140-153).

1.5. A Caveat

Thiswork strives to present a “biologicadly inspired” model of an animat controller;
it is not intended as a spedfic model of any particular animal or spedes. Such
models have been prepared, and often shed further light on the nature of the
creaure being emulated (Arbib and Cobas, 1991 Arbib and Leg 1993 Hartley,
1993 Mura and Franceschini, 1994 and Webb, 1994 for instance). Cliff (1991
has promoted the term computational neuroethology for this type of study (Bee
and Chiel, 1997), Sejnowski, Koch and Churchland (1988 the term computational
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neuroscience. Roitblat, Moore, Nachtigall and Penner (1991) propose biomimetics

in relation to their neural network model of echolocation in dolphins.

In designing the animat controller some of the essentially engineering solutions that
arise are resolved on the basis of biological plausibility. By adopting evidence
drawn from many different species, under many different experimental regimes,
general principles may be identified and integrated into a whole. However, it is
unreasonable to assume that capabilities are evenly distributed across the animal
kingdom. There is diversity at every point and at every level, so that a generalised
model cannot be expected to account for detailed reactionsin specific individuals.

1.6. ThesisOutline

This chapter has introduced the idea that animal intelligence is composed of three
component parts, (1) innate behaviour, (2) learned behaviour and (3) behaviour
directed towards inferring and deducing new knowledge from existing knowledge.
As well as defining some terms, several models of innate behaviour were described

and what does and does not constitute learning was also considered.

Chapter Two develops the theme of learning, concentrating on learning in reactive
systems. A review of learning from a historical perspective introduces many
important concepts and illustrates the spread of the problem being addressed. A
review of recent and current research into computer models concentrates on work
in reinforcement and Q-learning methods, classifier systems and artificial neura
networks. The chapter also considers the evidence for a cognitive or goal driven
view of learning and behaviour in animals. Existing models of intermediate level

(sensory-motor) cognition are reviewed.

Chapter Three considers the role of hypothesis generation and verification by
experiment at a behavioural level, consistent with reported observations of animal
behaviour. A comprehensive set of postulates for a new Dynamic Expectancy
Model is developed which combines the apparently disparate threads of reactive
behaviour, perception and action, goal setting and pursuit, and learning.
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Chapter Four develops a computer simulation algorithm (SRSE) from the Dynamic
Expectancy Model presented in chapter three. This chapter describes the data
structures and processes required to implement the Dynamic Expectancy Model.

Chapter Five describes an experimental environment attached to the SRS/E
program implementation and describes the facilities available to an investigator

using the program.

Chapter Six reports a series of experiments with the SRSE agorithm. These
experiments are congtructed to alow direct comparison with other published
reinforcement learning algorithms, and to severa well-established procedures from
the behavioural sciences, which are adapted for use with the SRS/E program.

Chapter Seven describes some possible extensions to the Dynamic Expectancy
Model to enhance the SRS/E agorithm.

Chapter Eight concludes by reviewing the relationship of reinforcement learning to
cognitive structures and proposing Expectation Based Learning (XBL) as a fruitful

line of research investigation for the future.

Appendix One gives a complete description of the execution cycle for the SRS/E
algorithm, described in detail in chapter four.

A bibliography of references is attached, as is an index of topics and author

citations by page number.
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Chapter 2

2. Theoriesof Learning

Leaning in animals and humans has been intensively studied in the scientific
manner since the beginning of this century. Notwithstanding the quantity and
quality of research undertaken during this period radicdly new theories describing
the nature of the learning processin animals have gopeaed relatively infrequently.
The first part of this chapter will concentrate on the major theoreticd stances of the
20" century. In particular the classical conditioning paradigm developed by
Russan acalemician Ivan P. Pavlov (18491936); reinforcement theories, initially
postulated by Edward L. Thorndike (18741949; and the operant conditioning
paradigm, established by B.F. Skinner (19041990. The second part of the dhapter
concentrates on the @gnitive viewpoint originaly developed by Edward C.
Tolman (18861959. There ae many comprehensive reviews of natural leaning,
Hal (1966, Bolles (1979, Bower and Hilgard (1981, Schwartz (1989,
Lieberman (1990 and Hergenhahn and Olson (1993, to cite aseledion. Bower
and Hilgard's classc “Theories of Leaning”, now in its fifth edition since first
publicaion in 1948 is used as a primary source for this work. Keadey (1996 has
prepared summaries of some 50 “leaning theories’, athough many of these refer
to spedfic leaning phenomena in humans or to theories of educaion and

instruction.

Given the quantity of experimental data aceumulated supporting ead of the
various approaches to leaning it is well-nigh impossble to totally discount their
relevance yet eath will effedively explain or predict only a limited range of
experimentally obtained data. Indeed ead position will have been modified, often
several times, in the light of new results. In the wntext of the “biologicaly
inspired” animat these existing theories and experimental studies provide the
underlying concepts and results used to guide design dedsions. Emphasis will be
placeal on determining the role played by any particular phenomenon in influencing
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or determining the overal behaviour of the aiimat - a “systems approadh’, rather
than a focus on exact duplication or representation of every phenomenon.

A pardlel and more recent approach to the understanding of learning has arisen as
“machine leaning”’, which attempts to synthesise, describe and analyse leaning
phenomena & a cmputational or algorithmic process (Carbonell, 199Q Langley,
1996 for reviews and summeries). There has been only limited crossfertili sation of
ideas and the two approaches, natural and artificial, have tended to remain largely
distinct. Neverthelessthe computer provides an effedive platform on which to test
ideas and theories related to natural learning.

This chapter will discuss computational models of leaning germane to the
development of a learning model later in this work. Each of the computational
models in the first part of the dhapter is broadly recmgnisable a having a “stimulus-
response” or “behaviourist” format, models that seled adions on the basis of
prevailing input stimuli. The basis of future dhoices being mediated by a (typicdly
externally) applied reward or error indicaion. Three main approacies will be
considered in some detail, the “reinforcement leaning” model, the “classfier
syssem” model and the “connedionist” or “artificial neural network” (ANN)
model. The mmputer models of leaning described in the second pert of the
chapter clearly owe their origins to the cognitive standpoint.

2.1. Classical Conditioning and Associationism

Classical conditioning pairs an arbitrary sensory stimulus, such as the sound of a
bell, to an existing reflex adion inherent in the subjed animal, such as the blink of
an eyelid when a puff of air is direded into the e/e. The phenomenon was first
described by Ivan Paviov during the 1920s, and the experimental procedure is
encgpsulated by the ealiest descriptions provided by Paviov. Dogs slivate in
response to the smell or taste of mea powder. Salivation is the unconditioned
reflex (UR), instigated by appeaance of the unconditioned stimulus (US), the mea
powder. Normally the sound of abell does not cause the animal to salivate. If a bell
is ©unded almost smultaneoudy with presentation of the mea powder over a
number of trials, it is subsequently found that the sound of the bell alone will cause
salivation. The sound has becommoaditioned stimulus (CS).
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Pavlov and his co-workers dudied the phenomenon extensively. By surgicdly
introducing a fistula into the dog’s throat, saliva may be drained into a cdibrated
phial and production measured dredly as an indicaion of response strength.
Taking care to ensure that extraneous sensory signals are excluded, the strength of
asociation adopts a distinctive airve. Initial asociation trials gow little response,
followed by a period duing which the asciation gains effed rapidly, finaly
reading an asymptotic level, possbly due to the production capadty of the gland.
Each tria takes the form of one or more pairings of US and CS to establish the
asociation, followed by one or more presentations of the CS alone to test the
strength of the dfed. Several additional feaures of the phenomena ae
noteworthy. If, subsequent to establishing an association, the CS is presented
without further CS/US pairings the dfed diminishes over following trias, a
procedure known asxperimental extinction.

The animal’ s response to the CS may be manipulated in a number of ways. The CR
will typicdly be evoked to a CS similar, but not identicd, to that used for the initial
conditioning; for instance, tones of a similar but different frequency. This grea of
CS stimuli may be refined by randomly presenting positive trials, CS+, where the
association is present, and the CS tone is at the desired centre point frequency with
unasociated CS- trials where the tone is not at the desired frequency. After a
suitable number of trials the subjed animal indeead responds to the CS+, but not the
CS- dtimuli. The procedure is known as differentiation, and has been used in
various forms to determine the sensory aauity of various gedes. Similarly the
spread may be broadened by a complementary process of generalisation. It has
further been found that the speed and strength with which the cnditioned
asociation may be formed is criticdly dependant on the timing relationship
between presentation of the CS and US. It is aimost universally noted that the CS
must precede the US for the conditioned assciation to develop. This time may be
in the order of severa hundred milliseconds, but the optimal interval depends on
the nature of the association and the spedes under test. This observation hes lead
some observers to comment as to an anticipatory or predictive nature of the
phenomenon (Bartand Sutton1982).
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Clasdgcd conditioning has been extensively reseached. Razan (1971 indicaes
that he has identified “tens of thousands of ... published experiments and
discussions of Paviov launched research and thought,” and provides a
bibliography of some 1,500 titles of (primarily) Rusgan and American reseach. It
is clea that the phenomenon is widespread and highly repliceble. Bower and
Hilgard (1981, p58 have commented “almost anything that moves, squirts or
wiggles could be conditioned if a response from it can be reliably and repeatably
evoked by a controllable unconditioned stimulus.” Rescorla (1988 argues that
Pavlovian conditioning still has much to offer in our understanding of the learning
of relationship between events, rather than as a smple nnedion to the
unconditioned response. It is, however, clea that pure asciationism of this form
provides limited opportunity to explain the majority of animal learning phenomena.

Severa effedive models of classcd conditioning have been produced. Grey Walter
(Walter, 1953 congtructed an eledronic model (machina docilis) from thermionic
valves that produced a quite reasonable smulation of the phenomenon. The unit
was aso designed to integrate with hs ingenious freeroving, light-seeking
automata machina speculatrix; also constructed from miniature values, relays and
motors. Barto and Sutton (1982 and Klopf (1988 have produced computer
smulations of single neurone models capable of smulating a wide range of
experimentally observed conditioning effeds. Scutt (1994 describes a smple
adaptive light seeking vehicle based on a classical conditioning learning strategy.

2.2. Reinforcement Learning

Reinforcement learning stands as one of the most enduring models of the learning
process First described by Edward L. Thorndike (18741949 as the law of effect.
This model of leaning arose from Thorndike's observations of ca behaviour in its
attempts to escape from a caye goparatus incorporating a lever the cd may operate
to open an exit hatch. Cats read as if to escgpe on being enclosed in this manner.
Thorndike noted that at first the ca would exhibit a wide range of behaviours
including attempting to squeezethrough any opening, clawing, biting and striking
at anything loose or shaky3. Eventually one of these adions by the animal operates

Sparaphrased from Thorndik&911)
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the lever and it can escgpe. When placal in the goparatus on successve occasions
the animal would typicdly escgpe sooner and eventualy, after many trias, lean to
operate the lever immediately.

These observations introduced several ideas. First was that of leaning by trial and
error; the subjed makes adions essentially at random until some “satisfacory”
outcome is encountered. Second was that leaning appeaed to be an incrementa
process performance improves gradudly with pradice Third was that of
reinforcement, the probability that the animal will repea some adion isincreased if
it has in the past been following dredly by a “reinforcing” or “rewarding’
outcome. The more frequently the reinforcing outcome, the higher the probabili ty,
strength or frequency that the prior behaviour will be seleded. It rapidly becane
apparent that some outcomes were inherently reinforcing, such as presenting food
to a hungry animal, while others were not. Equally, the removal of an adverse
condition (such as being trapped in a caye) might be & effedive areinforcer aswas
being presented with food when hungry. The presentation of a wholly adverse
outcome (aversion or punishment schedules), such as the gplicaion of eledric
shock, leads to rather less predictable results. Reinforcement leaning dffers
substantially from that of classcd conditioning in that it is contingent upon the
arrival of a reinforcing “reward”, whereas classcd conditioning only depends on
contiguity of stimuli. Reinforced behaviours may aso be subjed to differentiation
and extinction under appropriate experimental conditions.

Such rmotions of reinforcement leaning formed an ided complement to the
behaviourist schoal of psychology, established by John B. Watson (18781958
during the first decales of this century, and in particular the SR (stimulus-
response) school of behaviourists. In its most extreme form SR behaviourism
postulates that all behaviour can be explained in terms of adions sleded on the
basis of current stimuli impinging on the organism. Leaning reduced to smple
strengthening or wedkening of connedions between stimulus and response is
therefore very attradive. SR behaviourism, along with the necessry
modifications, has been very influential throughout much of this century and finds
current expresson in the ideas of Rodney Brooks (intelli gence without reason) and
Philip Agre (readive aents). Richard Sutton hes been adive in promoting
computer models of reinforcement learning, of which more in the next section.
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It soon becane gparent that many fadors affeded the amount and rate of
leaning. Clark L. Hull (18841952 attempted to identify and subsequently
quantify these fadors and the dfeds they may have. Hull’s work is extensively
reviewed and analysed by Koch (1954, and summarised in Bower and Hilgard
(1981, Ch. 5). Hull’s model changed over time in response to new experimental
observations. Equation 2-1 illustrates (and it is only ill ustrative) some of the major
factors he identified and the manner in which they may be related.

£ = (SHR x D) x V% Ok - (is + |R) (eqn2-1)

In Hull’s model net response strength, (E., is primarily related to “habit”, H, the
conredion established through reinforcement leaning between stimulus () and
response (), and to motivation or drive, D, refleding the arrent desirability of the
reinforcement outcome. A satiated rat will not necessarily perform adions resulting
in reinforcing food rewards. Habit connedion strength is built up over many
reinforcing trials, described by a negatively acceerating leaning curve. V relates to
the “goodness of fit” between the evoking and training stimuli. An oscillatory
factor, O,, provides temporary perturbations to response strength and is required
to explain the natura variation of behaviour experimentally observed. Extinction
phenomena ae expressed as an inhibition fador, J., which counterads the habit
strength (I, represents habituation due to response fatigue). Although Hull
performed extensive series of experiments to establish exad parameters for eah
term the formulation fell into disuse. This was partly due to a reduction of interest
in reinforcement leaning, and partly because Hull was eventualy obliged to
postulate more than 15 separate terms. As a nsequence this expresson of
reinforcement learning became too unwieldy for effective analysis.

The theories of Thorndike, Hull and the other SR behaviourists were
connedionist; a single link made between stimulus and response, strengthened and
weekened over time acording to some schedule of reinforcement. It has become
clea that the development of the S-R link need neither be asmooth progresson
from wed& to strong, nor develop at equal rates between individual animals used in
a series of experimental trials. Generally, the smooth learning curve only becomes
apparent once the results from several individuals are averaged. Eadh individual’s
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activity shows marked variation in performance, though invariably the task can be
completely learned. In some cases the animal attains apparently perfect task
performance in a single trial, an effect referred to as one-shot learning. William
Estes and his co-workers formulated a radically different approach, stimulus
sampling theory (Bower and Hilgard, 1981, Ch. 8). Stimulus sampling theory
provides a mechanism to account for one-shot learning observations and accounts
for the appearance of the negatively accelerating curve when many individual
learning trials are averaged. This approach subsequently developed into a more
general mathematical learning theory approach.

In the stimulus sampling formulation all connections between stimulus and
response were either absent or completely made. It also assumes that the individual
was subject to many individual stimuli. At any time some sub-set of these stimuli
would be active and so be subject to reinforcement. Therefore, at every reinforcing
trial some subset would be active. Given a limited set of stimuli available to the
animal, and a sampling regime that selected only a sub-set of the stimuli it is
relatively straightforward to demonstrate that, on average, the selected sub-set will
contain elements from the previously reinforced pairs with an increasing probability
which accurately mimics the negatively accelerating learning curves aready
observed. This theory neatly explains the variability in performance between
individual trials - chance determines whether the stimuli sub-set selected contains
many or few previoudly reinforced pairings. If the initial set of reinforced parings
exactly matches those intended by the experimenter, one-shot learning appears to
take place. The formulation may also account for many of the other phenomena
associated with the reinforcement learning paradigm.

2.3. Computer Models of Reinforcement L earning

Recent years have shown a considerable revival in research interest in
reinforcement learning investigated as a form of machine learning (Sutton, 1992;
Kaelbling, 1994, 1996). Two specific problems have been the focus of this renewed
interest. First is the problem of delayed reward. This problem may be illustrated by
considering a game playing task in which the players repeatedly play and have the
task of improving their chances of winning. Reward is received at the conclusion of
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the game?4, credit for winning and debit for losing. During the game there is no
indication of whether a move was good or bad. Yet during the game the player
must make dedsions about the move to be made on the basis of the aurrent game
stuation. In an ealy paper Minsky (1963 referred to this as the credit assignment
problem. If it is possble to acarately classfy the arrent game situation, it should
then be possble to assgn a weight or desirability to this current situation that best
caegorises the move that should be made to optimise the player’s overall chances
of successin the game taken as awhole. The second problem attrading attention is
how to reac if the situation cannot be deteded, fully recognised or acarately
classfied (Whitehead and Ballard, 1991, Chrisman, 1992 Lin and Mitchell, 1993
Whitehead and Lin1995; McCallum1995).

The solution to the former problem is criticd if reinforcement leaning is to
adequately explain how an animat may give the gpeaance of goa direded
behaviour in an ostensibly stimulus-response reinforcement paradigm. It is an
interesting problem in that it appeas to contradict the overwhelming body of
experimental evidence from natural leaning that indicaes that reinforcement by
reward (or averson by punishment) is only effedive if applied amost diredly
following the stimulus event. Sutton’s (1988 reinforcement system, the temporal
differences method (TD(L)), exploits changes in successve predictions, rather than
any overall error between an individual prediction and the outcome of a sequence
of events to achieve the required dsassciation of adion now with later outcome.
Computation of changes of individua dedsion weights following individua
predictive steps followed a variant of the well-established Widrow-Hoff rule
(Widrow and Hoff, 1960. Sutton (1991 identifies sveral additional well-
established strategies by which reinforcement may be adgned to modify a
behavioura policy, illustrated with examples drawn from macdine leaning
algorithms dating back to the 1950’s.

Reinforcement learning can be made more tradable if the overal animat task is
split into a number of smaller tasks. Mahadevan and Connell (1991) describe a

4 This is only to ill ustrate the problem, current game playing algorithms do not necessarily rely
on the techniques of reinforcement learning.
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robot controller based on reinforcement leaning techniques, in which a smple> box
pushing task is decomposed into three sub-tasks, “find”, “push” and “unwedge”,
incorporated into a subsumption priority architecture. Leaning in eat sub-task is
moderated by its own reward signal, “F-reward”, “P-reward” and “U-reward”.
Millan and Torras (1991) describe an algorithm for leaning to avoid obstadesin a
smulated 2-D environment using a reinforcement leaning method. Lin (1997
emphasises the role of a teader in guiding reinforcement leaning for a smulated
mobile robot. As in the Mahadevan and Conrell approach there ae set
reinforcement signals applied for completion of various sub-tasks, for instance
+1.0 if the robot successully negotiates a doorway, +0.5 if it succeels but also
collides with the door-post, but -0.5 if collision aone occurs. The door passng
task could be cmpleted with or without a teader, but a docking task required the
teader’s intervention to be successully leaned. Lin's algorithm overcame the
partitioning problem by recording past events in a trace using a process of
experience replay. Giszter (1994 describes an extension to Maes' adion seledion
network to allow a form of reinforcement learning in a smulation of various frog
spina reflex behaviours. Maes and Brooks (1990 describe aleaning algorithm
applied to development of co-ordinated locomotion in the six-legged robot
Genghis. Much recent attention in the field of reinforcement leaning has focused
on the Q-learning technique developed by Christopher Watkins, and has utili sed the
Markov environment as an experimental platform - these two topics are mnsidered
in some detail next.

2.3.1. Markov Environments

Markov environments (Puterman, 1994 represent a highly stylised description of
an environment and are ommonly employed in reinforcement leaning reseach. A
Markov environment is described in terms of four components:

S- a state-space, described by some set of individual states,

A - the actions possible in each stase

T - atrangition function describing the consequence of applying any adion
ain some stats

5 “Simple? It is this author’s experience that the box pushing task with a roba of the form
Mahadevan and Connell describe is far from straightforward.
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R - “reward”r obtained by entering some state

The markov property defines that transitions and outcomes depend only on the
current state and the adion; thus there is no neal to know the system’s history.
This is a property of this particular model, not necessarily of any red process A
policy is a mapping of states and adions into rules for dedding which adion to
take in any of the states. A stationary policy indicaes that the same adion will

result in the same transition between states on ead applicétion, thus: T(x.a,) —
Y..1- The trangition defined by the adion a in state x at time t always results in the
state y at time t+1. It may be proved that an optima strategy exists for the
seledion of adions in a stationary markov process (Ross 1983. This st of
conditions will be referred to later as a Finite Deterministic Markov State-Space
Environment (FDMSSE). A stochastic policy indicaes that a transition will

transform between states on a probabilistic basis, thus: P, (a) = Pr(T(x.a) =),
which describes the probability that adion a will transform the aurrent state x to
some other state y. This st of conditions will be referred to later as a Finite
Stochastic Markov State-Space Environment (FSMSSE

2.4. Q-learning

Watkins (1989 describes Q-learning, a novel incremental dynamic programming
technique by a Monte-Carlo method, and applies this technique to the animat
problem. Under well-defined conditions (the Markov assumptions) this method is
shown to converge to an optimal stationary deterministic policy solution (Watkins
and Dayan, 1992. The method concerns itself with determining a set of measures,
Q, for ead adion, a, in ead state, x. Quality-values, Q(x,a), indicae the overall
reward that might be expeded for taking adion a in state x. At the @nclusion of
the Q-leaning procedure an animat may seled an adion a in any state x acording
to the set of Q values and be asaured that the adion represents a step on the (or an)
optimal path to maximise reward.
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2.4.1. Q-learning - Description of Process

For ead step the animat takes some adion a available to it in the arrent state x
and may receve some reward r on completion of the step. The quality-value,
Q(x,a), can then be updated according to:

Q(x.8) <= (1 -0)Q(x.a) + our +ymax,,Q(y.b)) eqn.g-2)

The leaning rate (o, expressed as a fradion) determines the dfed of the aurrent
experiencerelative to past experiences on the leaning process The discount fador
(v, also expressed as a fradion) determines the relative importance of immediately
achievable rewards, as opposed to those which may be adieved at some point in
the future. For this procedure to converge to an optimal set of vaues, Q*(x,a),
eadt adion a must be performed in every state x for which it is available an infinite
number of times. Up to this point the seledion criteria, Q(x,a), allowing the
seledion of an appropriate adion (a = max,., Q(x,b)) remains an estimate of the
optimal strategy. To adiieve @nvergence the leaning rate o is siccessvely

reduced towards zero. Initial values@(ix,a) may be set arbitrarily, say at random.

Control must be maintained over the degree to which the aniimat has the
opportunity to explore its environment against pursuing the optimal known reward
path at any stage in the leaning process This is the exploration-exploitation
tradeoff. If a partially computed policy is adopted prematurely, exploration is
curtailed and learning is compromised. The aiimat pursues paths based on habit
and the discovery of the optima path delayed. To tradeoff exploration to
exploitation Sutton hes proposed the use of a Boltzmann distribution to
increasingly bias the seledion of adions on the basis of Q in preference to an
exploratory strategy, say the seledion of random adions. The probability of
seleding the adion a refleding the aurrent maximum Q(x,a) as opposed to some
other possble adion is determined by the temperature wefficient T. As the
“temperature” is lowered towards zero the animat more frequently seleds the
policy action. TheBoltzmann (soft max) distribution employed is given by:
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P(a) = e—Qi_bL eqn. 2-3)

In a pradicd demonstration of Q-leaning, Sutton (1990 defines the environment
as a matrix of states x in which the animat may make the transition to adjacent
states y by taking adions a. One state is defined as the goal g, and the animat will
recave one unit of reward r ead time it enters gate g. There is no other source of
reward. At the start of ead trial the animat is placel at a starting state in the
matrix. Thetrial is concluded oncethe animat enters the goal state and recaves the
reward. A new trial is begun with the animat again placed at the start. Leaning
performanceis conveniently measured by the rate reward is acaumulated over time.
Initially, with a high value for T, the animat seleds essntially random, exploratory,
adions. Asleaning progresses the animat increasingly seleds adions based on the
leaned policy it has creaed. Convergence is indicaed when the aiimat always
seleds the path that maximises reward acaimulated in the long term. Sutton’s

research and results are considered again in more detail later.

2.4.2. Some Limitationsto Q-learning Strategies

One obvious limitation of the strategy is the large number of trials that must be
performed before the dfeds of learning may propagate to states distant (in terms
of intervening states) from the reward state. Sutton (1990 proposed an aternative
algorithm, Dyna-Q, by which the animat records visits to states in a separate data
structure, and uses this to “rehease” (in a process Sutton refers to as “planning”)
adionsto increase the goparent, or observed, speed of leaning. Peng and Willi ams
(1996 and Singh and Sutton (1996 both describe dgorithms which record
information about states visited in the recent past (“traces’), making them eligible
for leaning immediately whenever a reinforcing signal is encountered. Both
algorithms combine apeds of Q-leaning and reinforcement leaning with the
temporal differences method of Sutton (1988. Madin and Shavlik (1996 have
described a method by which advice from an external observer can be inserted
diredly into the Q-learner’s utility function to reduce the number of training trials
required and so speed learning.
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Once aeded the policy map is esentially “static”, changes to the shape of the
underlying state-space diagram are not realily refleded in the Q values. Sutton
(1990 describes the dfeds of an exploration bonus, which enables the animat to
continue some level of exploration throughout its existence The animat may then
take alvantage of shorter routes should they appea, or aternative paths $ould the
existing one become blocked. Arbitrary exploration of this form nust affed the
optimality of the overall solution, and in turn compromise the &ility of the
algorithm to generate mnvergent solutions. Moore and Atkeson (1993 describe a
smilar medhanism, prioritized sweeping, which provides for an extra system
parameter (r°") direding the system to explore aeas of the environment that are
currently underdeveloped - “optimism in the face of uncertainty.” Novel transitions
are seleded in preference to well-tried ones in the hope that a large, but as yet
undiscovered, reward state might be encountered. A separate system parameter
(Thorea) Quenches this optimism once the cdculated confidence that the long term
estimate of reward for the state refleds the true value. These modificaions are
reported to give significant performance gains over both the original one-step Q-
learning algorithm and Sutton’s Dyna modifications.

A further limitation is presented by the nature of the goal state and the reward it
delivers. Severa states may deliver reward and reward may be introduced at any
step in the leaning process It may be that the animat might have many goals (as
discussed ealier), the adions required to pursue eab goal being dfferent, and the
nature of the reward recaved dependent on the desirability of the goal or goals
adive & the aurrent time. Tenenberg, Karlson and Whitehead (1993 describe a
modular Q-leaning architedure with many fixed size Q-leaning modules eah
responsible for adieving a spedfic goal; the fina adion presented to the
environment being seleded by an arbiter module. Humphrys (1995 describes a
system of many Q-leaners, ead ading as an independent agent, which must
compete to provide the final output adion for the animat. Competition between the
individual internal agents is mediated by an additional algorithreérning).

2.5. Classifier Systems

Classifier Systems (Booker, Goldberg and Holland, 1990 represent an elegant
approach to the mnstruction of stimulus-response atificial learning systems, which
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diredly address the problems of delayed reward. Figure 2-1 shows the main
component parts of a dassfier system. The condition-adion pairing in a dassfier
system is encgpsulated into a list of clasdfiers. Classfiers test the status of
messages recrded on a message list. Messages are dl encoded as fixed length kit
strings. Classfiers whose condition part exadly matches one of the messages on
the message list may “post” their bit string message onto the message list. Some bit
positions in the message string are reserved to indicae the status of various input
sensors. Some positions will be written by the output messages of the dassfiers.
Some messages will ad as output signals, to be direded to effedors. Each message
has a tag, typicdly a short prefix bit code, which reords the type of the message
being encoded. These tags mean that certain message will only be @mnsidered by a
sub-set of those dassfiersthat match that spedfic tag bit pattern. The condition kit
string is composed of either 1's, or O'sor #s. A ‘1’ or a‘0’ in the condition part
diredaly matchestoa‘l’ or ‘0’ inthe message, a‘# may match either a‘1l’ ora‘0O’
- adonit care symbol. In thisway a dassfier condition may be required to match a
message in the message list exaaly (where it is composed of only ‘1’'sand ‘0’s), or
it may generalise over many possble messages in the message list (where the
classifier condition contains ‘#'s).

Classifiers
condition message spec.
Output
interface
Input interface
LITTTTTT
—
to
from Message list environment

environment

STEP 1: All messages tested against all conditions
STEP 2: Winning classifiers generate new messages
Figure2-1: A Classifier System

after Bookeret al (1990, p. 240)
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Eadh classfier has associated with it a numeric quantity, the strength value of the
rule, which refleds the dassfier rule's “usefulness’ to the system as awhole. In a
system of any sizethe likelihood that a matching classfier' s message will be written
to the message list is in proportion to its drength value. Strength values are
updated by the reinforcement learning component of the system in proportion to
the contribution the dassfier rule made in garnering any reward. The dgorithm for
apportioning credit amongst the various classfier rules, even though reward events

are sparse, is referred to as lboeket-brigade algorithm.

A classfier system operates with threebasic sub-systems, a performance dement, a
credit assgnment element and a discovery element. Heitkotter and Beasley (1999
provide a pseudo-code listing of the dassfier system leaning algorithm. The
performance déement is responsible for matching classfier conditions to the
message list, maintaining the message list by adding new classfier message
spedficaions and seleding externa output adions. The strength of ead classfier
rule that succesdully posts a message to the message list is reduced by a bid
amount. This bid amount is caculated on the basis of the airrent strength value
and the spedficity of the rule (the number of “don’t cares’ in the condition). The
strength of any classfier which kids but fails to post its message is left unchanged.
However, al the dassfiers that previoudy posted messages used by the winning
classfier subsequently receve an increase in strength based on the value of the
successful bid.

Clasdfiers which hid and post messages just prior to external reward are aedited
with strength increases diredly by the aedit assgnment element. Those which
enable these dasdfiers recave a“share” of this reward - and so on throughout the
syssem. The overal effed is to increse the strength of clasdfiers that are
consistently implicated in succesdul or rewarding adivities. In turn their greder
strength increases the probabili ty that they will be adivated, and so receve reward.
In this way the bucket-brigade dgorithm orders the usefulnessof all the dassfiers
in the system, and improves the external performance of the system. As with the Q-
learning algorithm, classfiers distribute their successto those which contributed to
it.
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The discovery element allows for the aeaion of new classfier rules acording to a
genetic algorithm (Holland, 1975 Dawkins, 1986. This discovery component
takes the best members of the population of classfiers and modifies or recombines
them to creae offspring classfiers that may be better fitted to the ewvironment and
task. The principal genetic method employed in classfier systems is that of the
genetic crossover, which randomly exchanges sleded segments between the pair
of parent classfiers to creae two new offspring clasgfiers. Mutation, in the form
of random inversion of elements in the bit string, may also be employed. To
maintain the size of the classifier list, the weakest classifiers may be discarded.

Wilson (1989, creaor of the term “animat”, was the first to diredly apply the
techniques of classfier systems to the animat problem. Ball (1994 describes an
animat control system combining a Kohonen feature map and conventional
classfier system to creae a“hybrid leaning system” (HLS). The Kohonen map
providing a self-organising element to pre-process ®nsory information into sub-
symbolic feaures passed to the dassfier component. Similar maps have been
proposed as models of cerebral cortex function (asin Albus CMAC, q.v.) Dorigo
and Colombetti (1994 decompose the animat task into several classfier systemsin
the ALECSYS agorithm to demonstrate leaning and control in a small mobile
robot. Venturini (1994 describes the AGIL system. AGIL incorporates
modifications to the basic dassfier system format that explicitly balance the dfort
the animat will expend in exploration of its environment to that of exploiting its
leaned knowledge. Riolo (1991 modifies the dassfier system format to alow a
form of lookahead planning. Dorigo and Bersini (1994 argue that classfier
systems and Q-leaning are esentialy smilar methods of reinforcement leaning,
separated more by a reseach tradition than esential technicd differences. They
demonstrate that a mnsiderably smplified form of the dassfier system may be
treated as equivalent to a tabular fornQeearning.

2.6. Artificial Neural Networks

Artificial Neural Networks (connectionism) represent a distinct approach to
modelling and creding behaviour patterns. Much of the work in this areamay be
traced badk to an abstrad model of the neurone developed by McCulloch and Pitts
(1943. The hope is that these units in some way provide areasonable analogue of

38



the internal function of the brain and nervous gystem of animalss. Figure 2-2
illustrates ome of the feaures of this type of model. The ceitral component of the
model is a summeation unit (£) that accepts sgnals from several sensory inputs (S;
.. Sy) via weighted “synaptic” connedions (W .. W,). Individual weights may be
continuoudly adjusted between some negative value and some positive value. A
threshold unit on the output side of the summation unit converts the output into a
binary response from the simulated neurone.

Comparator
(SE) <
h External notification
W1 I—+
S, L /]

~+
7]

S+ i
D) g
—3 Threshold

U
Weights

Figure 2-2: A Simple Neurone M odel

An ealy implementation of the neural network approach as a smulation on a serial
computer, the Perceptron, was provided by Rosenblatt (1962. Rosenbatt’s
Perceptron augmented the basic neurone model with an additiona layer of
association units that randomly conneded ead of the input points (S; .. S;) to the
sensory units via fixed positively (+1) or negatively (-1) weighted connedions.
Rosenblatt defined a procedure to update the weights when the output response of
the unit differed from the desired one, as computed by an error comparator. The
Perceptron leaning procedure computed an adjustment to the set of weights
implicaed in an erroneous dedsion by an amount just sufficient to corred the

6 |eading to a early surge of optimism within the Machine Intelli gence ommunity that perhaps
networks of simple units, initially conneded at random and subsequently subjeded to simple
learning regimes would lead to complex salf-organised behaviour. Theideais gill seductive, but
in the intervening half century has proved troublesome to attain in practice.
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dedsion. This method has subsequently been criticised for not stabilising if there is
no set of weight values that corredly partitions the dedsion space Severa other
procedures for learning by weight adjustment have been described (Nilson, 1965
Hinton, 1990. More fundamental shortcomings of the nnedionist approach
were described by Minsky and Papert (1969, who argued that there were
significant classes of reagnition problems that this architedure euld inherently
not discriminate. Examples included the exclusve-OR function and various
conneded and dsconneded figures. Reseach into Neural Networks went into
dedine for some yeas until revived by Geoffrey Hinton and others in the mid-
1980's.

A neura network with multiple-layers of adjustably weighted “neurones’
overcomes many of the aiticisms levelled by Minsky and Papert, but introduces
problems of how the various individual weights in the “hidden” layers might be
adjusted. Figure 2-3 illustrates the achitedure of a multi-layer artificial neura
network. Rumelhart, Hinton and Williams (1986 describe the backpropagation
algorithm, a method by which the dfeds of undesired classficaions may be used
to adjust weights distributed aaossmany layers. The badkpropagation algorithm is
esentially atwo-stage computation. In the first stage the adivation of every unit in
the network is cdculated. In the seand stage an error derivative (SE) is computed
a the output layer and subsequently distributed to adjust the weights on

intermediate hidden layers.
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Figure 2-3: A Multilayer Neural Network M odel

The badkpropagation algorithm has been applied with some successto a range of
tasks. Hinton (1986 describes a system for the discovery of “semantic feaures’ in
data and Sgnowski and Rosenberg (1987 a system for converting text into
speed. Jochem, Pomerleau and Thorpe (1993 describe two systems ALVINN and
MANIAC, multi-layer neural controllers for road following in a mobile vehicle. The
ALVINN system comprised 960input units (a 30 x 32 “retina”), 4 hidden units and
50 output units. The MANIAC system employed the same input and output
arrangement but incorporated additional hidden units (a total of 16) in two layers,
giving improved road following performance under a range of conditions.
Pomerleau (19949 describes a neura network to control a walking robot. Chesters
and Hayes (1994 describe experiments employing a cnnedionist mode to
investigate the dfeds of adding context memory signals to control a small mobile
robot. Nehmzow and McGonigle (1994 describe their use of a supervised teading
procedure to train the Edinburgh R2 robot in a variety of wall following and
obstade avoidance tasks. Gausser and Zrehen (1994 describe the use of Khepera
mobile robots in research to investigate building a neural topological map.

Conredionism is evidently an S-R approad; a set of sensory data presented at the
input units is trandated into a set of output responses. It differs from the
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reinforcement approadh in that an error signal is propagated to adjust many
weights. In reinforcement leaning a desired (or undesired) signal is typicdly used
to adjust adivity units edficdly implicaed in the behaviour choice As a positive
consequence of this, artificial neural networks are often considered to be robust in
the face of a noisy or disrupted input data vedor. Neura network models
discussed thus far have dl concentrated on supposed properties of colledions of a
smple axd simplified neurone. Hinton (199Q p. 209 points out that the
badkpropagation algorithm is rather implausible & a biologicd model, as there is
“no evidence that synapses can be used in the reverse direction.” Other writers
have taken more cae to link computer models of neural function to reseach
findings in the aeas of neuroanatomy and neurophysiology. Albus (19817), for
instance, proposed a model based on the observed structure of the brain. Albus
Cerebellar Model Architedure Computer (CMAC) postulates a table driven look-
up mechanism to map many sensory inputs to many motor outputs.

2.7. Operant Conditioning

The theories and models described so far are daraderised by the stimulus-
response (S-R) approach. An adion is primarily seleded on the basis of incoming
sensory information. Once the strength value of a nnedion is computed,
information about the drcumstances leading to the reward or reinforcement on
which the value is based is generaly discarded. B.F. (Burrhus Frederic) Skinner
(19041990 proposed a radicdly different medhanism, that of instrumental or
operant conditioning. In the operant conditioning model responses are not
“elicited” by sensory conditions, but “emitted” by the animal. Reinforcement is
therefore between response and reward, not between sensory condition and
reward. The adion is described as the “operant” or “instrument” by which reward
is obtained. Reward may only be forthcoming in some of the many situations in
which the adion can be taken. In this case it is referred to as a discriminated
operant, the various circumstances being distinguished by sensory conditions.

Skinner and his followers adopted a purely behaviourist standpoint and have used

their ideas to propose explanations for a wide range of human psychologicd
concepts such as “sef, self-control, awareness, thinking, problem-solving,

42



composing, will -power, ... represson andrationdization”7 which might otherwise
be aldresed in a more nebulous “mentalistic” manner. Skinner did not reged
respondent behaviour or classcd conditioning as valid phenomena, just their
central importance Many largely retrospedive and comprehensive reviews of
Skinner’s contribution are to be found, including Verplanck (1954, and Catania
and Harnad1988).

Skinner applied his ideas to a wide range of areas, such as educaion, behavioura
and social control, and psychiatry. Of particular interest to the arrent work are the
experimental techniques developed by Skinner to investigate operant conditioning.
In an apparatus, now amost universally referred to as the Skinner box, certain
leaning phenomena in animals may be investigated under highly controlled and
repedable nditions. In a typicd Skinner box apparatus the subjed anima may
operate alever to obtain a reward, say a small food pellet. The egquipment may be
sound-proofed to exclude extraneous sgnals and dfferent arrangements can be
adopted to suit different species of subject animal.

Typicdly the subjed will be prepared to operate the lever to abtain the reward
before the start of an experiment. Once the subjed is conditioned in this manner
various regimes can be established to record effeds such as  gimulus
differentiation, experimental extinction, the dfeds of adverse stimuli (*punishment
schedules’), and the dfeds of different schedules of reinforcement. Progressof the
leaned response may be automaticaly recorded in a tracethat shows the number
(and/or strength) of the amitted response in relation to the frequency of reward.
Figure 3-1 in the next chapter ill ustrates ome results of this form and a number of

the experimental designs used in chapter six are influenced by these procedures.

For al the experimental evidence acamulated and effort expended in attempting to
apply their findings, Skinner and his followers did not place & over-emphasis on
theorising about the medhanisms that might be involved. As a @nsequence,
perhaps, few formal models of operant conditioning have been developed. One
such model, the Associative Control Process(ACP) model (Baird and Klopf, 1993
Klopf, Morgan and Weaver, 1993 develops the two fador theorem of Mowrer

7 Quoted from Bower and Hilgard (1981, p. 170)
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(Mowrer, 1956. The ACP model reproduces a variety of animal learning results
from both classcd and operant conditioning. Schmajuk (1994 presents a two-part
model incorporating both classcd and operant conditioning modules emulating
escape and avoidance learning behaviour.

2.8. Cognitive Models of L earning, Tolman and Expectancy Theory

The magjority of models of leaning dscussed in this chapter so far - both retural
and as computer models, follow the premise that observable behaviour, the
“response” is primarily mediated by the gopeaance of stimuli. Leaning is therefore
reduced to strengthening or weakening the wnnedion between possble stimulus
sets paired to one of a number of available responses. Both the reinforcement and
classfier system computer models described extend this concept to allow credit (or
blame) aswciated with a reinforcement signal to be distributed to ealier events
with the am of optimising or maximising overall reward, as receved reinforcement
signal, which may be obtained. The aciationism of clasgcd conditioning is a
clea exception, and operant conditioning also takes a distinct, aternative
approach.

While forms of stimulus-response (S'R) behaviourism were highly influential for
much of the first half of the twentieth century, it becane dea that the predictions
they made were inadequate to explain al of animal leaning and much of human
leaning and behaviour. An alternative view, developed by Edward Chance Tolman
(18861959 and others, was that behaviour was primarily mediated by the
situation which was to be atieved, rather than the prevailing situation (as in S-R
theory) or the adion that would be taken (as postulated by operant conditioning
studies). This was termed the cognitive viewpoint. Toates (1994 has pointed out
that the term “cognitive” now encompasses a wide range of theories and
approaches to Psychology and Artificial Intelligence He notes that texts on
“Cognitive Psychology” will often incorporate descriptions of the behaviourist
standpoint with little comment as to the historicd divisons once so strongly
argued.

Tolman's keystone work “Purposive Behavior in Animals and Men” (Tolman,
1932 described a series of experimental observations and laid out the foundations
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of expectancy theory. Much of the experimental evidence presented was derived
using rats in maze like experimental apparatus. It has been noted that while
Tolman’stheoreticd position changed little over the yeas, his use of vocabulary to
describe ancepts and processes within the theory underwent a cntinuous ries of
changes and shifts. Tolman was a prolific author, with some 70 papers published
during a distinguished carea. Tolman's position is retrospedively described in an
analysis by MadCorquodale and Meehl (19549 and again, in a more accesble
form, by Bower and Hilgard (1981, Ch. 11).

One significant asped of Tolman’s theorising was to identify a number of situations
that were, and continue to be, particularly difficult to satisfacdorily explain in purely
behaviourist-reinforcement terms. Bower and Hilgard (1981, pp. 330-342) review
this evidence in some detail. Two particular phenomena, latent learning and place
learning, illustrate these aguments. In latent leaning Tolman argued that as
reinforcement leaning requires a reward at the @ncluson of the behaviour
sequence to establish its effediveness then, if leaning could be demonstrated in
the asence of reinforcement, behaviourist-reinforcement theories would be shown
inadequate. Tolman convincingly demonstrated leaning in rats in the dsence of
reinforcement. Consequently his expedancy theory, which can acount for the
phenomena, was supported.

Similarly stimulus-response theory maintains that every response is triggered by
some stimulus. Tolman argued that if the experimental animal could be placel in
circumstances where different responses were gpropriate in apparently identicd
stimulus conditions then stimulus-response theories would be again demonstrated
inadequate. Tolman and others sibsequently successully demonstrated that animal
subjeds can indeed make different responses under apparently identica sensory
conditions. Such conditions include manipulation of the motivational state of the
animal (hunger, thirst, etc.); or by introducing obstructions into a spedfic maze
apparatus, forcing the response & different route dhoice points. Several variants on
the placeleaning experiments are described by Bower and Hilgard. All represent
significant challenges to the behaviourist viewpoint. Sedions 6.6 and 6.7 in chapter
six replicae dassc experimental procedures for latent leaning and placeleaning
respectively.
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2.9. MacCorquodale and Meehl's Expectancy Postulates

For al the dualenges that Tolman and expedancy theory present to the
behaviourists it was not without problems. Perhaps the most persistent criticism of
the goproach was that the model was purely descriptive. The lad of formalised and
explicit theoreticad constructs heavily constrained the predictive power and hence
usefulness of ealy expedancy models. Reagnising this MacCorquodale and
Meehl (1953 proposed a set of 12 expectancy postulates in an attempt to provide
atestable and quantifiable basis for expedancy theory. MadCorquodale and Meenl
redefined Tolman's notion of a Sign-Gestalt Expedancy (henceforth expectancy)
as a three part “basic cognitive unit” of the form:

SR —S (basic expectancy)

The aldition of an “S,” component over a stimulus-response model provides for a
form of instrumental or operant modus ponens, an implicaion of an outcome
condition (S,) caused by the adion R; rather than purely indicated as desirable by
the presence of the wndition S;. This is largely eguivalent in structure to the
notion of the three-term contingency “stimulus - response - consequence”, used by
Catania (1988 to express the fully discriminated Skinnerian operant class of
discriminated stimulus, response axd contingent outcome of reward or punishment.
With the esentia differencethat it is the identity of the outcome that is recorded in
expedancy theory, not just a measure of its desirability or quality as is recorded in
the operant, or reinforcement learning approaches.

MadCorquodale ad Medl’'s twelve epedancy postulates refer to eight
underlying processes, namely “mnemonization”, “extinction”, “generalizaion”,
“inference”, “need”, “cahexis’, “valence” and “adivation”. Postulate 1, the
mnemonization process refers to an increment in “strength” of the expedancy
where the @mponent parts S;, R; and S, are in close ad ordered temporal
contiguity. This increment is described by a negatively accéerating function, where
the function acceeration rate is determined by the valence (q.v., a measure of
usefulness or desirability) of the S, component and the aymptote of the strength
determined by the relative frequency or probability that S, follows the sequence S;
— R;. Postulate 2, the extinction process refers to a deaement in strength where
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the sequence S; — R; is not terminated by the expectandum?® S,. It will be agued
later that the relative frequency of contiguity, the function rate and the valence
level are better considered as sparate and dstinct values and should not be
convolved into a single “strength” parameter. MacCorquodale and Meéhl did not
propose an explicit or quantifiable mathematica formulation for either of these
postulates.

Postulate 3, primary generalization, alows for sharing of expedancy strengths
where two expedancies $are R; and S, components and their S; components
“resemble” one another. Postulates 4 and 5, inference and generalized inference,
refer to proceses by which temporal contiguity (S,S*) between a known
expedandum S, and another sign stimulus S* increases or deaeases the strength
of the expedancies saring elements, or in which elements are “similar”, acerding
to the degree of tempora adjacency and frequency of occurrence A different
approach to the evaluation of expedancies will be proposed later, which
considerably diminishes the importance placeal on these postulated mecdanisms of
generalisation and inference. As before MadCorquodale and Meenl did not proffer
any suggestions as to the nature of “smilarity” or “resemblance”, or how they may
be evaluated, between components in these shared expectancies.

Cathexis®, postulate 11, refers to the strength of connedion between a stimulus
sign S* and a drive, motivation or goa state. Need strength, postulate 10,
describes the degree to which the subjed is to be influenced by the cadhedic
situation. The valence, postulate 9, of a sign S* is then defined by the product of
the need (D) and cahexis (C*) attached to that sign (D x C*). It is perhaps
interesting to note, with hindsight, the pivotal role of innate medanisms to control
and balance motivation and behaviour (such as those being described by Tinbergen
a about the same time) appeas to have been largely unrecognised.
MadCorquodale and Meenl were therefore unable to propose dfedive medhanisms
for these postulated processes.

8From the gerundive form “... to be expected”
9(OED) Cathexis. n (Psych.) Concentration of mental energy in one dannd, [f. Gk kathexis
retention]

47



Secondary cathexis, postulate 6, alows for the induction of cahexis to an
expedandum S,, where a ontiguity S,S* exists and S* has valence Induced
elicitor-cathexis, postulate 7, allows cathexis to be induced to an S; component of
an expedancy where its expedandum has aready aajuired valence, to an extent
proportional to that acquired valence and the prevailing mnemonizaion strength of
the expedancy. Tolman's (1932 p. 176) descriptions clealy indicae the notion of
ameans-end-field (later cognitive map, Tolman, 1948 by chaining expedancies in
this manner1%, Postulate 8, confirmed elicitor-cathexis, provides for additional
strengthening of the expedancy where the sequence it describes is confirmed, and
S, has valence.

Finaly, in a processof activation, postulate 12, the adion R, is evoked acarding
to a reaction potential determined by a multiplicative function of expedancy
strength and valence, when in the presence of the dicitor S;. MadcCorquodale and
Meehl recognised that their postulate system for an expedancy theory was
“incomplete, tentative and certainly nonsufficient,” but were ale to present some
hand-worked examples to illustrate their model.

2.10. Computational Models of L ow-level Cognitive Theories

Further development of expedancy theory, as with other psychologica models, has
depended on the use of computer based formalisations. Information processng
models of cognitive processes impad theoreticd development in severa ways.
Firstly, the model must be cmplete to the extent that an algorithmic process can
be alequately defined for ead essentia element or component in the model.
Seoondly, ead of these essntial elements must be sufficiently defined to permit
the aedion of program code. Thirdly, they are testable and may be subjeded to
experimental regimes to determine their performance under controlled and
repedaable oconditions. In some instances their performance may subsequently be
compared with results obtained by experiment with, and observation of, natura

systems.

10 The term “cognitive map” has more recently tended to be interpreted more literally, internal
“maps” of spatial locations or terrain layout (Meyard Guillot,1991, for a compact review).
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Threesuch models are presented in the next sedions of this chapter, leading to the
development of a novel Dynamic Expedancy Model. None of these models make
direa reference to Tolman or expedancy theory, being described as “sensory-
motor” or “intermediate-level” cognitive models, but the debt owed is nevertheless
clea to see Each model adopts a schema representation??. The three models are
“JCM”, described by Joseph Bedker (Bedker, 197Q 1973; “ALP’, described by
David Mott (Mott, 1981, Bond and Mott, 1981); and a model of the ealy stages of
Piagetian development described by Gary Drescher (Drescher, 1987, 1991). Both
Beder and Drescher eleded to discussor demonstrate their work using smulated
environments, while Mott was able to demonstrate simple leaning tasks utilising a

real mobile robot.

2.11. Becker’'s JCM Model

Bedker's JCM mode of intermediate level sensory-motor cognitive behaviour
adopted a “stimulus - adion - stimulus’ representation. Figure 2-4 ill ustrates the
structure of the “schema”, the primary form of information storage in the model.
Many schemata ae recorded by the system in a Long Term Memory (LTM).
Sensory and input information enters the system via an “input register” into a
limited capadty Short Term Memory (STM). STM ads as a FIFO buffer, and will
contain a small number, say six or so, items. As new items enter STM via the input
register older items are lost, or they may be regycled. Individua elements of
information, as entered into STM and recorded within schemata, are referred to as
kernels. In Bedker’s representation ead kernel takes the form of a predicate with

arguments, for instance:

<colorchange right bottom black red>

The predicae in this case refers to a sensory effed (a wlour change from bladc to
red) in one of the sensory locaions (right bottom cdl in asmple 3 by 3 cdl “eye”
viewing a grealy smplified simulated blocksworld environment). Kernels may be
defined as gatic sensory, indicaing an absolute sensory value, differential sensory,

11pjyral “schemata”, “schema” or “schemas”, following the preference of the original authors.
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indicating a dhange of sensor value, a motor or efferent command, or a request to

interrogate a sensor.

Kernel Criterion Little Arrow Confidence
Node Criterion Little Arrow Criterion Charge
Node Dummy Node Cost
Big Arrow l
Y v ~— \

[<a‘5 b'>% 5?2 <c® d°>° = <e®t f'1>'3] 07, 4, 23

Kernel Kernel Kernel Weights
N V4
Event Event
\ A . / . .
Left Side Right Side
N V4
Schema

Figure2-4: A JCM Schema

from Becker (1973), p. 410

Once geded and retained in LTM individual schema left hand sides are matched to
the arrent contents of the STM. Schemata with a high degree of match posit that
the events defined on their right hand side will appea in STM at some point in the
future. Schemata have apredictive role. The overal schema confidence weight is
adjusted acording to the validity of this prediction. Each kernel in a schema and
ead predicate and argument in ead kernel has asciated with it a aiterion value.
Criterion values indicae the relevance or importance of the cmponent part to
which they are attached.

Individual kernels are ordered, with the ordering indicated by the little arow
construct (“—"). The “little arow criterion” records how significant the ordering

indicated by thelittle arow is to the overall successof schema gplication. The big
arrow (“=") construct delimits the matching event to the predicted event. Bedker

describes analogic-matching, a cmplex agorithm by which individual criterion
weights are aljusted acording to the dfediveness of the schema in making
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succesdul predictions. The “charge” weight associated with ead schema indicates
the desirability of the right hand side & a system goal. The greder the dharge value
the greder the desrability of obtaining kernels into STM that will alow the
complete matching of the schema. Kernels in partially matched schema may be
established as aub-goals in Bedker’s method. Note that the st weight associated
with the schema refers primarily to the “cognitive @st”, the cmputational effort
required to make the match between LTM and STM, rather than a st of
performing the action embedded in the schema.

JCM was never implemented, partialy, it might be suspeded, as a result of the
complexity inherent in the analogic-matching process and the @nsequentia
difficulties in devising stable dgorithms to manage dl the different criterion and
schema weights. Nevertheless Bedker’'s ICM design introduced a number of
processs that were to be alopted later, notably in Mott’s ALP system. Primary
amongst these is the idea of schema aeaion by the process of STM to LTM
encoding. A pattern of kernels being extraded from the input STM and
reformulated as a LTM schema, which may in turn be verified by a predictive
matching process.

Beder also promoted the idea of schema refinement through the processes of
differentiation and specialization. In differentiation kernels are removed becaise
their acaumulated criterion values indicae they are irrelevant to the dfed of the
schema (as indicated by a small or zero criterion value). Negative aiterion values
indicate that the dsence of the kernel is essential for the dfedive matching of the
schema. Spedalizaion is invoked to refine schemata where an intermediate
confidence weight indicates an incomplete spedfication of the wnditions for its
application defined by the left hand side kernels. Spedalization is achieved in JICM
by the addition of further kernels on the left hand side of the schema.

2.12. Mott's ALP Model

Mott’s ALP system considerably refined and implemented an intermediate level
sensory-motor cognitive model and applied the result to developing behavioursin a
small mobile robot. Mott retained the central representation of schema recorded in
along term memory, with a limited cgpadty STM. STM retains the input register,
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but eat time dot may contain multiple kernels for matching into LTM schema.
This modificaion overcame a dependence on a mplex sensory attention
medhanism to identify and seled items for entry to STM. Ciriticdly, Mott reduced
the complexity of the kernel, dispensing with the predicae and argument form. In
ALP kernels are ather derived dredly from a sensor condition, the sensory kernel,
or they represent an efferent adion, the motor kernel. The little arow notation,
retained from JCM, now represented the passng of exadly one exeaution cycle,
thereby reducing the “analogic-matching” process to manageable proportions.
Mott overcame the problem of goal motivation inherent in JCM by introducing two
new (sensory) motivational kernels, <HIGH>S and <LOW>S, respedively
representing a condition that the robot should seek and a @ndition it should avoid.
At a low level some oonditions, such as “battery very low”, are asciated with
motivational kernel (in this casg. OW>S).

ALP retained Beker's M medhanisms for creding new schema by STM to
LTM encoding, triggered by the gpeaance in STM of novel kernels. Schema
validation, differentiation and spedalisation remain substantially as in JCM. Goal
management is however substantially different. ALP is able to use schemato form
chains of predictions about possble future events. When either a <LOW>S or
<HIGH>S kernd is predicted this is treaed as a goal definition, and a goa tree
can be formulated to either avoid the undesirable predicted event, or to attain
desirable ones. Paradoxicdly the system would not read to the dired appeaance
of a motivational kernel, only its predicted occurrence Schema may be dained to
form a goal solution, and actions selected to control the robot.

ALP was implemented in the POP-2 programming language and ran on an ICL
1900 series mainframe in an interadive mode. ALP was heavily processor bound.
The robot used was controlled by a locd PDP-11 mini-computer, which padaged
sensory information from the robot for onward transmisson to the mainframe ad
interpreted commands ent from the mainframe. ALP was an essentially ad-hoc
system that demonstrated the aquisition of some simple robot behaviours by the
leaning process Its effediveness as a behavioural system was sverely restricted
by the rapid lossof schema nfidencein future events in the predictive dhains and
goal trees. Chains were limited to six goa cycles or three predictions. These

restrictions in part arose due to the method of computing these possble outcomes,
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and in part to the uncertainty inherent in the experimental environment provided by
the robot test-bed.

2.13. Drescher’s Model

Drescher’s model further simplified the notion of a schema. The ontext of a
schema being reduced to a smple @njunction of sensory primary items
(Drescher’s term for a kernel), or their negation. All timing information was
abandoned. Figure 2-5 illustrates the form of the schema. Drescher used a
simplified smulated hand-eye @-ordination environment, smilar in concept to that
proposed by Bedker, but with a larger number of states that may be visited. None
of the tasks investigated required information about prior states and this limited
form of context definition was adequate for the environment chosen. In these
circumstances a Short Term Memory is redundant and was not used in the model.

context: action: result:

HandInFrontOfMouth i > MouthFeelsTouch
HandBackward

Figure 2-5: A Schema in Drescher’s Cognitive Model

from Drescher (1991), p. 9

Drescher describes the compasite action, chains of individual schema defined with
resped to some goal state forming what is esentialy a sub-routine that might
substitute & the “adion” of a single schema. Figure 2-6 ill ustrates the form of the
composite adion. Drescher also describes a process by which individual schema
are mnsidered as synthetic items, the whole schema being used as a record of a
recent event in an attempt to simulBiaget’'snotion ofobject permanence
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Figure 2-6: A Composite Action

from Drescher (1991), p. 91

Drescher employed a radicdly different approach to the generation of schema from
the STM to LTM encoding used by JCM or ALP, the marginal attribution
process Figure 2-7 illustrates the stages in creaing schemas of arbitrary
complexity by this process In step one “bare schema” are aeaed, one for ead of
the primitive adions available to the system (notated by Drescher as“ /a/ ”). Bare
schema have ampty context and result dots. The system is then run for a period
with adions being seleded at random, a trial and error period. Exploration of a
new environment by a naive system is a feaure of the JCM and ALP systems also.
During this period of exploration ead schema has assciated with it an additional
structure, the extended result, which acaumulates outcomes applicable to the new
schema.

At some point, after sufficient exploration has been completed, a set of new
schemas are “spun off”. Thisis giown as gep two. In this example the new schema
“\ax” is creaed from the extended result. Many new schemas could be formed at
this point. As ead new schema has no context information it is considered to be
“unreliable” and it is given an extended context structure, step three This gructure
acaimulates arecord of items adive & the new schema is used in a manner similar
to the extended result. Following another suitable period of adivity, items are
seleded from the extended context for inclusion into the new schema’'s context,
“plalx” in the example. This process may be repeded as often as required to
further refine the context of the prototype schemas, step four.
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extended
result

extended
context
Step 4:
extended
context

Figure2-7: The Marginal Attribution Process

Prepared from a description in Drescher (1991)

This marginal attribution method for schema leaning is inordinately inefficient, as
evidenced by the etensive @mputational resources required to exeaute the
procedure in the smulated environment described (Drescher, 1991, p. 141).
Furthermore, Drescher provides little due &s to its effediveness beyond indicating
the need to incorporate alditional medhanisms to limit the aeaion of redundant

schemas, theedundant attribution process.

2.14. Other Related Work

Jones (19717 describes a computer model of new-born infant suckling behaviour.
Riolo (199]) presents a three term model (CFSC2) based on classfier systems
concepts. An additional form of the dassfier rule (the “e#/t#" rule type) alowed
the system to describe transitions between either adual or hypotheticd states. The
system might therefore determine expeded reward on the basis of look-aheal
cycles. The CFSC2 model was used to demonstrate the latent learning

phenomena. Bonarini (1994 describes a three part operator exploiting fuzzy logic.
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Shen (1993 1994 describes the LIVE system that creaes, utilises and refines new
GPS style operators from succesful and failed prediction sequences while
performing problem solving tasks in its environment. LIVE models its environment
using a set of prediction rules, triples in the form <condition adion prediction>.
Shen's gistem employs a number of heuristics in the aedion of new prediction
rules, and subsequently may revise them (through a process of “Complementary
Discrimination Leaning”). Prediction failures trigger the system to seach for
differences between the aurrent falled instance, and stored instances of successul
predictions using the same rule. The rule revision agorithm is noise intolerant, but
has been demonstrated on a number of recognised tasks, including the Towers of
Hanoi.
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Chapter 3

3. A New Dynamic Expectancy M od€l

This chapter seeks to define and develop a new Dynamic Expectancy Model. This
Dynamic Expedancy Model extends MadCorquodale and Meénl’s origina
expedancy theory formulation to provide a workable axd so testable
implementation. It may be seen as part of the arrent trend to identifying existing
“thought experiments’ from the literature, remnstructing them as computer
simulations and so re-evaluating and reviewing their premises and predictions by
experiment and analysis in a manner that was previously impossble. The Dynamic
Expedancy Modédl builds on the intermediate level cognitive models described by
Beder (1973, Mott (1981 and Drescher (199]). It adso draws on medhanisms
and processes from a range of other sources, notably the aceimulated work on
innate behaviours and capabilities (Tinbergen, 1951 Brooks, 1986 and Mases,
1991, among others) and the notion of a policy map drawn from reinforcement
learning methods (Suttpt990; Watkins1989).

The Dynamic Expedancy Model eschews medhanisms exclusively deteded in
human infant or adult subjeds, but serves rather to address isales arising from
work relating to the understanding and modelli ng of animal behaviour. In particular
this new model identifies and addresses me of the limitations and shortcomings
of behaviourist theories relating to learning and behaviour in lower animals, which
were mnsidered in previous chapters. The new model focuses on the ideathat all
animals (of whatever level of complexity) are esentially autonomous individuals,
which may behave, lean and reason within the capabilities ultimately determined
by their innate definition, the ethogram. This individuality does not imply that those
individuals exist independently of other members of the same or other spedes.
Many are dependent on parental care, naturally exist and co-operate in padks or
communities composed of distinct individuals, exist in symbiotic or antagonistic
relationships, or must attract a mate to reproduce.
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The intermediate-level cognitive models of Beder, Mott and Drescher seek to
emulate the developmental process of the human infant. Each was influenced to
varying extents by the work of the Swiss child developmental psychologist Jean
Piaget (1896 1980. Drescher (1991, Ch. 2) provides a description of the first six
stages of infant development acarding to Piaget’s observations. One fundamental
problem with this approadch is the rapidity with which normal human infant
development proceeds. These intermediate-level cognitive models ladk the power
to acount for the considerable increases in the dild’'s performance and ability.
Moreover, there is dill li ttle agreament as to whether some, most, or al of this
observable improvement is primarily due to aleaning or to a maturation processin
which innate dilities are adivated in an esentialy constant order. These models
may therefore be taken as smplificaions of other cognitive-organisational theories
of leaning (Bower and Hilgard, 1981, Ch. 13) which are obliged to postulate a
wide range of medhanisms to acount for the diversity of human adult abilities.
Tolman and expedancy theory takes a mnstructivist view, adopting medchanisms
required to model and explain behaviour and ability of non-human animals, though
he later attempted to expand the model to encompass many aspeds of human
behaviour.

3.1. TheAnimat asDiscovery Engine- The Thesis

In the Dynamic Expedancy Mode animats may be viewed as machines for
devising hypotheses, conducting experiments and subsequently using the
knowledge they have gained to perform useful behaviours. In this leaning model
the animat implements a low level version of a “scientific discovery process” A
criticd feaure is the aeaion and verification of self-testing experiments, derived
from simple hypotheses creaed dredly from observations in the environment.
Ead hypothesis describes and encgpsulates a smple experiment. Eadch experiment
takes the form of an expedancy or prediction that is ether fulfiled, so
corroborating the dfedivenessof the hypothesis, or is not fulfilled. From time to
time goals, adivities required of the animat, will arise. By constructing a graph like
structure from the hypotheses it has discovered duing its lifespan and then
determining an intersedion of this graph with current circumstances, the animat
may determine gpropriate adions to satisfy those goals. Part of the innate
structure of the animat provides the rules by which this discovery process
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proceals. Part imbues the animat with sufficient behaviour to set goals and to
initiate and continue dl these adivities until leaned behaviour may take over from
the innate. Above dl the animat must survive long enough to creae hypotheses and

conduct experiments.

Where Popper (1959 and see sedion 3.2.5 later in this chapter) describes a
Hypothetico-Deductive approad, the Dynamic Expedancy Model adopts a
Hypothetico-Corroborative stance No mechanism for the cnstruction of more
complex models is incorporated into the Dynamic Expedancy Model. In order to
distinguish hypotheses in the Dynamic Expedancy Model from those proposed by
Popper, they will be referred to as u-hypotheses (“micro-hypotheses’), smilarly
experiments as w-experiments (“micro-experiments’). The @nstruction and
verification of low-level observation based u-hypotheses would appea a useful
pre-cursor to the independent development of any systematic theoreticad model,
whose structure is not wholly or primarily dependent ooraginator12,

3.2. TheExpectancy Unit asHypothesis

In the Dynamic Expedancy Model the epedancy, and so the basic unit of
leaning, takes the form of the predictive u-hypothesis. This has criticd
implicaions. First and foremost of these implicaions is that eat expedancy unit
now contains the means to perform a self-contained test and so confirm or deny its
own validity. In turn this implies the leaning processis no longer dependant on
external or reward signals to guide the process Behaviour to seek goals is made
independent of learning adivity required to acaumulate the knowledge, which may
inturn be gplied in performing goa direded behaviour. This dion describes and
discusses a number of “postulates’ that define the operation of the expedancy unit

as predictive hypothesis.

12 Originator, the individual or process responsible for the aeation of the animat and its
ethogram.
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3.2.1. TheHypothesisPostulates

Definition HO: The p-hypothesis. Each u-hypothesis recrds an assumed transition
between two detedable sensory patterns (signs “s1” and “s2”, g.v.) indicaed or
caused by an action (“r1”) available to the animat system.

Postulate H1: Prediction. Prediction forms the basis of self-testability. Eadh p-
hypothesis encgpsulates an expedation that predicts the occurrence (or
appeaance) of the mnsequent sign (“s2”) at a spedfic time following the
appearance (or occurrence) of the context sign (“s1”) and the action (“r1”).

Postulate H2: pu-Experimentation. u-Experimentation is the medhanism by which
predictive self-testability is adchieved. Every u-hypothesis is tested at every
opportunity. A separate prediction relating to the cnsequent sign “s2” is creaed
eadt and every instance where the context sign “s1” and response “r1” occur in the
relationship defined in that p-hypothesis. Each such prediction is termed a p-
experiment. The cnduct of u-experiments is insendgitive & to why the triggering
conditions “s1” and “rl1” arose.

Postulate H3: Corroboration. Corroboration is one method by which the
predictive aility of a u-hypothesis is recorded. The quaity of a u-hypothesis is
determined solely by its ability to acarately predict its consequent sign. The
corroboration measure is defined as the ratio of the total number of predictions
made by the u-hypothesis to the number of corred predictions made, as verified
post-priori. Any u-hypothesis that has always given rise to a verified prediction will

have a orroboration measure of 1.0. Any other u-hypothesis will have a
confidence or “corroboration” measure (Ch) of zero or greaer, but lessthan one.

Ch therefore reflects the probability of a valid prediction, thus:

Ch= p(32t|sl+r1) (egn3-1)
The use of the “t” symbol ads as areminder of the temporal relationship that exists
between the expedandum “s2” and the ontext. As this expresson gives no

indication of sample size, the corroboration measure is not in itself an indication of
the usefulness, rarity or reliability of the prediction.
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Postulate H4: Reinforcement. Reinforcement is a second method by which the
predictive aility of a u-hypothesis is recorded. In this context “reinforcement”
substitutes for MacCorquodale and Meehl’s use of the term mnemonization. In a
measure related to corroboration, ead succesdul verified prediction reinforces
confidence in a up-hypothesis. Conversely every unsuccesful prediction
extinguishes confidence in that u-hypothesis. The dfed of ead wverificaion is
discounted as further predictions are made. The reinforcement measure (Rh) is
changed by the quantity:

ARH* = g(1 - RHP) (eqn3-2)
following each instance of a successful predictfpnand
ARRPY = - B(RHP) (eqn3-3)

following eadr unsuccesdul prediction. Under constant conditions these
relationships give rise to the widely observed “negatively accéerating” form of the
leaning curve. The two proper fradions the reinforcement rate (o) and the
extinction rate (B) respedively define a “leaning rate” for successul and
unsuccesdul prediction situations. They control the rate & which the influence of
past predictions will be discounted. These parameters sall be normalised such that
the Rh value of a u-hypothesis that makes persistently successul predictions tends
to 1.0, the Rh value of a pu-hypothesis that persistently makes unsuccessul
predictions tends to 0.0. The positive reinforcement rate need not be egual to the
negative extinction rate.

Mnemonization for expedancies in the MadCorquodale and Meéhl postulates are
fundamentally based on the notion of temporal adjacency and contiguity. This was
inherited from decades of experimental observation that has repeaedly noted that
leaning phenomena ae invariably stronger for events that are dosely related in the
temporal domain. This is entirely consistent with the provisions of the Dynamic
Expedancy Model. Temporally adjacent predictions are tested first. The time-scde
being extended only in circumstances where unsatisfadory predictive performance
is determined over the shorter period.
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Postulate H5: Creation. Credaion is the method by which the aiimat extends the
set of u-hypotheses. u-Hypotheses exist to predict future occurrences of signs; it is
therefore reasonable to suppose that new u-hypotheses might be aeaed under two
spedfic drcumstances. First, every sign shall have a least one u-hypothesis cgpable
of predicting it. Novel signs (ones not previoudly recognised by the system) shall
trigger a rule aedion process postulate H5-1, novel event. The mnsequence
(“s2") for this new p-hypothesis will be the novel sign. The @ntext and adion
drawn from the set of recet signs and adions recrded by the system. By a
process of timebase shifting the arrent, novel, sign will be shifted to be afuture
prediction, with a corresponding shift in the relative time relationship to the other

components selected for the ngsaypothesis.

In the second credion circumstance, known signs are deteded without a
corresponding prediction, postulate H5-2, unexpected event. A new u-hypothesis
may be aeaed, using the same medanism as for novel signs to cover the
unexpeded event. Shen (1994 and Riolo (1991) both describe broadly smilar
strategies for “rule” creaion triggered by “surprise” events. Kamin (1969 has
investigated the role of predictability and surprise in various classcd conditioning

procedures using rats.

Postulate H6: Differentiation. Differentiation is the mechanism by which the
animat may refine its existing set of u-hypotheses. Differentiation adds extra
conditions to the mntext of an existing u-hypothesis, reducing the range of
circumstances under which that u-hypothesis will be gplicable. Differentiation may
be gpropriate to enhance u-hypotheses that have stabili sed, or stagnated, at some
intermediate @rroborative measure value. u-Hypotheses ould not be subjed to
differentiation until they have readed an appropriate level of testing (their
“maturity”). Maturity is a measure of the degree of corroboration of a p-
hypothesis. It is otherwise independent of the age of a u-hypothesis. It is expeded
that the differentiation process will crede new, separate u-hypotheses that are
derived from the existing ones. Both old and new u-hypotheses are retained and

may then “compete” to determine which offers the best predictive ability.
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Postulate H7: Forgetting. Forgetting is the mechanism by which the animat may
discard u-hypotheses found ineffective from the set of u-hypotheses held. A p-
hypothesis might be deleted when it can be determined that it makes no significant
contribution to the abilities of the animat. This point can be difficult to ascertain.
Evidence from animal learning studies indicates that learned behaviours may be
retained even after considerable periods of extinction. Experimental evidence from
the implementation of the model described later will point to the value of not
prematurely deleting u-hypothesis, even though their corroborative measures fall to
very low levels. Where a sign is predicted by many u-hypotheses there may be
good cause to remove the least effective. It is presumed that the last remaining p-
hypothesis relating to a specific consequent sign will not be removed; on the basis
that some predictive ability, however poor, is better than none at all. Even if it was
to be removed, a new u-hypothesis would be created (by H5-2, unexpected event)
on the first re-appearance of the consequent sign of the deleted u-hypothesis. As no
record is retained of the forgotten u-hypothesis, any new n-hypothesis created may
be the same as one previously removed.

3.2.2. Initial Conditionsfor the u-Hypothesis Set

The ethogram may be programmed to contain pre-determined u-hypotheses, which
will be used, corroborated, differentiated and forgotten as any other u-hypothesis
available to the animat. Equally the set of u-hypotheses available to the animat may
be empty at the time of parturition?3, the set being populated and maintained by
actions defined by the various postul ates described.

3.2.3. Concluding Conditionsfor the u-Hypothesis Set

The animat is assumed to have a limited lifespan, but only by analogy with natural
animals; there is no explicitly defined concluding or terminating condition defined
in the Dynamic Expectancy Model. Learning by u-hypothesis creation may slow
and finally cease in the event that no new signs are encountered by the system, and
when the existing signs are adequate to predict every appearance of each sign.
These conditions may be encountered in the special environment defined by the

13 Parturition, the moment the animat becomes a free-standing individual, dependent on the
definition contained within the ethogram; analogous, perhaps, to the birth of an animal.
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finite deterministic Markov state space @vironment (FDMSSE). Under these
spedfic conditions, once every state has been visited at least once, then there will
be no further u-hypothesis credion on the basis of novelty (H5-1). Once eery
trangtion has been attempted in ead state no new rules will be aeaed on the basis
of unpredicted appeaance (H5-2). At this point there is a u-hypothesis to
acarately predict the next state, so that the conditions required to invoke p-
hypothesis differentiation (H6) and forgetting (H7) do not arise. Corroboration
(H3/H4) does not ceae under these onditions, neither does the option to
recoommence u-hypothesis creaion, differentiation or forgetting should the
underlying structure of the environment change for any reason. It has been
asumed that the animat has, inherent in its ethogram, some strategy that will
eventualy allow it to visit al states by al transition options. This may be by
selecting actions at random.

A smilar argument may be alvanced in the cae of the finite stochastic Markov
state space avironment (FSMSSE). As in the FDMSSE situation, learning by
creaion (H5-1) will ceae once eah state has been visited. Once eab transition
has been made, including all those derived from the alditional probabili stic nature
of the environment, creaion by unpredicted event (H5-2) will ceae. After an
extended period of exploration in the environment the arroborative measure (H3)
of eat u-hypothesis will tend to the true probability of the assciated transition,
although thiswill only ever be an estimate of the true probabili ty. As before, should
the structure of the state space tange (new states or new transitions) new p-
hypotheses will be created to accommodate those changes.

Should the relative distribution of transition probabilities change, both the
corroborative (H3) and reinforcement (H4) measures will change to refled this as
further exploration takes place The wrroborative measure refleds the overall
“lifespan” situation. Under these drcumstances the reinforcement measure has the
potential to provide abetter working estimate. Due to the probabili stic nature of
the transitions none of the u-hypotheses will achieve full corroboration. When the
initial set of u-hypotheses readies the required level of maturity the differentiation
process (H6) will beacome adivated. New u-hypotheses formed are subsequently
tested in competition with their prototypes. Under the FSMSSE model conditions
new context signs will be aeaed by concaenation of additional states drawn from
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recorded past states (only one state isindicated at the aurrent time). Given that the
definition of the FSMSSE restricts the information beaing content for the doice
to the awrrent state, it may be taken that al such p-hypotheses creaed by
differentiation will, in the limit, be less effedive than their parent prototypes. It is
therefore an unfortunate cnsequence of the basic asumptions of the FSMSSE
that differentiation will continue throughout the animat’s lifecycle, without
materially improving its behavioural performance On the other hand its effed will
not be caastrophic, the majority of the behaviour being mediated by the better
corroborated initial set af-hypotheses.

Note that neither in the postulates, nor in either of these discusson cases
(FDMSSE and FSMSSE) has any reference been made to the provision of an
external source of reinforcement.

In generd, the Markov state space avironment may be cnsidered a poor model
of the natural environment. The fundamental assumption that the information
required to seled the best adion to take is, or can be, described by the airrent
sensory pattern remains, at best, contentious. Equaly the idea that some
combination of sensations will completely and uniquely describe a*“state” that is
constant over time and so may be returned to on numerous occasions fails to
refled our notion or experience of the natural world. Nevertheless the FDMSSE
and FSMSSE environments represent a well defined and extensively studied
formalisation. They represent a @nvenient, repedable and controlled test
environment in which to conduct experiments to determine the properties and
performance of a leaning system. As these environments have been utilised by
other authors, the Markov description represents a point of comparison between
alternative theories of leaning. Later sedions in this work will return to the utility
of the Markov environment as a test environment, and to comparisons with other
research that has used these environments.

3.2.4. Hypothesis Based M odels of Learning

An ealy suggestion that rats exploring maze test environments use a form of
hypothesis was proposed by Kredevsky (1933. The term was later adopted
briefly by Tolman (1938 as a description of his basic expedancy unit, although in
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his later writings the term “field-expedancy” is preferred. Restle (1962 provides a
mathematica formalisation in which *hypotheses’ (assumed or untested patterns of
responses to cue stimuli) are sampled from a fixed size population by different
means. In Restle's model, hypotheses were ather always correa (“C”), always
wrong (“W”), or inconclusive (“I”), sometimes wrong, sometimes corred. Restle
further proposed three seledion strategies. Strategy (1) in which one hypothesis
was <leded and tested, then another, and so on (the single-hypothesis
assumption). In strategy (2) all available hypotheses are seleded for testing. In
strategy (3) samples from the total population of available strategies are seleded
for testing (the sub-set sampling assumption). Restle was able to demonstrate that
(under defined conditions) these three strategies are esentialy equivaent - the
“indifference to sample size” theorem.

Levine (1970 conducted a series of experiments with human subjeds, designed to
identify which strategy was used by the subjeds. Subjeds were asked to sort cards
acording to four easly discriminated elements (size form, brightness and
position). On some trials the subjeds were given an indication, “right” or “wrong”,
about their choice so that they may form one or more “hypotheses’ about their
seledion choice (which may guide their future dedsions). Interspersed with these
indicated trials the subjeds made unguided choices. Such blind-trials allow the
experimenter to infer the hypotheses in use by the subjed. These studies concluded
that subjeds repeaed a hypothesis indicaed as corred, and dscarded a hypothesis
indicated as incorred. More significantly, many of the subjeds appeaed to be
sampling several hypotheses at eat stage, the sub-set sampling assumption, as
indicated by the number of trials prior to perfed performance In arelated set of
experiments the latency time for the doice was measured over successve trials.
These experiments demonstrated a fall in dedsion time & possble, but ineffedive,
hypotheses were discarded. Dedsion latency time remained constant following the
“solution trial”. More recent studies (Klahr, 1994 indicae that the hypothesis
generation strategy used by human subjeds is dependent on age ad educaional
level. These results may cdl into question the gopropriateness of applying data
derived from human subjeds diredly to autonomous leaning in animals or

animats.
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The anphasis of Kruchevsky’s work was that rats explored their environmentsin a
methodicd, rather than random, trial-and-error, way. The basic assumption driving
both Restle’'s and Levine's reseach was that hypotheses are seleded and retained
or rejeded from afinite, known, set. In Levine's procedure subjeds were gprised
of the set size before the trials began. The Dynamic Expedancy Model makes no
assumption about pre-existing sets of hypotheses. Hypotheses are generated and
tested as the opportunity arises. In turn this gives rise to other possble u-
hypothesis credion (postulate H5) strategies. Implicit in the description so far is
the ideathat the animat initially creaes a single, minimally simple hypothesis for
ead Situation, tests that hypothesis for some while, and subsequently may need to
refine or replace it. An aternative strategy might be to creae a group of p-
hypotheses, utilising both the spatial and temporal aspeds of the trace and
subsequently aggressvely reged or delete dl those from this sub-set that are not
corroborated on subsequent trials, an “over-sampling” asuumption. Under this
asumption it may be gpropriate that leaned u-hypotheses do not affed the
behavioural repertoire until this initial seledion phase is complete, lealing to a flat
section just prior to the main learning curve

3.2.5. TheRoleof the Hypothesisin the Discovery Process

This thesis presents animal leaning as a process of discovery. As part of the
arguments leading to his development of the central thesisin his classc and seminal
work into the nature of the scientific process his “Logic of Scientific Discovery”,
the eminent Austrian born philosopher Sir Karl Popper (19021994 identified
many esential properties of the hypothesis and its role in a self-sustaining
discovery processencgpsulated in a set of “methodologicd rules’ (Popper, 1959.
In this view of the discovery process” scientific truth” is determined by the aeaion
of hypotheses, which are tested from the phenomena they predict. In turn
experiments are devised to determine the validity of the prediction. This is a form
of modus tolensts, where theories from which hypotheses were properly derived
are discaded when the hypotheses are falsified by experiment. While Popper

14K leitman & Crisler (1927 present data showing a smilar effed under classcal conditioning
conditions.

15f t, some theory, implies p, some wnclusion (say a logically derived hypothesis), then the
falsifying inference “({- p).—p)- —t” requires us to reject t if we find p false.
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dedsively rgjeds inductive logic (“theory from examples’), he provides ant clue
in these ealy writings as to how he cnsiders theories themselves are to be
formulated. Later authors adive in the field of the philosophy of science have
extended this model, and provided aternative views, of the scientific discovery
process Berkson and Wettersten (1984 have dtempted to apply the principles of
Popper’s Logic of Discovery to the psychology of learning.

The “Logic of Scientific Discovery” (LSD) contains many insightful observations
about the nature of the discovery process A number of these observations,
pertinent to expedancy theory and particularly relating to the nature of the
hypothesis and experiments are cnsidered now. Hypotheses that have more
general applicability, those giving rise to a smaller range of derived “statements’
and so have ahigher “empiricd content”, have deaeaing opportunity to escape
falgfication (LSD, s31). It is therefore incumbent on the discovery process to
propose the smplest theories and hypotheses that are testable ad so falsifiable,
though simplicity itself is not a substitute for falsfiability. Hypotheses that are not
testable (“undeddable” or “meta-physicd”) or those which are trivialy truel®
(“tautologous’) are to be discarded. Seledion of the fittest systems of hypotheses
should be & a result of the “fiercest struggle for survival” (LSD, s.6). Even if
inadequate such systems of hypotheses dould persist until falsified or replaced by
one better able to be tested and found more fit.

Experiments are derived from, and test, hypotheses. Experiments must therefore
encgpsulate acomplete description of the conditions under which the phenomena
under test will be reproducible. Any conditions not included in the experimental
procedure being considered irrelevant. In Popper’s view a hypothesis may at best
be rroborated, or otherwise falsified, and consequently the hypothesis and
therefore the theory from which it was derived should be refined or refuted. In
pradice Popper reagnises that there may be valid exceptions to the dtrict
application of this approad, such as when the hypothesis fails due to incomplete
spedficaion, or where verifying observations have readed the limits of available
experimental technique. In Popper’s model of the scientific method hypotheses are

18]t has sibsequently bemme apparent that practical logic based systems which ignore the
trivially true or apparently commonplace are prone to particularly gross omisgons of reasoning
(the “common-sense” component).
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deduced from theories (the Hypothetico-Deductive approac). In the Dynamic
Expedancy Model hypotheses are generated dredly from observations and tested
(the Hypothetico-Corroborative approacd). In both schemes testing of hypotheses
is a ontinuous process the “scientific game” one without end. We may dedde to
suspend testing a hypothesis temporarily, but “he who decides ... that scientific
statements do not call for any further test, and that can be regarded as finally
verified, retires from the game” (LSD, s10).

Experiments are repeaed so that we may “convince ourselves that we are not
dealing with a mere isolated coincidence” (LSD, s.8). Popper refers to such
coincidences as occult occurrences, repeded testing validates or reeds the
phenomenon. A similar effed has been moted by experimental psychologists in
animals, a behaviour based on a single rewarding circumstance, which persists even
though the outcome is not repeaed. This effed is usualy referred to as
superstitious learning, charaderised as the dicitation of rituaistic or stereotyped
behaviour under non-contingent “reward” schedules. Skinner (1948 describes an
experimental schedule demonstrating the phenomenon in pigeons. Bladkman (1974
Ch. 2) reviews “superstitious’ behaviours in an operant conditioning context. This
effed is apparently distinct from superstitious behaviour in humans, based on
mystic or other beliefs (JahodE969).

3.3. Tokens, Signsand Symbols

Signs are spedficadly a cmmbination of one or more dementary sensory units. They
reamgnise a ondition that may itself be mmposed of more than one sensory mode.
In the Dynamic Expedancy Model these individual elements are referred to as
tokens. Tokens perform the initial conversion of data from external transducers or
sensors into symbolic form. Sensors abound in reture and it is not intended to
further review the scope or extent of animal senses here. Similarly there have been
significant advances in artificia transducers that may be incorporated into robotic
devices. In the present model tokens will be represented as two-state symbols,
indicating the presence or absence of the wndition deteded. This is a limitation
that may neal to be aldressed in the future. The values of past tokens are recorded
in an activation trace, spedficdly to alow temporal discrimination. By referring
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to elementsin the adivation tracebehaviours may be related to past events, as well
as those which are current.

3.3.1. The Sign and Token Postulates

Definition TO: Token. A token is a symbol relating to a basic unit of sensory input.
A token indicates the instantaneous output from a detedor. In the present model a
token is either adive or inadive, refleding one of two possble detedor states.
Tokens are time tagged. They may represent the state of the detedor at the aurrent
time or provide arecord of the state of ead detedor at given times from the recent
past (the “adivation trace”). Older token records are discarded. Tokens may be
attached to transducers to deted physicd aspeds relating to the aiimat and its
environment. Tokens may also deted information processng adivities within the
animat.

Definition SO: Sign. A sign encgpsulates a wmbination of conditions. These
encgpsulated conditions completely define the context (“sl”) and the predicted
outcome (“s2”) for individual p-experiments (postulate H2). A sign is a
conjunction of tokens. Individual tokens may be negated (adive to inadive, and
vice-versa), providing an inhibitory connedion. A token retains its time tag when
incorporated into a sign.

Postulate T1: Tokenisation. Tokenisation is the process by which output from
detedors is converted to an internal symbolic form. Such a token symbol may be
considered as having a value assciated with it that refleds the aurrent (or past)
output of the detedor. The aurrent token value changes acarding to the output of
the detector.

Postulate S1: Encapsulation. Encgpsulation is the process by which individual
tokens are mmbined into a single sign. New signs are alded to the system during
u-hypothesis differentiation (postulate H6).

Postulates T2 and S2: Activation. A token is considered “adive” when the

detedor to which it relates is emitting the output relating to the tokenisation
process Similarly a sign is considered “adive” when all its component tokens are
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(or were, in the cae of time tagged tokens) adive, taking into acount any
negations. Both tokens and signs may be cmnsidered as “tests’ on the anditions

they detect.

3.3.2. Initial Conditionsfor the Token and Sign Sets

The @hogram will define an initial set of tokens, and ensure they are ataded to
transducer and detedor outputs. A single detedor may be as<ciated with several
tokens, relating perhaps to different degrees or levels of output. The ehogram will
also define ay signal processng or transformations to be gplied to detedor
output prior to tokenisation. The initial set of signs will contain one sign for ead
initial token, unnegated and refleding the aurrent value of the token. New tokens
and signs may be alded to the system during the lifespan. Tokens may be defined
as adive when the state of a transducer changes, either from off to on, or from on
to off, or under both conditions. In the experimental conditions described in
chapters five and six this effed is inherent in the nature of the environment and
smulated transducers. Other environments, red or artificial, may cdl for spedfic

signal processing to achieve these conditions.

3.3.3. Supporting Evidencefor Signsand Tokens

There isawide diversity of afferent and sensory medhanisms found in neture, and a
substantial body of recent reseach into sensor and transducer systems for artificial
animals and robots. This sdion addresses ©me of the isales, and presents a
sample of sensory strategies to be found in neture. Above dl it is clea that sensory
sub-systems are far from amorphous, general purpose, elements. Nature aounds
with well-documented examples of perceptual medanisms tuned to the
behavioural and learning requirements of their host animal. For instance, Tinbergen
(1951, chap. 2) describes how the release strength of the food begging readion
varies in newly hatched herring gul chicks when presented a range of differently
coloured model representations of the alult bill. Among many additional carefully
observed and documented examples he dso reports on the dicitation of the escape
response in many spedes of bird when presented with slhouette profiles of
predatory birds, while not reacting to silhouettes of other, non-predatory, species.

71



Arbib and his colleagues (Liaw and Arbib, 1993 Arbib and Cobas, 1990 have
modelled the response of various frog and toad spedes to the threa posed by large
looming objeds as possble predators and the opportunity offered by small moving
objeds as potential prey. Additional neurologicd evidence that identifiable cdls (or
structures of cdls) respond to external stimuli has been provided by the work of
Hubel and Wiesel (1962, who reported that individual cdls in the visual cortex
become adive when highly spedfic patterns are presented in the visual field of
experimental animal subjeds. Schélkopf and Mallot (1995 consider the
experimental evidence for place cells, locaed in the rat hypothalamus, which fire
(demonstrate significantly higher rates of eledricd adivity) when the rat is
physically located in specific places.

Tokens, kernels (JCM and ALP) and primitive items (Drescher) are dl abstradions
from the totality of possble information that will be present at the time the token
item is generated. The same is true in reture. The herring gul chick fails to note
that the model bill is not a significant feadure. The ault bird that the predator
slhouette presents no threa - being made of wood and paint. On a different
evolutionary path development of the innate releaser indicaing this predator
danger might be more spedfic, responding additionally to wing bea patterns, or
hovering, swooping or other flight charaderistics edfic to the predator spedes.
Foner and Maes (1994 point out that many current computer representations of
input stimuli only take acount of the aurrent situation. This would also appea to
be true for the mgjority of madine leaning induction systems. Foner and Maes
describe extensions to Drescher’s original scheme to allow a one gycle record. This
in turn alows extensions to the dgorithm to focus attention on phenomena that
change. Coincidentally there is also a dignificant body of evidence for single
neurones that demonstrate firing adivity spedficdly with resped to stimulus
change.

The evidencefor a Short Term Memory (STM) phenomena, employed in both JCM
and ALP primarily rests with human nonsense syllable recdl tasks. The evidence
for an adivation tracesurmised from the goparent ability of various animal spedes
to perform tempora stimulus differentiation. Recett reports implicae the
substantia nigra brain area @ a timing element cgpable of generating “metronome”
like pulses in the millisecond to minute range to other parts of the brain (Highfield,
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1996. Thisis a distinct phenomenon to the daily circadian rhythm (Lofts, 1970,
which haes been demonstrated to influence both physiologicd and behavioural
aspeds in awide variety of spedes. There is extensive neurophysiologicd evidence
that firing adivation can continue dter removal of a stimulus at the single neuronal
level (an integration effed), though it is not obvious that these phenomena have
significant or direct bearing on either the notion of STM or of the activation trace.

The encgpsulation of multiple @omic conditions (the tokens) into the single
symbolicdly identified ‘sign’ (the sign-gestalt) alows for an efficient and compad
definition of the wntext-adion-consequence triplet representation. Processng
transducer and sensor data and hence the derivation of the input token is a aiticd
issue for animat originators. Drescher’s primary items esentially unambiguously
deted a state of the environment that is relevant to the dgorithm; the position of
the fovea the locaion of the smulated hand and so on. By contrast the sensors on
the robot used by Mott’s ALP system provided highly ambiguous and incomplete
information. The same pattern of kernels was generated over a wide range of
circumstances. The use of binary representations for light level, for instance gave
ALP little opportunity to determine the true cnsequences of its adions. In the
experiments to be described in chapter six the aedion of tokens is tightly coupled
to the design of the environment.

3.4. Actionsand Reification

The acdion and reificaion postulates define the dferent sub-system, which enables
the animat to control actuators and so diredly affed its environment. External
adions, those which impinge on the environment, may be monitored by dired
observation. Internal adions, such as those which affeda the “physiology” of the
animat, may only become apparent through measurement or by inference.

3.4.1. TheAction Postulates

Definition AO: Action. An adion is the basic unit of efferent event available to the
animat. In the mnverse process to tokenisation, the animat may convert certain
internal symbols into adions that diredly impinge upon, and may change, the state
of the animat or its environment. In keeping with tradition the terms “adion” and
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“response” will be used essentialy equivalently in this context throughout the
thesig’.

Postulate Al: Reification!8, Reification is the process by which internal symbols
are onverted into detedable manifestations, for instance physicd adions by the
animat on the environment via its aduators. Such symbols may be delivered for

reification by many routes within the model.

Postulate A2: Action Cost. The performance of any adion by the animat will be
presumed to consume resources otherwise available to the animat. Action costs
may be measured in terms of energy expenditure, time taken to completion, or any
other units that may be gplied consistently within the cnfines of the ehogram,
and which are gpropriate to the physicd and medanicd design of the animat and
its aduators. Action costs are normalised to be 1.0 or greaer, where 1.0 is taken

as the minimum cost of any of the actions available to the animat.

Postulate A3: Compound Actions. Compound adions represent larger sequences
of adions, which may be considered as a single tokenised item for reificaion. They
are formed from simple adions (postulate R1) by concaenation. Compound
adions formed in this way run to completion once initiated. The @st of a
compound action will be taken as the sum of its individual component actions.

3.4.2. Initial Conditionsfor Actions

The list or vocabulary of adions initialy available to the animat is defined in the
ethogram. This vocabulary of adions will include dl smple and compound adions
and their asociated costs. New adions may be alded to the vocabulary during the

lifespan of the animat.

17 The action as“response’ isa S-R behaviourist concept, it is therefore not entirely clear why the

term should have been retained by those who did not necessarily regard “actions” as “responses”.
18 (OED) reify v.t. Convert (person, abstract concept mentally) into thing, materialise; hence
~fication n. [f. Lresthing + +- + Y]
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3.4.3. Supporting Evidencefor an Action Vocabulary

The @hogram may define adions over a wide range of complexity, from smple
individual muscle or aduator motions (“moleaular” in Tolman’s vocabulary, or
“charaderistic’ in McFarland and Sibly’'s, 19795 to increasingly complex
combinations of adions which may be dealy reagnised as a behavioural pattern
(“molar” in Tolman’s and “adions’ or “adivities’ in McFarland and Sibly’s). Each
animal exhibits a vocabulary of “adion patterns’, apparently as charaderistic of its
spedes as is any physicd attribute. The Dynamic Expedancy Model does not
divide adions into “appetitive” and “consummeatory”, as in Tinbergen or Maes
models. In the Dynamic Expedancy Model adions may indeel lead to the
satisfadion of a goa (g.v.), but goal satisfadion is rather a property of the goal
description, not of any particular action that may precede the satisfying event.

Severa detalled studies developing caalogues of essentialy unitary behaviour
“adion patterns’ in animals have been undertaken, for instance Shettleworth’s
work on the Golden Hamster (Shettleworth, 1975 or that of Reynolds (1976 on
the Rhesus Monkey. Shettleworth describes 24 mutually exclusive adion patterns
displayed by hamsters under laboratory conditions. Reynolds work studied
monkeys in a socia setting, though in captivity, to prepare an extensive vocabulary
of action patterns. Action patterns were described as either “postural” (68 dstinct
adions in 11 goups, including “attack”, “thred”, “dominance epressons’,
“submisson”, “grooming” and “sex”) or “vocd”, caaoguing the sounds made by
his sibjeds. Reynolds provides comparisons with previous attempts at a
terminology and dscusses the difficulties in arriving at a uniform and agreed
classification.

Mott’s ALP used a list of five moleaular adions (*<FORW>M", “<BACK>M",
“<LEFT>M", “<RIGHT>M" and “<CRY>M"), corresponding to the trandational
and rotational movements available to the QMC MKk. 1V robot. It is unclea what
role the “<CRY>M" action played in the experimental set-up described. Drescher’s
system employed 10 moleaular adions, four controlling foviation (“eyef”, “eyeb”,
“eyel” and “eyer”), four controlling hand movements (“handf’, “handb”,
“handl” and “handr”), and hand open and close (“grasp” and “ungrasp”). Many
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of the smulated and physicd robot controllers based on clasgfier and
reinforcement principles define action sets of similar size and complexity.

3.5. Goal Definitions

Goals represent the trigger or cue for the animat to engage in performing outcome

directed behaviours.

3.5.1. The Goal Postulates

Definition GO: Goals. A goa establishes a mndition within the animat causing the
animat to seled behaviours appropriate to the atievement or “satisfadion” of that
goal. Goals are aspedal condition of asign; goals are therefore dways drawn from

the set of available signs.

Postulate G1: Goal Valence. From time to time the animat may assert any of the
signs available as agoal. Any sign assrted to ad asagoad in thisway is termed as
having valence (or be valenced). None, one or many signs may be valenced at any
one time. The mnverse condition, aversion, where the animat is required to avoid
certain stimulus conditions is considered later (segtibn

Postulate G2: Goal Priority. Each valenced goal is assgned a positive, non-zero
priority. This priority value indicaes the relative importance to the animat of
adhieving this particular goal, in the prevailing context of other behaviours and
goals. Goal priority is determined within the innate behavioural component of the
ethogram. In the aurrent model only one goal is pursued at any time - the top-goal,
the goal with the highest priority.

Postulate G3: Goal Satisfaction. A valenced goal is deemed “satisfied” once the
conditions defined by the goa are encountered, when the sign that defines the goal
becomes adivated (postulate S2). The priority of a satisfied goal is reduced to zero
and it ceases to be valenced. Where goal seeking behaviour is to take the form of
sustained maintenance of a goal state, the goal seledion processmust revalence the

goal following each satisfaction event.
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Postulate G4: Goal Extinction. In asituation where dl possble pathsto agoa are
unavailable, continued attempts to satisfy that goal will eventually become athrea
to the continued survival of the animat, by blocking out other behaviours and
needlesdy consuming resources. Such a goal must be forcibly abandoned. This is
the goal extinction point. Goal extinction is closely related to the valence bresk-
point postulate (P6).

Postulate G5: Cathexis. Cathexis asciates a known goa sign with some other
sign, following repeaed smultaneous appeaance The aciation grows in
magnitude with successve pairings and wanes to extinction should the pairing
ceae. This medhanism alows creaed signs to equivalence signs with innate goal

properties.

3.5.2. Goals, Starting Conditions and Discussion

Goals are defined within the eéhogram, and a medhanism nmust be defined to enable
goals to be asserted whenever an appropriate drcumstance aises. Current animat
models, based on animal studies, might indicae the gpropriateness of goals
related to hunger, thirst, internal temperature ntrol, external cleanliness predator
avoidance, location of shelter, mating, and so on (after Tyrrell, 1993. Goal setting
and goal satisfadion need not be based on the same detedable phenomena. For
instance, food seeking behaviour may be initiated by the detedion of lowered
blood sugar levels (or by changes in bHood sugar controllers, such as insulin).
However, due to the delay in the digestive process were feeding to cease only
when these levels were again elevated to a reasonable level the hapless credure
would be gorged to bursting point. It has been demonstrated that many cues may
be used to terminate feeding behaviour, the adion of eding, the taste of swed but
non-nutritious sacdarin solution, or by artificial distension of the stomac (by an
inflated rubber balloon inserted into the gut). Clealy an overal balance must be
achieved between long-term and short-term signals to ensure that behaviour and

driving needs are matched.
Goals neal not relate to physicd requirements, and may be a<erted by other

medanisms. Maes (1991) describes “curiosity” as a goal type, related to
“exploratory” behaviours. Yet curiosity is rather the description of a processthat
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involves exploratory or deliberate adions to elicit further information about goals.
Such goals may be adivated on an arbitrary basis, or spedficdly to provide
additional maturity to a u-hypothesis, to disambiguate between contradictory u-
hypotheses, or to engage in the procegsayte.

3.6. On Paliciesand Policy Maps

Whenever any goal is valenced (postulate G1) the Dynamic Expedancy Model
cdls for the animat to construct a Dynamic Policy Map (DPM). As with a Q-
leaning policy map, the DPM alows the animat to seled an adion based on an
estimate of least cost path to the aurrent goal. The DPM is constructed from all the
u-hypotheses available to the system at the time of its construction. Unlike the
static policy map of Q-leaning, commitment to any particular DPM structure and
values is not made until the point a goal becomes valenced (G2).

3.6.1. Policy Map Postulates

Definition PO: Dynamic Policy Map. The Dynamic Policy Map temporarily
assgns ameasure of “effediveness’ to every sign known to the animat (the “policy
vaue”, g.v.) This effedivenessmeasure is an estimate of the dfort that will need to
be expended in traversing from any current situation (as defined and deteded by a
sign), to the goa sign with the highest given priority (postulate G2). The aurrent
DPM is discarded when its god is stisfied (G3). A new DPM is remnstructed
whenever a new top-goal is sleded, or when either the set of u-hypotheses (H5,
H6 or H7), or their corroboration measures (H3 and H4) change significantly.

Postulate P1: Induced Valence. Any p-hypothesis whose @mnsequence sign (“s2”)
isidenticd to the top-goa sign, or to any sign with valence (postulate G1), induces
valence into its context sign (“s1”).

19 play (Dolhinow and Bishop, 1972 Hinde, 197Q pp. 356-359), has been widely observed in
animal behaviour, in particular in primates and humans and other mammalian and avian spedes.
Play is not observed in fish, amphibians and invertebrates. Play in animals is most often
encountered as incomplete or stylised versions of recmgnisably adult behaviours, but it is not
triggered by normal motivational cues and is without the expeded consummatory component.
Thereis a notable suppresson of harmful aspeds to the normal behaviour manifestation, such as
biting. It is also easily interrupted by threat or hunger. Play is often assciated with the
individual’s development in a social context, and as a way of gaining motor skills. It may also
have an explicitly exploratory component.
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Postulate P2: Spreading Valence. Any u-hypothesis not arealy valenced, and
whose mnsequencesign (“s2”) matches a mntext sign of another u-hypothesis that
is valenced itself gains valence Vaenceisinduced (postulate P1) into the context
sign, the context sign of the newly valenced u-hypothesis may now ad as a sub-
goal. Vaence may therefore spread throughout the set of u-hypotheses and signs
until al u-hypotheses have aquired valence, or until no more u-hypotheses can be
readed by this process The top-goal is defined as having a “valencelevel” of zero;
each level of induced valence increases the valence level by one.

Postulate P3: Cost Estimate. The mst estimate for using any adion associated
with any u-hypothesis dal be the adion cost (postulate A2) divided by the
corroboration measure (H3, egn. 3-1). Thus if the u-hypothesis has always
succesdully predicted the mnsequence its cost estimate (P3) will be equal to the
adion cost. Where the crroboration measure indicates a less siccessul rule, the
cost estimate rises. Where the u-hypothesis has always failed the st estimate
would tend to infinity. The reinforcement measure (H4) may be used equivaently
in this calculation.

cost estimate— cost(rl) / p(sZt s1+rl) (egn3-4)

Postulate P4: Policy Value. The spreading valence (postulate P2) processcredes
policy chains, indicating one or more paths or chains of adions (extraded from p-
hypotheses implicated in the valenced policy chain) extending between the goal and
any sign involved in the DPM. The policy value for any sign that is not the goal and
which is involved in the DPM is defined as the sum of individual cost estimates
(P3) for ead element in the policy chain. In pradice the sprealing valence method
produces a graph or net like structure. Any policy chain shal be defined as
comprising the transitions representing the policy cost of lowest overal vaue
between pairs of sign nodes in that chain.

v=n-1

Policy value(g) <~ min( Z (cost(rlwl) / p(sé’ |t slv+l+rlv+l))) (eqn.3-5)
v=0
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where v is the valence level of ead link in the policy chain formed and n is the
valence level of some sign “s”.

Postulate P5: Action Selection. Whenever there is a valenced top-goa (and so a
DPM) an adion may be seleded for reficaion from the u-hypothesis implicated in
the DPM whose @ntext sign is both adive (postulate S2) and which has the lowest
policy value (P4).

Postulate P6: Valence Break Point. Creaing a DPM (postulate P2) and seleding
an adion (P5) establishes within the animat an expedation that the top-goal may
be atieved at a cetain cost (P4). The model defines a valence break point (VBP),
typicdly some multiple of the policy value (policy value * n). When adions
seleded from the DPM fail the policy value rises. Should the policy value exceal
that of the previoudy computed valence bres point, goal direded behaviour is
suspended, with the animat reverting to exploratory behaviours for a time. During
this period the animat may crede new u-hypotheses if the opportunity arises,
offering the possbility of a new path chain to the goa. Goal direded behaviour is
reinstated with a less demanding valence bre& point (the policy value is now
higher). Goal direded and exploratory behaviours alternate until either the goad is
readed, or the goadl is finaly cancdled by the extinction process (G4). This
process mirrors the experimental extinction phenomena repedably observable in
animal experiments (figur&1).

3.6.2. Evidencefor Chaining

Evidence that animals may form explicit behaviour chains under controlled
conditions is described by Bladkman (1974). Such chains are aeded by the
experimenter by manipulating the animal in an operant conditioning set-up to elicit
some response, say RX, to adchieve areinforcing reward under some discriminating
stimulus stuation, say Sx. Following this dage aresponse, say Ry, is conditioned
to Sx, but only in the presence of another discriminating stimulus, Sy. Sx has no
inherent reward charaderistics, but ads as a conditioned reinforcer. Using this
method chains of considerable length and complexity have been reported.

Sy— Ry— Sx— Rx— reward
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An independent series of experiments on the latent extinction phenomena
demonstrates that these behaviour chains may be disrupted, weakened or broken
when individual elements of the dhain are extinguished (Bower and Hilgard, 1981,
describing the work of Stewart and Long, and others.) The aility to construct, and
disrupt behaviour chainsis not in itself direa confirmation of induced valence, but
is important supporting evidence Experience from animal training (Bower and
Hilgard, 1981 p. 179 suggests that the dhain need not be built up badkwards from
the primary source of reinforcement, but may also be built forwards, or by inserting
operant elements into existing shorter chains.

3.6.3. Evidencefor Goal Suspension and Extinction

Figure 3-1 shows gylised cumulative records (from Bladkman, 1974 p.67, after
Reynolds) derived from Skinner box experiments under various operant
conditioning reinforcement schedules. In the fixed ratio (FR) schedule “reward” is
delivered to the animal after a fixed number of “responses’. In the variable ratio
(VR) schedule “reward” is delivered after a random number of “responses’. In the
variableinterval (V1) schedule “reward” is delivered at randomly varying intervals,
independently of adions by the animal. Similarly, the fixed interval (FI) schedule
delivers “reward” after afixed interval of time, again independently of “responses’
by the subjed. All these schedules are gplied to animals that have previoudy been
conditioned to operate the Skinner box apparatus on a regular reward schedule.

The dope of the aurve indicates the rate of the learned response (ead response
causes an upwards increment in the tracg, downward “tick” marks indicate
individual reinforcing reward events. Note the charaderistic stepped form of the
curve in the extinction phase of the experiments following the cessation of reward
events. The stepped form refleds the dhanging relationship between two forms of
adivity during the extinction phase, shortening periods when responses are made,
and lengthening periods when no responses are made. In time the leaned response
is apparently completely eradicated. This extinction processis a highly repeaable
phenomenon, and has been widely reported under both classcd and operant
conditioning regimes. Experimental regimes also indicae asewmndary process of
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spontaneous recovery, in which the previously extinguished effect re-appears,
albeit in aweakened form, after a period of rest.

The Dynamic Expectancy Model emulates the shape of the extinction curve by the
combined effects of the reinforcement (H4), valence break point (P6) and goa
extinction (G4) postulates. Specific details of how these interact in the
implemented model, and experimental analysis of the effects are described later.
Extinction curves of the type shown in figure 3-1 indicate the manner in which an
animat may abandon use of individual u-hypotheses that prove ineffective. The
reinforcement schedules themselves may yet reveal much about how p-hypotheses
may be created and managed in an animat designed with biological plausibility in
mind.

!

Reinforcement | Extinction

FR

VI

Responses | Fl

RE

f Time

Figure 3-1: Extinction CurvesUnder Various Schedules



3.6.4. Comparison to Q-learning

The Dynamic Expedancy Model is based on a different set of fundamental
premises to that of the reinforcement and Q-leaning strategies of Sutton and
Watkins. Watkins (1989 p.16) summarises the situation for Q-leaning in three
position statements. (1) that the cgadty for maximally efficient performance is
vauable;, (2) that exploration is chegp; and (3) that the time taken to lean a
behaviour is diort compared to the period of time during which it will be used.
Statement (1) is hardly in contention. Statements (2) and (3) indicae that the
ultimate level of performance is inherently more important than the time taken to
adhieve it. “Optimality” is thus defined as maximising reward aaquisition over an
extended time period. Leaning in the Dynamic Expedancy Model aims to provide
the animat with the best path to adieve goal (reward) states as they bewmme
indicaed, given the aisrrent level of knowledge. It may be that as the animat

becmes more experienced the quality of that path might be expeded to converge
to some accetable notion of “optimal”20 behaviour. This would be the cae, as
discused under the FDMSSE conditions considered ealier, except for the
competing requirement that the animat continue to explore while any phenomena
remain unpredicted, an innate drive to continuously augment and refine its date of

knowledge.

3.7. InnateBehaviour Patterns

Innate behaviour patterns provide a grounding for intelligence In the Dynamic
Expedancy Model innate behaviours srve three distinct roles. First they provide
the animat with sufficient behaviour to survive in its environment from parturition,
before any leaning. These behaviours imbue the animat with strategies to read to
life threaening events, where leaning would represent too high a risk for failure
on the initial instances; predator avoidance for instance Sewnd to seled and set
goal priorities. Most goa direded behaviour serves basic physiologicd
requirements. Innate behaviour deteds conditions indicaing those requirements
and establishes them as goals. Third to provide alevel of badground behaviour to

200ptimality, like beauty, is in the g/e of the beholder. The Q-learner may regard the shortest
path between current state and reward state as the optimal path. A hungry predator waiting beside
this path may agree.
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ensure the animat is appropriately tasked whenever neither the primary nor
secondary roles are activated. It may be appropriate that the animat enters a state
of hibernation, torpor or deep, a strategy that may conserve energy or serve other
physiological functions. The animat may aso use these periods to perform
exploratory actions, thereby triggering n-hypothesis creating postulates, and
performing acts that corroborate existing p-hypotheses. It is a consequence of the
Dynamic Expectancy Model postulates that learning may take place in the absence
of explicit reinforcement. Several strategies for this exploration may be applicable.

Definition BO: Behaviours. Behaviours are unlearned activities inherent within the
system. Behaviours give rise to actions (postulate A0) in response to circumstances
detectable by the animat. They are defined prior to parturition as part of the
ethogram. There is no limit to the complexity (or simplicity) of innate behaviour.
An animat might be solely dependent on innate behaviours, with no learning

component.

Postulate B1: Behaviour Priority. Each behaviour within the animat is assigned a
priority relative to al the other behaviours. This priority is defined by the
ethogram. The action (postulate AQ) associated with the behaviour of highest
priority is selected for reification (Al).

Postulate B2: Primary Behaviours. Primary behaviours define the vocabulary of
behaviour patterns available to the animat at parturition. These behaviours provide
a repertoire of activities enabling the animat to survive in its environment until

learning processes may provide more effective behaviours.

Postulate B3: Goal Setting Behaviours. The ethogram defines the conditions
under which the animat will convert to goa seeking behaviour. Once a goal is set
the animat is obliged to pursue that goal while there is no primary behaviour of
higher priority. Where no behaviour can be selected from the DPM, the animat
selects the behaviour of highest priority that is available. Behaviour selection and
reification (A1) from the DPM resumes once there is any match between the set of
active signs (S2) and the current DPM (P5).
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Interruption of goa direded behaviour by a higher priority innate behaviour may
draw the animat away from its top priority goal. For instance goal direded
nourishment seeking behaviour may be interrupted by high priority predator
avoidance ativity. Once the threa is passed goal direded behaviour will be
resumed, although the aiimat’s perceved “place” in the DPM graph will have
shifted as a result of the intervening behaviour. The structure and corroboration of
the DPM may have thanged, and it must be re-evaluated as behaviour reverts to
the goa direded form. Where goal seeking takes the form of a sustained
maintenance of the seleded goa state, the seledion process must reassert the
required goal each time it is satisfied.

Postulate B4: Default (exploratory) Behaviours. Default Behaviours provide a
set of behaviours to be pursued by the animat whenever neither a primary nor goal
setting behaviour is in force Typicdly these default behaviours will take the form
of exploratory adions. Exploratory adions may be ather random (trial and error),
or represent a spedfic exploration strategy. Seledion of this grategy will im pad
the rate and order in which the u-hypothesis creaion processes occur (H5). Default
behaviours have apriority lower than any of the primary (B2) or goal setting (B3)
behaviours. The provision of default behaviours is mandatory within the ethogram.

3.7.1. Balancing Innate and L earned Behaviour

The balance between innate and leaned behaviour varies widely throughout both
nature and the study of artificial animats. Action seledion models, such as those of
Brooks, Chapman and Agre, Maes, and Tyrrell, place full emphasis on the
provision of pre-programmed behavioural adivity. Behaviours are seleded to give
the animat appropriate responses to its environment, and as a mnsequence aimat
behaviour may appea “intelligent” by virtue of this applicability. In this case the
originator imbues the aiimat with a mechanism to determine which neels are
required, and a medhanism to balance between them. Within its repertoire of innate
behaviours a smulated animal may manage its requirements for nourishment and
water, for warmth, for shelter, predator evasion and the need to procreate.

Similarly a robot may be programmed to partition its adivities into different, and
mostly mutually exclusive, behaviours - colleding soda-cans, environmenta
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mapping, avoiding unexpeded obstades, seeking its redharging point and
replenishing its batteries. Eadh robot may incorporate these, and other tasks, whose
usefulness and complexity are limited primarily by the imagination, patience ad
programming skill s of the robot designer. Recdl that u-hypotheses may themselves
be defined in the éhogram, consequently the Dynamic Expedancy Model does not
imply that all goal seeking behaviour must be learned.

At the other end of the scde many adaptive leaning models adopt a tabula rasa
approach. With little or no predefined coherent behaviour, they rely instead on a
(pre-defined) leaning mecdhanism to acawmulate sufficient information about the
environment to eventualy creae wherent and appropriate overt behaviour.
Reinforcement and Q-learning schemes fall into this caegory, as does Drescher’s
schema system. Initially adions are seleded at random, under a trial and error
regimen and internal structures built or existing structures populated. With the
application of sufficient trials purposive behaviour may be generated from the
structures and information accumulated.

Mott’s ALP was essentialy initially a tabula rasa system, but a small number of
low-level robot reflexes were provided. To prevent the robot becoming physicdly
trapped into corners a reflexive badoff medanism was pre-coded into the robot
control-level controller. Thisis a reaurring problem for mobile robot constructors,
exacebated in this instance due to the physica layout of the robot used, a square
outline with differentialy powered wheds forward of the cedtre-line. For this
reason many mobile robots are designed with a drcular, or at least rounded “floor-
plan”, with their drive wheds placal symmetricdly about the centre-line. A second
low-level innate reflex was found to be necessary to suppress the badkoff reflex
when the robot was at the diarging point. This “discriminating puwsh” reflex
prevented contad with the dharger being broken, ensuring that effedive dedricd
contad was maintained between the robot’s charger contad plates and the sprung
base station charger contacts throughout the recharging period.

3.8. AdvancesIntroduced by the Dynamic Expectancy M odel

Cursory inspedion of the Dynamic Expectancy Model postulates H3 and H4 might
suggest that this is a cnventional reinforcement model of leaning. Procedures

86



(encapsulated by equations 3-1, 3-2 and 3-3) by which reinforcing events
strengthen or weeken disposition of the animat to adopt one behavioural option
over another are smilar to those of other well-established reinforcement methods.
The source of the reinforcement is, however, radicdly different. In the Dynamic
Expedancy Model the reinforcement signal is internally generated by the setting
and subsequent verification of a prediction. In previous reinforcement systems the
reward signal must be recaved from the external environment before any leaning
could occur. In the new model a valid reinforcement signal is generated whenever a
behaviour choice is exercised and a p-experiment adivated, so that the processes
of behaviour may now be largely disassociated from those of learning.

It will be demonstrated later that this new method alows for substantially
improved leaning rates over conventional reinforcement leaning tedhniques
(sedion 6.2). It is quite dea that leaning triggered by external reinforcing reward
isalso avalid effed, and commonly observed in animals. While this thesis primarily
explores the dfeds of internally generated reward, it will be demonstrated (sedion
7.4) that additional performance benefits may acaue to the animat when internal
expectancy and external reward signals are combined.

The Dynamic Policy Map arises from the fundamental disasociation of the leaning
and (goal-seeking) behavioural processes. In the static policy map of, say, the Q-
leaning algorithm, ead sensory state becmes increasingly permanently attached
to a particular adion relative to a fixed goa. While this may bring advantages in
enhanced readion times following the leaning phase, it leads to an inflexible
readion to the dhanging needs of the animat with time and varying goals. The
Dynamic Expedancy reinforcement method of leaning allows the @nstruction of
a policy map only when it is required, and relative to the spedfic needs of the
animat at the time of construction. p-Hypotheses bemme “committed” to a
particular goal only while that goal has the highest priority, and will be redlocaed
whenever the goals of the animat change. An example of this dynamic map
construction will be given in secti@gh9.3

By generating the policy map dynamicdly in this way the advantage of the readive
response to adive signs inherent in the static policy map is retained. By not
committing any individual u-hypothesis to any particular goal or reward during the
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learning process the Dynamic Policy Map may be reconstructed to provide a
reactive policy relative to the current goal, even where the goa has not previously

been implicated in the learning process.

By integrating expectancy learning with an action selection based model of
behaviour a way of selecting goals is made possible. This combination of
techniques also provides a way of defining innate, reactive stimulus-response
behaviours. These innate behaviours provide the animat with a mechanism with
which to react in a manner to allow survival while the individual learns the skills

required to behave ever more appropriately in its environment.
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Chapter 4

4. The SRSE Algorithm

This chapter describes the SRSE computer algorithm. SRS/E is derived dredly
from the Dynamic Expectancy Model postulates of leaning and behaviour
developed in the previous chapter. SRS/E follows in the tradition established by
Bedker's M, Mott’s ALP and Drescher’s systems by providing an intermediate
level cognitive model based on the wmntext-adion-outcome triplet. As with these
previous gstems, SRSE offers a sensory-motor view of leaning. It is not,
however, to be mnsidered as a re-implementation of any of these existing systems.
As with Mott’s ALP and Drescher’s algorithm, and indeed the mgjority of extant
animat control algorithms, SRS/E is based on a repeding cycle of sensory
aqquisition from the environment, processng and taking overt adions into the
environment.

Eadch model is a refledion of the times in which it was creded. Bedker's M
proposal and Mott's ALP implementation adopt an associative net structure for
schemata LTM; consistent with prevaili ng theories from psychology and cognitive
science, for example, Norman (1969. Adopting a net structure served to contain
the computational search and matching load inherent in these designs, bringing
distinct pradicd advantages to Mott’s implementation in the @ntext of a time-
sharing ICL mainframe. Drescher’s later (1991) system adopted a “neura crossar
architedure”, consistent with the revival of interest in connedionist thinking at that
time. Availability of the massvely paralel Connection Machine made the brute
force gproad of the marginal attribution agorithm feasible. In turn, SRSE arises
as a readion to an upsurge of interest in reinforcement leaning and related
behaviourist concepts. SRS/E’'s name, an abbreviation of Stimulus-Response-
Stimulus/Expedancy, pays passng tribute to the life's work of E.C. Tolman, and
defines the positioning of the work. Various other items of terminology, notably
the use of Sgn, Valence, Hypothesis and (Cognitive) Map, are derived from the
vocabulary developed by Tolman and his contemporaries.
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In contrast to these other systems SRS/E is primarily an algorithm that manipulates
lists of data. This chapter is divided into two main parts. In the first part the
various types of data list are described. The second pert presents the dgorithm
used to manipulate the lists, perform the leaning tasks and generate overt
behaviours, either from the animat’s predefined ethogram, or as a @mnsequence of
learned information.

4.1. Encoding the Ethogram: SRSE List Structures

SRS/E currently defines seven internal data structures. These data structures will
be referred to as lists. Each list encapsulates an asped of the animat’s ethogram,
and so reoord the instantaneous “state” of the animat. At defined points in its
exeaution cycle the SRS/E algorithm will insped the wntents of these lists and
generate behaviours based on the prevailing contents of those lists. Equaly the
SRS/E agorithm will add, modify or delete information stored on the lists by
processes derived from the Dynamic Expedancy Model postulates described in
chapter three These processes will be defined later in this chapter. Each of the
seven lists is composed of list elements. In turn ead element of ead list is itself
composed of list element values, which record items of information relevant to
eat list element. So, for example, the Hypothesis List is composed of many
individual u-hypotheses, the dements of that list. Each u-hypothesis has attached to
it various hypothesis values, which are aeaed and initialised at the same time &
the individual u-hypothesis, and may be updated ead time the dgorithm utili ses the
individual u-hypothesis. All list element values (or “vaues’) are updated by the
SRS/E agorithm as a result of events impinging on the animat and adions the
animat makes. The list structures, list elements and list element values are
summarised in table 4-1, and described in the sub-sedions that follow. List
elements may be defined by the originator before the aedion of an individua
animat, as would be the cae with the Response axd Behaviour Lists. Otherwise, as
would be typicd for al the other lists, lists are anpty at the point the aniimat
beoomes a free standing individual. In which case the SRS/E algorithm credes
individual list element entries as the need arises.
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4.1.1. List Notation

Throughout this chapter ead of the seven lists will be represented by a single
cdligraphic charadter. Upper-case dharaders represent complete lists (I, S, R, B,
#, Pand G). Lower case charaders represent individual elements in the respedive
list (& & r, b; hy p and g). Table 4-1 summarises this notation. A superscript
notation will be aopted to indicate some property of a list or a list element. In
particular the use of an asterisk will indicae “adive” dements, those whose
attributes match the prevailing circumstances on the arrent exeaution cycle. For
instance I*will refer to all those dements of I where the crresponding token has
been deteded in the sensory buffers I* < I, therefore I - I* will refer to al those
elements of I where no corresponding input token has been deteded. A number of
additional superscripted formswill be introduced later; ead will i ndicate some sub-
set of alist, or spedfy some dtribute of alist element. A notation in which the list
element value name is used to refer to or accessalist element or sub-list will aso

be employed.

As with JCM, ALP and Drescher’s g/stem every element in ead SRS/E list has
attached to it a number of numeric and other values. These values are updated as
the dgorithm exeautes and are in turn used by the dgorithm in seleding overt
behaviours and to guide the leaning process SRS/E is intended primarily as a
platform for experimentation. List element values are therefore varioudy available
for use in the dgorithm as presented, and by reporting and analysis ftware
creaed with the spedfic purpose of analysing and presenting experimental results.
The list element values used by SRS/E are shown in table 4-1. Their functions and
purposes are described following a detailed description of ead list type. Such
values will be shown in adifferent font “t hus”. List element value names $own in
this different font are chosen to diredly refled the variable names employed in the
current implementation of SRS/E used to conduct the experiments described in
chapter six. The charader in bradets asociated with ead value shown in table 4-
1 indicates the data type seleded for that value in the aurrent implementation. A
cdligraphic charader, “(8” for example, indicates a pointer or reference to a list
element of the indicated type; “(i)” indicaes an integer type; “(t)” a “time” value,
and “(b)” a bit-sequence. The types “(i)", “(t)” and “(b)” are d encoded
conveniently as (long) integers. Time values are rewrded as discrete intervals
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corresponding to exeaution cycles of the dgorithm. ASCIl encoded strings are

indicated “(9)”, red or floating point values as “(f)”. The range of some floating

point values will be restricted within the program.

List List Description List List Element Values
Symbol Element
Symbol
I Input Token List. Binary, U token_string (s)
atomic input items from token_identifier (i
sensors. Associates input token_first_seen ()
. . . token_l ast _seen (t)
items to arbitrary internal t oken_count (), token prob (f)
symbols token_activation_trace (b)
S Sign List. Descriptions of an | sign_conj unction (see text)
environmental “state”, define si 9”—; fje“: ifier 8
. . sign_first_seen
by a conju.nctlon of tokend)( sign last_seen ()
and other internal symbols si gn_count (i), sign_prob (f)
sign_activation_trace (b)
best val ence_| evel (i)
R ResponselList. All available | » response_string (s)
actions (simple and response_identifier (i
response_cost (f)
Compound) response_activation_trace (b)
B Behaviour List. b condition (g
(condition,action) defined action (n
innate behaviour patterns behaviour_priority (f)
(conditione S — actione R).
G Goal List. Actual or potential goal _sign (8
it goal _priority (f)
system goals, prioritised by B. Lime goal set (0
H HypothesisList. List of s1(9. r1 (N s2 (9
u-hypothesesin the form time_shift (9
(Sl r1 52) hypo_identifier (i)
T hypo_first_seen (t)
sle S, rle R, s2e S. hypo_| ast _seen (t)
hypo_activation_trace (b)
recency (i), hypo_bpos (f)
hypo_cpos (f), hypo_cneg (f)
hypo_age (t), hypo_maturity (i)
hypo_creator (h
val ence_l evel (i)
cost _estimate (f)
policy value (f)
P Prediction List. List of p predi cting_hypo( h

predictions awaiting

confirmation.

predicted_sign($
predicted_time (1)

Table4-1: SRSE Internal Data Structures
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4.1.2. Summary of Lists

The Input Token List records binary atomic input items from system sensors and
assgns ead one aunique, but arbitrary, internal symbol such that ead subsequent
appeaance of the same input item will generate the same internal symbol. The
Input Token List implements the “token” of definition TO.

The Sign List provides the system with partial or complete descriptions of the
environmental “state”. A sign is defined as a conjunction of input tokens and other
internally generated symbols, and their negations, providing the structure to
implement the sign of definition SO.

The Response List defines the set of al the adions available to the animat, to
implement the adion of definition AO. Simple adions are defined by the éhogram.
Compound adions (postulate A3) may be formed by the concaenation of smple
actions.

The Behaviour List explicitly defines the innate behaviour patterns for the animat
as an integral part of the d@hogram (definition BO). Fixed, pre-programmed,
behaviour patterns (postulate B2) may subsequently be subsumed by learned, goal-
seeking behaviour. For simple animat ethogram definitions the Behaviour List will
also be responsible for setting goals (postulate B3) and so balancing the priorities
between fixed and learned behaviour.

The Goal List recmords none, one or more posshle goals being sought by the
animat at any particular time (definition GO). The aiimat only pursues one goal at
any one time, theop-goal.

The Hypothesis List records leaned expedancies (u-hypotheses) in the form
“sl,rl,s2”. Context “s1” and consequence “s2” are dements from the Sign List.
Action “r1” is an element from the Response List. Each element of the Hypothesis
List equates diredly to a single u-hypothesis, a small, isolatable fragment of
knowledge aout the animat’s existence, well defined in terms of the other list
types (definition HO). To be of value to the system ead u-hypothesis must make a
clea and verifiable prediction. Corroborated u-hypotheses are subsequently used
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by the animat to generate useful goal-seeking behaviours. The SRS/E agorithm
provides the dgorithmic resources to crede, verify, modify, delete and use p-
hypotheses.

The Prediction List recrds expedations made by adivated p-hypotheses for
confirmation or denial at a defined time. This dructure retains time tagged
predictions until they are verified (postulate H1).

4.2. Tokensand thelnput Token List

SRS/E employs a grounded symbol approach to behaviour and leaning and has
much in common with the notion of deictic representation?! (Agre and Chapman,
1987 Chapman, 1989 Whiteheal and Ballard, 199]). Deictic markers point to
aspeds of the percavable environment. Idedly ead marker will point to only one
objed or event, or to one well-defined class of objeds or events, in the
environment. This allows the animat to respond appropriately to the presence of
the objed or occurrence of the event, or to lean the significance of the objed or

event with minimal ambiguity (the FDMSSE assumption).

Typicdly input tokens either diredly refled the value of some sensor, or are
derived from sensor values to define apartially or wholly complete state descriptor.
Thus SRS/E will equally accet ALP style kernels, such as “<LOW>S" or
“<BRIGHT>S", derived dredly from the transducer values from the robot, or
Drescher’'s (1991 pll1l7 primitive items “hpll”, “vpll”, or “fovf00-33”
denoting pertial state descriptors from the simulated environment. As with Mott
and Drescher, SRS/E input tokens are binary in rature, present or absent. SRS/E
does not employ the predicate and value representation described by Becker.

The SRS/E algorithm accepts squences of tokens from the environment. During
eadt exeaution cycle none, one or many tokens may be presented to the dgorithm
from a sensor sub-system integral with the animat. The first appeaance of any
token is registered into the Input Token List, I, and the new token is assgned a

unique internal code. This redises the tokenisation process described in postulate

2}(OED) deictic: a & n, Pointing, demonstrative, [Gleiktikos]
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T1. For every subsequent appeaance of that token the unique de will be
generated from the list. At ead exeaution cycle the Input Token List I will be
partitioned into those tokens that have gopeaed in the input stream on the airrent
cycle and hence ae adive, and al the others that have not appeaed and are not
active. As indicated in sectighl.1the active partition is denotdd.

Tokens may be registered into I by the originator as part of the initial ethogram
definition and subsequently employed in generation of innate behaviour patterns.
Apart from this, tokens have no inherent “meaning” to the system. Once registered
into the Input Token List, token identities are permanently retained. SRS/E will
accet new additional tokens at any point in the lifegycle of the aiimat. The
appeaance of novel tokens also drives the leaning process There is no
generalisation over input tokens, non-identicd input token strings are treaed as
wholly distinct.

The Input Token List isimplemented as a hash table (Knuth, 1973, the internally
generated token symbol value being set equal to the index position in the hash
table. Initially the hash table is given a fixed size, but is grown automaticdly and
the symbols re-hashed when the table is close to overflow. As part of this process
al internal token symbol values are updated to reflea their new position in the
table.

4.2.1. Input Token List Values

In addition to the token_identifier, the internal symbol, and the external
representation of the token string t oken_st ri ng, the Input Token List maintains
four additional numeric values for ead Input Token List element. As an aid to the
analysis of experimental data the input t oken_string is retained in the Input
Token List and is $own in preferenceto the anonymous internal symbol in output
trace ad log files. The list element value t oken_first_seen rewrds which
exeaution cycle the token ¢ was first deteded. The value token_| ast _seen
records the exeaution cycle when the token was most recenitly deteded. The value
t oken_count records the total number of cycles that the token & has occurred on
I* The raw probability of occurrence (t oken_pr ob) for any token may be derived

according to the equation:
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t oken_count

t oken_prob « (egn4-1)

now - token first _seen + 1

This raw token probability may be used as a measure to determine the degree to
which the sensory sub-system is able to differentiate the phenomena indicaed by
the token from others. Generaly, tokens with a relatively low raw probability
measure facilitate the behavioural and learning process.

A reoord of recent past adivations for eat element ¢ is maintained in the variable
t oken_acti vati on_t race according to the assignments:

token_activation_t race™ et oken_activation_t race " (eqn4-2a)

token_activation_trace"" ¢« [ activation_state (eqn4-2b)

These trace values, and those for other list element types, are used in sign
definitions to record past adivations and provide a mecdhanism to implement
temporal discrimination, an asped of the u-hypothesis differentiation process
(postulate H6). The activation traces are of finite length, newer values entering the
trace displace older values which are lost to the algorithm.

In the current implementation of SRS/E, n of equation 4-2a takes the values 1 to
32. The token activation trace is therefore conveniently represented as individual
bit postions in a long integer. The operation described by equation 4-2a is
achieved in the current SRS/E implementation as an arithmetic shift Ieft by one bit
position. The operation described by equation 4-2b by setting (or clearing) the
lowest order hit of the integer recording the trace values according to the current
activation value of the token.

4.3. Signsandthe Sign List

Signs encapsulate one or more tokens into a single item (this is derived from
postulate S1). They are identified within the system by a unique symbolic identifier.
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The total Sign List is designated as S. The subset of signs that are adive & the
current time are designated$% Sign activation was described by postulate S2.

4.3.1. Representing Signs

As with the schema representations of Mott and Drescher, SRS/E signs are a
conjunction of primitive tokens, where the token must be present for the
conjunction to be adive, or negated tokens, where the token must not be present
for the @njunction to be adive. Drescher’s representation is severely restricted
with resped to Mott’s in that the schema left hand side in ALP allowed inclusion
of kernels from any position in Short Term Memory (STM), whereas Drescher’s
did not. Mott’s use of the little arow notation, with its grict time sequence
information, imparts further contextual information to the schema left hand side.
SRSJ/E also adopts an explicit time representation to tokens, so:

ALP: [<BRIGHT>S— <FRONT>S - <CHARGE>S .... ]
becomes:
SRS/E: (brigh* & front & ~charge ....)

In SRS/E all timings are cnsidered to be relative to the arrent cycle (t=0 or,
equivaently, t=now), negative from the past, positive into the future. Thus the
notation “ @t-1" is conveniently read as “at the arrent time minus one”, or “on the
cycle before the aurrent one”. Token negation is represented by the tilde dharader
(“~"). The representation of past events in ALP is limited to the length of STM
(typicdly six cycles), in SRS/E by the length of the adivation trace (typicdly 32
cycles). Unlike Bedker, but like SRS/E, Mott did not permit recycling of kernels
from the end of STM into the input register as esential timing information is lost.
Drescher offered no equivalent to a Short Term Memory in his system.

By convention an input token incorporated into a sign will be aitomaticdly
dereferenced to its external form from the internally represented symbolic form
whenever it is displayed or printed. Sign conjunctions may also incorporate other
symbolic information contained within the SRS/E system. So a sign conjunction
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may include the symbolic name for another sign (from S). Similarly adions (from
R) may be included. Thus past adions by the system are available for inclusion into
the “s1” conjunction. u-Hypothesis adivation (from #) may also be recorded in a
sign, by including the symbolic name of the hypothesis (to be described in a later
sedion). The inclusion of the hypothesis form into the sign conjunction may give
the system limited access to its own operation and hence the posshility of
predicting, seeking as a goal, and creaing hypotheses about aspeds of its own
leaning behaviour. The ramificaions of this ability are beyond the experimental
investigations of SRS/E presented here. This construct is broadly equivalent to
Mott’s proposal for an internal kernel and Drescher’s notion of a synthetic item,
but more cncise and managedble than the latter as only the symbolic name is
required. SRS/E does not, however, at present have any explicit support for the
notion ofobject permanence.

Thesi gn_conj uncti on may be more concisely defined as:
% H H k S
ye §* iff conjunction _(x.) (eqn. 4-3)

where k gives the number of terms in the conjunction. Each of the items xi may

substitute for one of four forms:

xi = we X* form 1
or
~y = xe X* form 2
or
xi@_t = we X*@! form 3
or
~x§@_t = we X*@! form 4

allowing for the presence of symbol of type % (form 1), the absence of symbol of
type x (form 2), the recorded presence of symbol of type x at time (now-t) in the
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past (form 3) and the recorded absence of symbol of type x in the past (form 4).
In these forms the symbol x (and hence X) may substitute for elements from any
of the lists, S, R or #.

The sign definition adopted in SRS/E has no don't care (“#") representation of the
form employed in classfier systems. If a symbol is not explicitly included its
condition istaken asirrelevant. Thisis generally consistent with Popper’s view that
an ‘experiment’ should define dl its relevant preconditions, but exclude dl those
inconsequential to its outcome. This representation is not as concise where small,
bounded sets of feaures are to be cnsidered, but offers sgnificant advantages
where small subsets of avery large feaure set are to be represented and where past
values of fedures are to be included. Many other representational schemes have
been proposed to enable macdine leaning systems to represent left hand side
preconditions completely or conveniently. In particular, Michalski (1980 describes
a ondition form for the VL,, logic system that includes enumeration,
variabilisation and hierarchical descriptions; but not past events.

In the SRSE implementation the Sign List is held as an indexed list of sign
elements. The index is used to crede the sign identifier (thus: “Snnnri’, where nnnn
is the index number). This designation for a sign symbol appeas in the log and
analysis information from the experimental runs of SRS/E. Individual conjunctsin a
si gn_conj unction definition are recorded as a triple. conjunct identifier, a
negation flag, and time offset. In the airrent implementation they are recorded in a
canonicd form for efficient access Also in the aurrent implementation negation is
indicated by recording the @njunct identifier (for instance t oken_i dentifier)
with a negative value. Attempts to crede anew sign that dugicates an existing
sign are rejected by SRS/E.

4.3.2. Other Sign List Values

Eadch element of the Sign List is assgned a unique sign_identifier, as
described, and ead sign hes asociated with it sign_first_seen,
sign_last_seen, sign_count and sign_ activation_trace vaues. The

derivation and use of ead of these mirrors the derivation and use described for the
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equivalent Input Token values. Sign probability, si gn_prob, is cdculated in an
analogous manner taken_pr ob:

si gn_count

si gn_prob « (eqné-4)

now - sign first _seen + 1

An additional measure, raw si gn_prob, may be derived from the individual
probability ) values of the component parts of the sign conjunction:

raw_si gn_prob « H:=1( p()(z)) (eqn4-5)

Where si gn_prob >> raw si gn_prob the SRS/E agorithm may use this as an
indication that the sign conjunction is a significant combination of component
parts, and not just a combination of random or “occult” occurrences.

4.4. Actionsand the ResponseList

The Response Ligt, R, records the basic adions available to the animat. For any
SRS/E controlled animat, the originator “registers’ a list of basic adions and their
asociated costs as part of the initial ethogram definition. Actions will be required
to serve the neals of both the innate behavioural and the leaning components of
the SRSE system, though the same adions may well be alequate for both
purposes. In SRS/E the adions defined in R serve as instructions or commands to
the aduation sub-system, whether physicd or smulated. Seledion and description
of the adionsin R are anintegral part of any experimental run discussed in chapter
six. SRS/E supports both simple (moleaular) and compound (molar) adions. A
compound adion is one built from the cncaenation of two or more smple
adions, as described by postulate A3. Compound adions run to completion once
initiated. This definition of compound adion is therefore distinct from Drescher’s
definition of a composite action, which may be seen as an intermediate stage
between the SRS/E compound action and the Dynamic Policy Map.

In the arrent implementation ead adion is held as an element in the indexed list
R. Individua adions are registered into the list before the start of ead
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experimental run. Additional entries may be registered into the list at any time, to
implement a maturation strategy, for instance. On ead exeaution cycle SRS/E will
seled a single adion from R to be reified (derived from postulate Al) and
delivered to the aduator sub-system. The reified adion is placel on the R *list for
the gscle in which it is adive. Output adions take the form of an ASCII string
(entered at the time of registration) to be interpreted by the aduator system as an
instruction to perform some defined adivity. Trace ad log information arising
from the use of SRS/E will automaticdly dereferencethe adion index to this gring
for ease and clarity of analysis, as with Input Token List entries.

4.4.1. ResponselList Values

In addition to the anonymous internal symbolic value, r esponse_i denti fi er and
the external string representation of the adion, r esponse_st ri ng stored with eat
adion in R, the SRS/E agorithm recrds response_cost, an estimate of the
effort that will be expended whenever that adion is taken (the adion cost, from
postulate A2). Thisis the estimate provided by the originator at the time the adion
is registered. It may refled the energy required to perform the adion, a notional
amount of resource depleted by the adion, or the time taken to complete the
simple or compound adion, or some mmbination of these and other attributes.
This is broadly in keguing with Tolman’'s (Tolman, 1932 Ch. 7) observations that
rats generaly choose paths through experimental mazes that minimise delay or
effort.

On a pradicd note this value dso provides the Dynamic Policy Map generation
algorithm a metric by which to evauate the gpropriateness of aternative paths
through the map. The originator is required to spedfy response_cost values of
unity or greaer, and that these values be proportioned acwrding to the relative
effort aadoss al adions in R. The response_activation_trace mantans a
transent record of past adions (a rewrd of R¥, computed as for

token_activation_trace andsi gn_activation_trace.
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4.5. Innate Activity and the Behaviour List

The Behaviour List B defines the innate behaviours for the animat. This definition
is an essential part of the ethogram, and built into the animat at the time of its
definition by the originator. Such behaviours will react to situations, events, and
changes in the environment as prescribed by the originator. In the main these
activities will be mediated and modified by internally generated and detected needs,
drives or motivations differentially selecting or inhibiting aspects of innate
behaviour patterns. Innate behaviours need not be fixed over the life-cycle of the
animat and may vary according to a maturation schedule or imprinting regime.
This section does not intend to revisit the mechanisms by which behaviours are
formed and selected, nor to further consider the arguments over which of the many
proposed strategies most effectively or closely model observed natural behaviours.
It will, however, be primarily concerned with how the overt behaviour of the
animat will be apportioned between the innate and learned parts of the mechanism.

45.1. Behaviour List Structure and Selection

The Behaviour List is a notiona list of condition-action pairs (condition € § —
action € R), fully in the tradition of the stimulus-response behaviourist camp. At
each execution cycle every element b- of B is evaluated against S* and a list of
applicable candidate actions, B¥, formulated. The selection of behaviours on each
cycle is thus made based on the evidence for their applicability. To achieve the
required balance of innate and learned behaviours the Behaviour List will be
considered to be in two parts. The first part, B”, lists condition-action pairs from
which action candidates will be selected (B"¥). This part of the list realises the
primary behaviours of postulate B2. The second part, B, lists condition-action
pairs determining which, if any, goals the animat should pursue given the prevailing
circumstances. This second part of the list realises the goal setting behaviours of
postulate B3. During each execution cycle several possible actions, and severd
goals could be applicable. SRS/E makes its selection from B"* and B%* on a

priority basis.

Each potential innate behaviour in the animat is assigned a priority by the
originator, which is initially set within the ethogram according to its significance.
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Thusin an animal smulation, predator avoidance might be assgned a high priority,
and therefore be made manifest whenever the conditions that indicae the gproad
or presence of a predator. Other behaviours, those initiated by, say, the onset of
hunger (deteded, perhaps, by lowered “blood sugar levels’) having a lower overall
priority and so being interrupted by the avoidance behaviour. SRS/E must also
adjudicae between innate and goa seeking behaviours, those derived from the
Dynamic Policy Map. To achieve this, elements of B¢ (and so B#* are dso
assgned a priority in the éghogram. At eat cycle SRS/E will either sdled the
highest priority element from B*¥ if this priority is higher than that for the highest
priority element from B#* Otherwise a Dynamic Policy Map will be aeaed, or

the existing one used, to generate a behaviour from stengobtheses.

Where none of the defined innate behaviours has an effective priority, it is
inappropriate for the animat to pursue any of those behaviours. So, if it is not
threatened, hungry, thirsty, tired or dirty, etc., then there is little to be gained by
fleeing, eating, drinking, sleeping or preening, etc., just because one of these
behavioursis dightly lessirrelevant than the others. Therefore the SRS/E agorithm
places a lower bound, the basal level threshold (€), on behaviour activation, below
which none of the behaviours defined in B will be seleded. Yet the aiimat is
expeded to perform some adivity on ead cycle. Where no innate behaviour or
goal behaviour is adive the animat performs exploratory adions sleded from R.
These implement the third, and mandatory class of innate behaviour pattern, the
Default (exploratory) Behaviours (redising postulate B4). The learning mechanism
is gill adively monitoring the adions taken and their outcomes and leaning
continues during these periods of apparently undirected activity.

The Behaviour List as defined for the present version of SRS/E places restrictions
on what may be dfedively represented by the originator. It is adequate to generate
the reflexive behaviours described for ALP. Any scheme by which behaviours are
controlled through the presence of only binary releasers provides little useful
analogue with the natural world, and gves rise to a range of difficulties in
providing a useful smulation of innate behaviour. The default exploratory (“tria
and error”) behaviour is present in SRS/E as an inherent component of the system
and requires no additional intervention by the originator. For the purposes of the
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experimental regimes to be described in chapter six the experimenter is able to
activate goals externally.

45.2. Behaviour List Values

In addition to the condi ti on and act i on values, ead element of B has asciated
with it the value behavi our _pri ori ty, which defines the pre-assgned importance
of the behavioural component. There is a fundamental difference between adions
on the B" and B parts of the Behaviour List. In the former case the adion is
seleded from those available on the Response List. In the latter case the “adion”
taken is to place asign onto the Goal List, or to manipulate the priority of the goal
because circumstances have altered.

Potential exists to extend the B” part of SRS/E to respond to a wnventional
external reward schedule. A separate reinforcement strategy may be put in placeto
re-prioritise dements of the Behaviour List relative to desirable outcomes, either
employing a straightforward immediate reward mechanism or some variant of the
Q-learning orbucket-brigade algorithms.

4.6. GoalsandtheGoal List

The Goal List is a sub-set of the Sign List (G < S). Any sign, whether created by
the originator or formulated during the learning process, may be designated as a
goal state (goal _sign). The structure of the SRS/E d€gn offers a single
representational type which provides (1) a symbolic name, such that the goal can
be conveniently identified internally within the system; (2) a description of what is
relevant to the definition of the goa (and so what is not relevant); and (3) a test
enabling the system to recognise when the goa has been achieved. Signs are
attached to the Goal List under the control of the Innate Behaviour List (B%¥), as
previously described (postulate B3). The goa sign having the highest associated
priority (goal _priority) is designated g1 and so forms the seed to build the
current Dynamic Policy Map. This is the top-goal. SRS/E supports many signs on
the Goal Ligt, after the top-goal these are designated gz, g3 and so on, ordered
according to their given priority.
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Goals are deemed satisfied when they appear on G* (and so S$%, redising
postulate G3. The SRS/E agorithm automatically cancels satisfied goals by
removing them from G, and remaining goals on the Goal List are moved up the list
automatically. As a consequence of this the Dynamic Policy Map is recomputed
with the new seed and the observed behaviour of the animat changes accordingly.
The change in behaviour is in effect instantaneous, and may lead to a completely
different set of responses being employed by the animat in apparently identical
circumstances. This is a significant departure from the reinforcement and Q-
learning approach, where a single goal is repeatedly sought and a network of paths
(a graph) congtructed, dedicated to achieving the designated goal. When the Goal
List becomes empty, use of the Dynamic Policy Map as a behaviour generator
ceases. Until a new goa of sufficient priority is again placed on G observable
behaviour reverts to innate actions drawn from the Innate Behaviour List B"* or

default behaviour mechanisms.

Under these circumstances the originator bears some responsibility for ensuring the
stability of the Goal List ordering. SRS/E builds the DPM according to the top-
goal gl. It may be that B"* gives rise to two goals of very similar priority, because,
for instance, they are derived from sensors currently giving signals of equivalent
significance. Under these circumstances the priority of the multiple goals may be
unstable, swapping between the aternatives. The DPM is automatically
recomputed at each priority swap causing changes or reversals of observed
behaviour leading, in turn, to the inability of the animat to reach any of the enabled
goal states. This is equivalent to the problem faced by any of the Action Selection
Mechanisms (ASM) described earlier, where each must ensure that coherent
patterns of behaviour are established to meet the needs of the animat.

4.7. TheHypothesisList

The Hypothesis List is the primary repository of learned knowledge within the
SRS/E agorithm. Each element of the list, a u-hypothesis, encapsulates a small,
well-formulated, identifiable and verifiable fragment of information. A pu-
hypotheses is not an unequivocal statement about the animat or its environment,
but is an assertion about the nature of things - it may be true or it may be fase. A
u-hypotheses may be partially complete and so true in some proportion of instances
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in which it is applicable. Every p-hypothesis is an independent observation. SRS'E
supports the notion of competing hypotheses, severa hypotheses that share
identicd pre-conditions or which share identicd conclusons. SRS/E accets
mutually inconsistent p-hypotheses, to be resolved following corroboration?2.
SRS/E does not allow the installation of duplicate copies of identicgbothesis.

The originator is, of course, at liberty to incorporate into the ehogram or
controlling algorithm whatever consistency chedking and verification mecdanisms
he or she mnsiders appropriate. To do so takes the nstruction of the aiimat
controller badk to the redms increasingly referred to as traditional Al (Cliff, 1994
or GOFAI (Good Old Fashioned Atrtificial Intelligence, Boden, 1994. This is a
valid approadh, but not the one alopted here, and moves the aiimat definition
towards the caegory (3) intelligence of chapter one. In SRSE ambiguity is
resolved by applicaion and testing of the p-hypotheses in the form of p-
experiments, which are conducted by the SRS/E system whenever the opportunity
arises to do so0. In turn, u-experiments take the form of making verifiable
predictions about the percevable state of the animat or its environment at some
defined time in the future.

All u-hypotheses in SRS/E take the form of a triplet of component parts:
Signl + Response> Sign®™* (egn4-6)

The first sign (Signl or just “s1”) provides a mntext in which the performance of
the adion (Response or just “r1”) is hypothesised to result in the gopeaance of the
seoond sign (Sign2 or “s2”) some spedfied time in the future (at ‘@' the predicted
time, +t cycles in the future). The signs “s1” and “s2” are drawn from S, the
response “r1” from R. Response “r1” isthe adion to be taken on this cycle, “s1” is
the aurrent value of the context sign. However “s1” may include token values
drawn from the various adivation traces, and so inherently defines a tempora as
well as a spatia context. In Tolman'sterms, “s2” is st as an expedancy whenever
“s1” and “rl” are present. This expedancy relationship is the basis of the means-

220y, if the animat is in a genuingy inconsistent environment, or in one which is unresolvably
ambiguous, to remain inconsistent in perpetuity. Vershure and Pfeifer (1993 develop these isaues
further.
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ends cgpability of SRS/E. If "s2" is an end, or goal, to be adieved, then “s1” and
“r1” provide ameans of achieving that end. In considering any u-hypotheses with
“s2” as its desired end, the wrresponding “s1”, if it is not currently adive and so
available, may become an end, or sub-goal, in its own right. Developing a cognitive
map of means-ends-readiness from many individual expedancies was a ceitra
component of Tolman's expedancy theory. Means-Ends Analysis has developed
into a arnerstone concept in traditional Artificia Intelligence from its introduction
by Newelland Simon(1972) in the form of th&eneral Problem Solver (GPS).

In a perfed p-hypothesis “s1” defines exadly those @nditions under which the
response “r1” leads to the gpeaance of “s2” at the designated time. In an
incompletely spedfied u-hypotheses the relationship will hold on some occasions,
but not others. A u-hypothesis creaed as the result of an occult occurrence should
hold very rarely (spedficdly, at a frequency of occurrence @mmensurate with the
computed raw probability derived from its component parts). The evidence for
superstitious learning was reviewed ealier. The mnditions under which the u-
experiment may be performed occur whenever “sl” and “rl” are on their
respedive adive lists (S*and R¥ at t=now, regardlessof whether or not “r1” had
been adively seleded to achieve “s2”. Drescher (199]) refers to the latter case &

implicit activation.

4.7.1. Other HypothesisList Values

As with other list types, SRSE u-hypotheses have asciated with them a number
of values. These values reaord corroborative esidence dout ead u-hypothesis and
retain information used by the threemain processes involved in the management of
u-hypotheses. These processes are: (1) up-hypothesis corroboration and
reinforcement (redising postulates H3 and H4); (2) building the Dynamic Policy
Map (redising postulates P1 and P2); and (3) u-hypothesis list maintenance
(redising postulates H6 and H7). Some of the list element values asciated with
eat u-hypothesis are described next, and the three main processes and the p-
hypothesis values assciated with them in the sedions that follow. As ead of the
three processes are intimately interrelated, the order of these sedions is smewhat

arbitrary chosen.



Ead u-hypothesis on the Hypothesis List is assgned a unique hypo_i denti fi er,
creaed from the list index number. Index numbers are aeaed in sequential order,
and so indicate the relative aye of the p-hypothesis. The designation “Hnnnri
appeas in the output log and analysis information, where nnnnis the list index
number. The values hypo_first_seen and hypo_| ast _seen respedively record
the g/cle on which the u-hypothesis was creaed and the most recent cycle on
which the u-hypothesis was adive. A u-hypothesis is defined as adive when the
following conditions are met on any given execution cycle:

h e H*iff si(hv) € S*AND ri(h) € R¥ (ean. 4-7)

These conditions define when a p-hypothesis will perform a p-experiment by
making a verifiable prediction. The value hypo_acti vati on_trace reords the
most recent adivations for the u-hypothesis. The value ti me_shi ft records the
number of cycles between an adivation of a u-hypothesis and the time that the “s2”
sign is predicted to occur. The derived value hypo_age indicates the number of
cycles elapsed since the u-hypothesis was creaed. It is cdculated from
hypo_first_seen and the system variable “now”.

The remaining values as®ciated with ead Hypothesis List entry may be
charaderised into serving one of three purposes. (1) Corroborative values
recording the performance of the predictive adility of a u-hypothesis. These values
reflea the confidence the system may placein the dfedivenessof the u-hypothesis
when huilding the Dynamic Policy Map, and in cdculating when to modify or
delete individual p-hypotheses. These values broadly refled the notion of schema
confidence weight adopted by Beder and Mott. (2) Vaues computed, and re-
computed, ead time the Dynamic Policy Map is prepared. These values provide
the adion seledion medanism with the basis to determine which u-hypothesis (and
hence which adion “r1”) should be passd to the aduation sub-system during goa
seeking behaviour. (3) Administrative values, recording information relevant to the
creaion and subsequent modificaion of individual p-hypotheses. Mgor sedion
headings will now be given over to the discusson of these values, refleding their
importance to the operation of the SRS/E algorithm.
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4.8. Corroborating p-Hypotheses, Predictions and the Prediction List

Every time a u-hypotheses is activated it will perform a p-experiment and so make
a prediction, which will be verified on a later execution cycle. Each prediction is
placed on the Prediction List, . As predictions are dl of the form where aknown
sign is expeded at a known time, the validation processis a straightforward matter
of matching the dements of P which were predicted for the aurrent exeaution cycle
againgt the adive Sign List $* Alternative interpretations are available & to how
“credit” for a corred or “debit” for an incorred prediction should be adgned to
the individual p-hypotheses responsible for the prediction. These dternatives are
refleded in the corroboration (H3) and reinforcement (H4) postulates. SRSE
maintains four values for eagkhypotheses for this purpose.

Following Popper’s notion that it is the asolute frequency of outcome that
provides the gpropriate measure of a hypothesis, the values hypo_cpos
(cumulative positive, cpos) and hypo_cneg (cumulative negative, cneg) record the
number of successful and unsuccessful predictions respectively. Specifically:

cpos ¢ cpos + 1iff sz(h)@t:pred € predi cted_si gn(ﬂ@t:pred (egn. 4-8)
cneg < cneg + 1iff sz(h)@t:pred ¢ predi cted_si gn(ﬂ@t:pred (egn. 4-9)

These two eguations compare predictions made at some point in the past (t=pred)
to the appearance of actual signs at that predicted time. These two measures reflect
the overall effectiveness of the u-hypothesis over its gan from the point of creaion
(the exeaution cycle recorded in hypo_fi rst _seen), to the aurrent exeaution cycle
(less any predictions made, but not yet verified). The overal probability that the
expectation defined by thehypothesis will hold is therefore defined by:

cpos
hypo_pr ob « (eqn4-10)
cpos +cneg

This is the corroboration measure (Ch of postulate H3). By definition every u-
hypothesis is assumed to represent a succesdul prediction at the time of its

creaion. This asumption is considered reasonable when using the pattern

109



extradion credion process described later, even though the u-hypothesis may
subsequently be determined to denote an occult occurrence. This initia fillip to a
newu-hypothesis’ confidence value will be referred to asctleation bonus.

In a dangeable environment the validity of any given p-hypothesis may also
change with time. To refled this the value hypo_bpos (bpos) is updated acarding
to a discounting fador, thereby giving precalence to the dfeds of recent
activations at the expense of those further in the past, specifically:

bpos « bpos - a(bpos - 1)iff s2(h) @™ & predi ct ed_si gn(P) @'
(eqn. 4-11)

or

bpos < bpos - B(bpos) iff s2(h) @™ & pr edi ct ed_si gn(P) &
(eqn. 4-12)

otherwise
bpos unchanged
where:

o isthe positive reinforcement rate, (0 < o < 1)
and
B isthe negative extinction rate, (0< < 1)

This implements the reinforcement measure (Rh of postulate H4). Long sequences
of successful predictions for a single u-hypothesis will asymptoticaly tend its bpos
values to 1.0, long sequences of falled predictions will similarly tend bpos values
towards 0.0. This notion of an asymptotic negatively accelerating curve is
ubiquitous throughout the conditioning and behaviourist literature, and forms the
basis of MadCorquodale and Meehl’'s (1954 p. 237) strength of expectancy
measure. This procedure is smilar to those used in most receant reinforcement and

the Q-learning mechanisms.
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The last value in this group is r ecency, which spedficdly recrds the outcome of
the most recently completed prediction for ead u-hypothesis. The recency
measure represents an alternative gproach to Drescher's modelling of object
permanence. The recency value remains asserted for any individual u-hypothesis
after a valid prediction about “s2” is deteded. It is cleared when the prediction
next fails. It ads as one form of event memory. Unlike Drescher’s g/stem SRS/E
contains no inherent medhanism supporting the representation or manipulation of a
“physical object”.

The different measures cpos, cneg, bpos and recency serve different purposes in
the generation of the Dynamic Policy Map (cost estimation) and in the management
of the Hypothesis List (differentiation and deletion of ineffedive u-hypotheses).
These differently computed values may refled different views of the predictive
effediveness of u-hypotheses. SRS/E may represent permanent (hypo_pr ob),
semi-permanent or reaurring (bpos), and transient (r ecency) phenomena. In this
context the term “permanent” may equally be gplied to an immutable physicd law
as to any phenomena that remains consistently predictable throughout the lifetime
of the animat. For example, an animal, or animat learning to seek nourishment may
locae asource that is habitualy available, which may reliably be returned to.
Equally a source of nourishment may be identified, which only comprises a finite
guantity of sustenance Finally the aeaure may happen aaoss a single item of
nourishment, which once ®nsumed is finished. No second order effeds are
proposed for SRSE to further classfy individual u-hypotheses into these various
caegories based on longevity of the phenomenon underlying the prediction. Such a
strategy might properly be included in later implementations.

4.8.1. Prediction List Element Values

Eadch element of the list is creded from the “s2” of any adivated p-hypothesis.
Eadh element retains only three items, predi cting_hypo, the identity of the p-
hypothesis responsible for the prediction, pr edi ct ed_si gn and pr edi ct ed_t i ne,
the sign expeded and the exeaution cycle on which it is predicted to occur.
Elements of P are deleted as on as the prediction they define has been verified
againgt S* As ead prediction is held separately, any u-hypothesis may have

several predictions waiting for confirmation (as ead p-hypothesis may make &
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most one prediction on each execution cycle thisis limited by the number of cycles
between now and tpred). There may equally be more than one prediction of a given
sign for each future execution cycle, as many different u-hypotheses may predict
the same outcome.

4.9. TheDynamic Policy Map (DPM)

Whenever B#* s not empty and the priority of the top-goal is greater than that for
the highest priority candidate action from B"* the SRYE algorithm will attempt to
construct a Dynamic Policy Map (DPM, after definition PO) from knowledge
accumulated in the Hypothesis List. The effect of the Dynamic Policy Map is to
categorise entries in the Sign and Hypothesis Lists according to an estimate of their
effectiveness as being on a path of actions that will lead to the satisfaction of the
top-goal. The SRS/E algorithm builds the Dynamic Policy Map by the process of
spreading activation, based on repeated application of the spreading valence
postulate (postulate P2). Individua u-hypotheses, hv, which lead dredly to the
top-goal, gl, are seleded (where 22(h) = gl). This sledion and binding process
will be referred to as “vaencing”, following Tolman's use of the term. Context
signs in these u-hypotheses may then ad as “sub-goals’, alowing another sub-set
of the Hypothesis List to be incorporated into the Dynamic Policy Map. The
SRS/E algorithm stops building the DPM once d the entries in the Hypothesis List
have been incorporated or there ae no more u-hypotheses that may be dained in
this way. Signs and u-hypotheses incorporated in the DPM are termed sub-
valenced. The valence level of ead p-hypothesis incorporated into the DPM
indicates the estimated minimum number of sub-goals that must be traversed to
reach the designated goal sign.

The Dynamic Policy Map may be @nsidered as a graph structure. Signs from the
Sign List ad as nodes, u-hypotheses from the Hypothesis List the acs. One speda
sign, the top-goal, ads as the seed or start point for the sprealing adivation
process to creae the graph. Development proceeds on a breadth-first basis, p-
hypotheses at eat valence level are seleded at the same step in the spreading
adivation process This is implemented as a variant of the well-established graph-
search procedure (Nilssor,980, Ch. 2).
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Every arc has asociated with it a st estimate. An arc is traversed by seleding the
adion, “r1”, from the u-hypothesis. The true st of traversing the ac is given by
the response_cost value asgned to ead adion (the action cost of postulate
A2). Thisis smply the “effort” expended in taking the adion, as provided in the
Response List. The estimated cost of traversing the ac to a node & the next
valence level takes into acount the true @st of the adion and the relative
effedivenessof the u-hypothesis in adually achieving its expeded outcome, based
on past experience. Thisst _est i mat e for eachu-hypothesis is prepared from:

response_cost

cost _estimate (eqn4-13)
hypot hesi s_confi dence

This redises the Cost Estimate postulate (P3). The hypot hesi s_confi dence

value is in turn prepared from:

hypot hesi s_confi dence < (hypo_prob * yl) + (eqn4-14)
(hypo_bpos * ¥%) +
(recency * 73) +

(Joscill] *v™
where:

Gy +yi ey =1
and

(O<oscill £1)

The hypo_prob, hypo_bpos and recency values are those previously described.
The osci || component is an esentialy random fador designed to perturb the
path seledion process This has the dual effed of adding an element of uncertainty
to encourage the use of other u-hypotheses, and to alow the system to escape
from potential behavioural loops. The dfed of this parameter is intended to refled
the use that Hull describes for his oscillatory component, .O,, from which the
current name is derived. In implementation the value of osci I | isderived from the

pseudo-random number sequence generator (and so is not redly “oscillatory” at
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al). While superficialy smilar in effed to Sutton’s (1991 exploration bonus in
Dyna-Q+, the balance of goal-seeking behaviour to exploration is ultimately
adhieved in a quite dissmilar manner in SRS/E. This is considered in detail in
chapter six.

The mst estimate for ead arc, ignoring the osci | I component, refleds the given
adion cost scded by the recorded probability that the causal relationship described
by the p-hypothesis is indeed responsible for the transition. Assuming for the
moment that the selection factor yl has been set to one (and so yz, y3 and y4 are dl
ze023) the cost _estimate for the ac is equal to the true (given) cost of the
adion “r1” when hypo_prob is at its maximum vaue. This condition only holds
when the u-hypothesis has never failed. Where au-hypothesis has been creded as
result of an occult occurrence the value of hypo_pr ob will tend to zero, and so the
value of cost_estimate will tend toward infinity. The hypo_pr ob value will never
read zero, due to the initia creation bonus. Increasing the relative wntribution of
yz (at the expense of yl) biases cost estimates toward more recat experiences.
Values for the fadors yl, yz, y3 and y4 are set by the experimenter before eab
experientia run, and are fixed for the duration of that run in the aurrent
implementation.

No acount in the computation of the st estimate is taken of the experience of
the u-hypothesis, as recorded in the hypo_age and hypo_mat uri ty measures, in
the arrent implementation. For the experiments described later the aedion bonus
serves to increase the likelihood that a new (and therefore inexperienced) u-
hypothesis will be seleded and so appeas to provide an adequate balance of new
and old knowledge. A more sophisticated strategy may bias the estimate to more
experienced u-hypotheses where the importance or priority of the goa is high.
Conversely newer, less experienced, u-hypotheses may be favoured in play
stuations, where (apparently unimportant) goals are set for the explicit purpose of
gaining experience ad knowledge. Such considerations are left for future
investigations.

23 Note that these superscripts indicate the firshe secong and so on; similarly g ¢?, etc.
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4.9.1. Sedlecting actionsfrom the DPM

Every u-hypothesis implicaed in the DPM is assgned a policy_val ue, the
minimum sum of individual cost _esti mat e elements aaossall the acs from the
sign node asociated with “s1” to the goa sign node gl. This is a redisation of
Postulate P4. During the graph building processthe pol i cy_val ue asciated with
eat node is updated if a lower cost route to that node is discovered. Figure 4-1
shows a printout from an experimental log showing a valenced path, the lowest
(estimated) cost path from the aurrent situation to the desired goal. It records the
individual u-hypotheses (e.g. “H119’) seleded from the graph, the individual cost
contributions from cost _esti mate (“cost”) and the aumulative pol i cy_val ue
(“total”) values as the valence levels are traversed. It starts with a node (“X2Y 0",
the printout has automaticdly dereferenced signs to externa names) that is
currently on the adive Sign List ¥ and so defines the p-hypothesis (“H126)

which will contribute the reified action (“U”) in the current execution cycle.

H126 predicts X2Y1 from X2Y0 (active) after U (cost = 1.818182, total = 15.006273)
H117 predicts X3Y1 from X2Y1 after R (cost 1.290323, total = 13.188091)

H119 predicts X4Y1 from X3Y1 after R (cost 1. 059603, total = 11.897769)

H120 predicts X5Y1 from X4Y1l after R (cost = 1.290323, total = 10.838166)

HA predicts X6YL from X5Y1 after R (cost = 1.290323, total = 9.547844)

H5 predicts X7Y1L from X6Yl after R (cost 1.290323, total = 8.257522)

H6 predicts X8Y1L from X7Y1l after R (cost 1.290323, total = 6.967199)

H8 predicts X8Y2 from X8Y1l after U (cost 1.126761, total = 5.676877)

HO predicts X8Y3 from X8Y2 after U (cost 1.078894, total = 4.550116)

H10 predicts X8Y4 from X8Y3 after U (cost = 2.351558, total = 3.471222)

H11 predicts X8Y5 (goal) from X8Y4 after U (cost = 1.119664, total = 1.119664)
Val enced path in 11 steps, estimated cost 15.006273

Figure4-1: Log Printout of a Valenced Path

It is important to note that the valence path printout is not a set of prescribed
adions to be performed to reat to goal state, as would be the cae in STRIPS
(Fikes and Nilson, 19717), but rather a sub-set of the total DPM. It is presented to
provide the experimenter with information about the aurrent state of the animat
under investigation. The adion seleded may, or may not, lead to the expeded sign
at the lower valence level on the valence path. On the next exeaution cycle anew
assessment of the environment is made, as indicated by $ifnew
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The next adion is sleded from the DPM on the basis of the new S¥ It may be
that the next adtion on the existing valence path is sleded. However the new S*
may indicae that a shorter route has, through fortuitous circumstance, become
available; equally only longer routes may now be available. In ead eventudlity the
DPM ads essntialy equivalently to the policy map in reinforcement and Q-
learning algorithms, recommending the best course of adion relative to the airrent
circumstances and the goal sought.

There is a pathologica case where no intersedion between $* and the DPM exists
and so no adion can be seleded from the DPM. Under this circumstance the
current algorithm seleds an exploratory trial and error adion at random. A more
sophisticated variant of the dgorithm might balance the return to exploratory
adivity with a*“faith” that the adion was perhaps succesdul, but that the expeded
outcome had not been properly deteded. In this way the animat may continue
along a previousy computed valence path and avoid the potential disruption
caused by deflecting to exploratory actions.

4.9.2. Recomputing the DPM

There ae severa circumstances where the SRS/E algorithm nust recompute the
Dynamic Policy Map. When the top-goa, gl, is satisfied, the next highest priority
goal bemmes the top-goal, and a new DPM must be computed before another
adion may be seleded. Similarly innate behaviours from the Behaviour List may
alter the priorities of the Goal List (redising postulate B3), aso predpitating a
recdculation of the DPM. At ead exeaution cycle many u-hypotheses may have
their values updated, refleding predictions they made in the past. At any cycle new
u-hypotheses may be alded to the Hypothesis List, or existing ones deleted from
the list. Any of these changes can have profound effeds on the best paths through
the graph. On the other hand, recomputing the DPM is a st overhead not to be
ignored. The SRSE agorithm nmust recompute the DPM if the goa changes, but
the experimenter may control the sensitivity of SRS/E to changes in the Hypothesis
List.

The system variable r ebui | dpol i cynet is cleaed ead time the DPM is rebuilt. It
is incremented by some quantity A each time the Hypothesis List changes, and by
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some (typicdly smaller) amount & every time a u-experiment prediction fails.
Before eab use of the DPM rebuil dpolicynet is compared to the system
constant REBUI LDPOLI CYTRI P, the DPM being reaeaed once this trip value is
readied or excealed by rebui | dpol i cynet . Apart from the dfed these values
have on the balance of resource utilisation by SRS/E on policy construction and
other computational adivities, they also have aprofound effed on aspeds of the
animats observable behaviour. This effed is particularly apparent in the dual path
blocking experiments described later. In the arrent implementation A and & are

selected such that the DPM is rebuilt following any change.

4.9.3. TheDPM, A Worked Example

Figure 4-2 shows a graph generated from the model Hypothesis List shown
embedded in the figure. For the purposes of this example aDPM comprising eight
sgnsand 12u-hypothesesis creaed. In this instance the top-goadl, gl, is equated to
sign rumber “S16°. Only three ations are available on the Response List, “Al”,
“A2" and “A3" all with an adual cost of one. The third column shows me
possble “cost estimate” values for the various u-hypotheses following a period of
behaviour. At ead valence level in the graph the policy cost asciated with eah
sign is the aumulative policy value of the lowest cost path through the graph to the
chosen goa. Each arc is labelled with the p-hypothesis responsible for the
transition, with its action and associated cost estimate.



Hypothesis List

H1 S12-5a3-S16
H2 S14-A3-5Sl6
H3 S4—-2A3-8512
H4 S6—->A3->812
H5 S8—a3->812
H6 S8—A1—-S14
H7 S18—2a1-S8
H8 S10—Al—S14
H9 S16->A2->S12
H10 S16—5A2->S14
H1l S12—-5A2-S8
H12 S14—-522-S8

BORWAOWNOG OB W
NNSONBOSR IR

1.5
s18) }A1 H7

5.4

Valence Valence Valence
Level 3 Level 2 Level 1

Figure4-2: Model DPM Generated from Sample Hypothesis List

It may be that on the arrent exeaution cycle signs “S4” and “S18’ are adive and
so on S* (figure 4-3a). Policy cost for “S18’ is lower than “S4”, so SRYE seleds
adion “A1”. The expedation is that “S8” will appea on S* on the next exeaution
cycle, and so adion “A3" from p-hypothesis “H5” would be seleded. As a
consequence these drcumstances the hypot hesi s_confidence value of the
succesgul u-hypothesis “H7” would be strengthened, and that for the unsucces<ul
u-hypothesis “H3” would be diminished (figure 4-3b). With “S8” on the adive
Sign List, SRS/E will choose the path described by “H5”, performing adion “A3”,
expeding sign “S12°. If this expedation is met, “H5” is grengthened, and adion
“A3" (from “H1") will be seleded on the next exeaution cycle; leading to goa
satisfaction if that subsequent expectation is also satisfied.
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Figure 4-3: Various Outcomes for Model DPM

If, at the step indicated by figure 4-3b, the adion “A3” did not lead to the expeded
sign “S12’, but instead “S8” remained on S* then confidence in “H5” would be
wedkened. Eventualy the awmulative wmst of the path “H5"-“H1” would exceed
that for “H6”-"H2", at which point SRSE would attempt adion “Al1” (from
“H6”). Note that the confidence in “H6” was unatered duing the time “A3”
adions were atempted, because it was not placel on ¥ as its “r1” precondition
was not matched and so it was not eligible to issue aprediction. The rate & which
the estimated cost of any path rises under these drcumstances is primarily
controlled by the B extinction rate factor; though changes in estimated cost will not
take effect until increments to(andA) cause the DPM to be recomputed.

What SRS/E hypothesises about the @nsequences of its adions in the
environment, and what acually occurs may not hold true in pradice Considering
again the situation described by figure 4-3a, it may be that rather than the expeded
adivation of “S8”, sign “S14” is adivated (figure 4-3c), either through some
previously unknown path, or by a previoudy undeteded event. On this exeaution



cycle SRS/E would seled the adion “A3” associated with u-hypothesis “H2”. If
this expedation subsequently holds the top-goal would be adieved, and so
removed from the Goal List. As a side dfed of this unexpeded transition SRS/E
may crede the new  u-hypotheses “H16/($4—A1—S14)” and
“H17:(S18—-A1—S14)” (figure 4-3d), employing the medhanism of postulate H5-
2.

Under the initial conditions described by figure 4-3a, the new paths of lower
estimated cost offered by “H16" and “H17" may be mnsidered in future instances
in preference to either “H3” or “H7” originally available. Where they are due to a
genuinely repedable phenomenon the mnfidences of these new u-hypotheses will
be strengthened, leading to the aloption of the lower cost estimate path. Where the
u-hypotheses were aeded due to occault or unrepeaable drcumstances the use of
the new, apparently preferable, path will fall into disuse following a number of
unsuccessul applications. The experimental procedure adopted in chapter six can
giverise to this phenomenon (for instance, the dfed shown in figure 6-10c), and it
will be considered further.

The dfeds of recomputing the Dynamic Policy Map can completely alter the
response of SRS/E to incoming tokens. Figure 4-4 shows an alternative
computation of the DPM graph using the same Hypothesis List as Figure 4-2, but
where the goa definition has changed from “S16” to “S8”. Note in particular that,
although mone of the @st estimates for the u-hypotheses have danged, the
response of the system to signs “S14” and “S12’ is now completely different. This
feaure differentiates the behaviour SRS/E from the readion of reinforcement and
Q-leaning systems in the manner highly reminiscent of Tolman’s arguments in

favour ofexpectancy theory over stimulus-response theorising.
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Hypothesis List

H1 S12—-5A3-816
H2 S$14-A3-816
H3 S4-A3-812
H4 S6—A3—512
H5 S8—A3-512
H6 S8—al—-S14
H7 S18—-A1-S8
H8 $10-a1-814
H9 Sl16—-A2-8512
H10 S16—A2—S14
H11l S12—-A2—8S8
H12 S14—22—S8

oW WNOYX W
NNNdONBAIBIH

Valence Valence
Level 1 Level 2

Figure 4-4: Model Graph Recomputed for Goal “S8”

4.9.4. Pursuing Alternative Goal Paths

The Dynamic Policy Map indicates the path with the currently most favourable
estimated cost from an active sign state to the highest priority top-goa state.
Actions are selected on the basis of this estimate. Consider the DPM graph shown
infigure 4-5.
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Figure 4-5: A Sample Dynamic Policy Map

The top-goal (gl) is equated to “Sa”, and the only adive signis “Sx*”. Six distinct
paths are available to the aimat. These ae summarised in table 4-2, with
illustrative ast estimates. Individual signs are shown with letters, not sequence
numbers, purely as a shorthand notation. The double arow on an arc indicates a
pair of u-hypotheses, for instance apath is known both between “Sx” and “Su” and
between “Su” and “Sx”. No path is available through the loop formed by “Su”-
“St”-"S0”-“Sp” as no u-hypothesis exists for the transition “St”-“So”, as indicaed
by the unidirectional arrowhead.



Path “Estimated Cost”
(1) Sx-Sqg-Sk-Sh-Sv-Sa 18.4

(2) Sx-Sr-Sk-Sh-Sv-Sa 20.8

(3) Sx-Su-Sp-Sj-Sv-Sa 38.5

(4) Sx-Su-Sp-Sj-Sf-Sv-Sa 45.7

(5) Sx-Sr-Si-Se-Sb-Sv-Sa 67.9

(6) Sx-Sr-Si-Se-Sc-Sd-Sh-Sv-Sa 158.1

Table 4-2: Paths Through Figure 4-5 Graph

On the basis of the st estimates diown, the aiimat will seled the adion “r1”
asociated with u-hypothesis “Hxqg” (indicaing the transition from “Sx*” to “Sq”).
If this expedation is met, the animat seleds “Hgk”, and so on. Should this path
succea, then sign “Sa” will be removed from the Goal List, and peth (1) will be
strengthened. If, while & node “Sq”, the expedation described by “Hgk” failed, the
cost of the remaining path “Sg*”-“Sk”-“Sh”-“Sv”-“Sa” would rise, due ettirely to
the increased estimate for “Hgk”. In pradice under these drcumstances, the
increase in cost for a single expedation failure is relatively small and it may be that
the estimated cost of the remaining peth is gill below that for any alternative, so
that “r1” from “Hqgk” will be tried again. Even if the remaining path would have a
greder cogt, if the dfed of 6 (the expedation failure policy rebuild increment) is

small the DPM may not be rebuilt, and the policy decision will remain unaltered.

At some point, the st estimate would come to exceal that for the next lower
estimated cost path, “Sg*”-“Sx”-“Sr”-“Sk”-“Sh’-“Sv’-“Sa” in a recomputed
DPM, and the adion assciated with “Hgx” would be seleded. If this is aso
blocked at some point, the next lowest cost estimate path would be atempted,
starting from the aurrently adive node. Each time the st estimates indicae anew
path, following a DPM recomputation, a new solution path is tried. The frequency
with which the DPM is recomputed determines how persistent the aiimat will

appear to be in pursuing a blocked course of action.

Individuals with values of A and & that are small relative to REBUI LDPOLI CYTRI P

will persist with one @urse of adion longer than individuals where these values are
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correspondingly larger. Persistence of behaviour may be an appropriate wurse of
adion. In the environment he describes, the probability of Mott’s robot reading
the dharger under the influence of the schema “<BRIGHT>S — <FORW>M =
<ON-CHARGE>S” isvery low. It is neverthelessthe best option available, and a
persistent individual animat that did not swap between other alternatives frequently
would be alvantaged. In other circumstances the adility to change to a potentially
better solution path may be advantageous, where there is srious competition from
other individuals for limited resources, for instance No seand order leaning
phenomena ae airrently implemented in the SRSE algorithm to determine an

appropriate balance between persistence and fickleness in selecting a solution path.

4.9.5. Pursuing a Goal to Extinction

In the situation where dl possble paths to a top-goa are unobtainable, continued
attempts at the goal become athred to the animat’s survival by locking out other
behaviours. The goal must be forcibly abandoned, this is the goal extinction point
(postulate G4). Goa extinction is achieved in the SRS/E algorithm by removing
the unsatisfied top-goal, gl, from G. The animat would then be freeto pursue the
next highest priority goal as top-goal, or other behaviours if there ae no further
elements on G. Extinction of behaviours has been widely observed experimentally
(sedion 3.6.3). Extinction does not, however, appea as an abrupt abandonment of
the behaviour. Instead the behaviour persists for a time (the “on-period”), then
suspended briefly (the “off-period”) before being resumed for another on-period.
This aternation of apparently goal direded behaviour with periods of some other
adivity persists for a time, until the goal direded behaviour finally appeas to be
completely suppressed. The relative lengths of the “on” and “off-periods’ change
in a dharaderistic manner, the periods “on” shortening and the periods “off”
lengthening.

During goa direded behaviour SRS/E aways takes the best posshle estimated
path, there is no explicit exploration during this type of behaviour. SRS/E does not
attempt to locate new paths, but instead applies its resources to adieving the goa
using the best known path. At the end of the first “on” period behaviour reverts to
default trial and error adions. This period has the dfed of exploring for new
paths through the graph. If the animat “stumbles’ upon the solution and arrives at

124



the godl it is stisfied in the normal way, and a new path is known for future use.
Lengthening periods of exploration have the dfed of widening the aeaof seach
in the graph space increasing the likelihood of happening on a previously unknown
path through the agnitive map and thereby reading the top-goal?4. The duration
of the first “on-period” is determined from the initial cost-estimate of the best path
in the graph. The valence break point (VBP, described by postulate P6), is %t to
some multiple of the initial lowest policy value st estimate (best cost ) computed
by the dgorithm. This multiple is defined by the system constant
VALENCE_BREAK_PO NT_FACTCR, currently set to 10.

VBP ¢ best cost * VALENCE_BREAK_PQO NT_FACTOR (eqn4-15)

Thus in the example given by figure 4-5 (table 4-2), goa direded behaviour would
continue until the estimated cost of the best available path exceals a value of
184.0. The multiplier value is sleded to give the aiimat ample opportunity to
adhieve the goal by dired use of the DPM, allowing a generous margin for failed
expectations.

Once the policy value of the best path reades the VBP value the goa is
temporarily suppressed, and VBP is again multiplied by the valence bre& point
fador (to 184Q0). On reading ead kreek point behaviour reverts to exploratory
adions for a period determined by a goal _recovery_rate parameter, the goal
recovery mechanism. Actions taken during this period are referred to as
unvalenced actions, to distinguish them from purely trial-and-error exploratory
adivities. On the first suppresson the goal rewmvery rate is high, and behaviour
reverts to goal directed quickly after only a few unvalenced actions

On reading ead subsequent valence bre& point the goal remvery rate is reduced
(in the aurrent implementation by afador of two) and so the number of unvalenced
adions during the off-period increases. Ead time the blocked u-hypothess fails
the estimated cost of the step increases at an exponentia rate, and the time taken to

24Panic reactions may be an extreme form of this phenomena, wild or exaggerated actions being
performed, posshly beyond the normal limits to physical well-being, in afinal attempt to escape
some intolerable @ndition. Indistinguishable behaviours may equaly be part of the innate
behavioural repertoire, unrelated to goal seeking.
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read the next VBP level deaeases as a mnsequence At some point the estimated
cost of the path exceads the goal cancellation level, Q, and the unacievable top-

goal is automatically deleted from the Goal List.

The extinction processwill be demonstrated experimentally in chapter six, but it is
most clealy shown when only a single path exists through the DPM to the goal.
Suchisin effed the cae in Skinner box experiments. Only pressng the bar delivers
the reward. Similarly the only known route to the goal definition sign “Sa” in figure
4-5 isviathe path “Sv’-“Sa” (u-hypothesis “Hva”). If the experimenter denies the
animat accessto “Sa”, then “Hva” will be tried on every attempt to read the goa
(sincethereis no ather known option), and the estimated cost of this gep will rise
until Q isreaded. On the other hand if there is $me other, as yet unknown, route,
then the periods of exploration give the animat the posshility of discovering it by
growing the agnitive map. These dfeds are investigated in the path blocking and
alternative path experiments of chapter six.

4.10. Creating New p-Hypotheses

New u-hypotheses are aeded under two spedfic drcumstances, (1) the
appeaance of a mmpletely novel sign, postulate H5-1 (novel event); and (2) the
appeaance of a sign that is known, but which was not predicted, postulate H5-2
(unexpected event). SRS/E may therefore operate under the tabula rasa conditions
discused previoudy. It is also a strong example of an unsupervised learning
procedure, no intervention is required from the originator or experimenter to cause
or guide the leaning process The originator may, of course, build behavioura
patterns into the Behaviour List intended to advantage or bias the animat’s leaning
process The experimenter may equally establish situations that trigger or exploit
the animat’s innate learning ability to train or tead the animat. In the experiments
to be described no such behaviour patterns are used. Conditions under which the
experimenter intervenes are described were appropriate.

SRS/E uses a pattern extraction method for creding new up-hypotheses. The

detedion of a novel or unpredicted sign, notated for the moment “s2”, causes
SRSE to extrad a recet adion, “rl”, from R, as recorded in the
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response_activation_trace vaues, and to extrad a sign, “sl” from §, as

recorded in thei gn_acti vati on_t race values. The new-hypothesis:
he H(s1,r1,52™ (eqn4-16)

is creaed from the components extraded from the various traces. Note the use of
the notation “ x<— X(y)” to denote the aeaion of alist element of type x from
some (appropriately typed) element or elements “y’. Note dso that the adion
seleded is to be drawn from at least one exeaution cycle in the past, and that the
context sign “s1” shal be mntemporary with the adion “r1”. As a convention,
where “s2” follows “s1” and “r1” by exadly one exeaution cycle the use of the
“@' (at) notation will normaly be dispensed with, as this is the default
relationship. Where dl the component token parts for “sl1” are drawn from their
respedive adivation traces, then adion seledion and prediction by the p-
hypothesis will not depend on the aurrent state of the system, only on the recorded

past states.

In kegping with Popper’s observation that the smplest means possble should be
employed to describe the phenomena (occanT' s razor), the airrent implementation
of SRS/E initialy creaes new u-hypotheses to this notion, concurrent sign “sl”
and adion “r1” predicting the target sign “s2” on the next exeaution cycle. The
exad combination of elements for the new p-hypothesis are spedfied by a
hypothesis template, which in the arrent implementation is coded into the
structure of the SRSE algorithm. As the size of S* increases, the number of
possble options for inclusion in the new p-hypothesis will increase. Currently,
SRS/E may limit the number of u-hypotheses creaed for ead novel or unpredicted
sgn appeaance This, in effed, creaes a sampling strategy for the leaning
process The mechanism for an explicit sampling strategy implemented in SRS/E is
described later.

This is a form of instrumental learning, predicaed on a fundamental notion of
causality between the @ntext in which the animat makes adions, the spedfic
adions made by the animat and the @nsequences to the animat and its

environment of those adions. It is an animat-centric view, but there may be other



adive agents in the environment causing changes. These ae only recorded by the
animat in so far as they affect the animat’s ability to manipulate its circumstances.

Shettleworth (1975 provides evidence that animals may be predisposed to utili se
feaures from the environment seledively. With or without this innate bias it would
be areasonable dternative strategy to crede many u-hypotheses in an attempt to
explain the occurrence of the novel phenomena, and alow the subsequent
corroboration processto seled useful u-hypotheses and dscard the remainder, a
sub-set sampling assumption. In the gsence of any underlying “theory” about the
environment, which is the default assumption, ead u-hypothesis forming “guess’ is
as good as anotler

4.10.1. Maintaining the Hypothesis List

Given the use of the pattern extraction (token seledion from the various lists I, S,
R and #) method for creaing new u-hypotheses one of four outcomes will emerge
following a period of corroboration. First, an individual p-hypothesis may
acarately predict its outcome. Seand, a u-hypothesis may acairately predict its
outcome only in a fradion of the instances in which it is adivated. Third, a p-
hypothesis may never, or very rarely predict corredly. Fourth, a u-hypothesis may
not be activated again, and so will make no predictions that may be corroborated.

The first of these outcomes needs no immediate adion. The secnd outcome may
indicate that the p-hypothesis be a cadidate for specialisation, one form of
differentiation (postulate H6). By this process extra tokens are alded to the
context sign “s1”, on the asumption that the u-hypothesis is underspedfied in its
applicaion. JCM and ALP both propose aspedalisation mechanism. In the aurrent
definition, the Dynamic Expedancy Model isolates candidate u-hypotheses which
have intermediate @rroboration values, and which have a maturity
(hypo_mat urity) value greaer than the system defined maturity threshold level
(¥). The use of the maturity criteria ensures that candidate p-hypotheses have
undergone asufficient number of adivations and hence @rroborative predictions.
Maturity is not equivalent to age.

25This cluster of hastily formed guesses contingent on a new phenomena may be related to the
“first appearances” effectvidely, but often apocryphally, described. For instance Ki®g7).
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For any of these candidates, which are arrently on the adive list ¥ and where
the confidence measure falls between a system defined lower confidence bound (6)
and upper confidence bound (0), an additional token term is added to the eisting
context sign “sl”. In the aurrent scheme this token is drawn from the record of
token adivations recorded in the respedive adivation traces. It is in esence
another “guess’, but (as with u-hypothesis credion) one drawn from the
population of extant observations. The original u-hypothesis is retained, and a new
one gpended to the Hypothesis List. Duplicate u-hypotheses are not installed by
SRS/E. By appending the new, modified, sign “sl” to the Sign List a stream of
novel signs is created to further activatetHeypothesis creation process.

The experiments described later make extensive use of the u-hypothesis credion
steps, but do not necesstate the use of this gedalisation step. It is therefore
largely speaulative. However the intention is to crede a population of p-
hypotheses, which attempts to improve its performance based on predictive aility
within the lifespan of the animat. Where the initial u-hypotheses were aeaed from
the simplest combination of parts, new u-hypotheses will only be aeaed when
these minimalist interpretations of the environment are demonstrated inadequate
through the corroboration process Among other candidate gpproadies to this gep
in the SRS/E agorithm are the use of the aossover and mutation techniques
employed by Genetic Algorithms (GA), and the techniques used by the machine
learning by induction schools of thought.

Both Bedker and Mott also discuss generalisation, the @nverse operation to
spedalisation. In generalisation terms are removed from the wntext of ineffedive
schema on the premise that they contain irrelevant additional kernels which over
spedfy and hence reduce the dfediveness of the p-hypothesis. The Dynamic
Expedancy Model does not provide any explicit mechanism for generalisation. It
instead relies on the notion that lesseffedive u-hypotheses will be removed, after a
suitable period of corroboration, by the deletion/forgetting process described
below.

The third outcome indicates a candidate for deletion, as it apparently fails in its task
as a hypothesis about the environment. The airrent definition for SRS/E seleds a
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candidate set of u-hypotheses for deletion on the basis of their maturity (compared
to the maturity threshold, ¥) and confidence values from a sub-set of the
population sharing a ammmon consequence sign “s2”. A reasonable minimum value
for the lower confidence bound (6, also the minimum bound for spedalisation)

would be one based goint probabilities (Harrison 1983):

joint_prob =p(“sl”) * p(“rl”) * p(“s2”) (eqn4-17)

The joint probability value would be that value gproximated by a u-hypothesis
creaed following atrue chance or occult occurrence. The dgorithm’s readinessto
delete u-hypotheses must also be related to the number available for predicting
“s2”. Where only one, or a very limited number of u-hypotheses are available it
appeas inappropriate to expunge this knowledge, even where it is demonstrated to
be of restricted value. Experimental evidence from Skinner box experiments would
appea to indicate that experimental animals do not erase operant behaviours even
after full extinction, as evidenced by the spontaneous recvery of the extinguished
behaviour after a period of rest. It may also be noted that where only a single
adion élicits reward its use may be particularly persistent during the extinction

process.

The fourth outcome offers no information on which to base adedsion, and so a
pragmatic gpproach isindicaed. In principle an old, untested, u-hypothesis has no
more nor less potential as a valuable item of knowledge than a more recantly
creaed one, which hes yet to be tested. Where nothing else is known about the
outcome there is a dea reason to retain the uncorroborated p-hypotheses. Where
other alternatives alrealy exist, and spaceis becming at a premium, a Hypothesis
List element falling into this caegory is a dea candidate for deletion - but as a
purely housekeeping consideration.

4.11. The SRS/E Execution Cycle

In the second main part of this chapter the SRSE agorithm is considered in some
detail as a series of interrelated computational processes. SRS/E must explicitly
balance the demands placeal upon it by definitions of innate behaviours provided in
the aimat’s ethogram, goal-initiated behaviours, and by the requirement to
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generate new behaviours. Goal-setting, goal-seeking and the leaning processes are
all defined or controlled as part of the total ethogram. The extent to which the
animat can crede leaned behaviours and the degreeto which it can override innate
behaviours with leaned ones are dso defined in the original ethogram. In this way
SRS/E can truly be described as implementing a “scheme for leaning and
behaviour”.

4.11.1. Summary of Execution Cycle Steps

Wheress the first part of this chapter described the definition of the various list
types and dscussed much of the rationale behind various design choices in the
construction of the aurrent implementation of SRS/E, this part describes the
algorithm primarily from the viewpoint of the manipulations performed on those
lists during an individual exeaution cycle. Figure 4-6 summarises the main steps in
eat SRS/E cycle. Sub-sedions simmarise these list manipulations with a degree
of formality, utilising the notation developed ealier. The intention of this algorithm
is to create a situation where each of the lists is sustained on a continuing basis.

In step one the dgorithm accepts tokens derived from the animat’s sensors and
transducers. These ae onverted to the internal symbol form using information
recorded in the Input Token List, and used to evaluate the adivation state of all
Sign List elements.

In step two the Prediction List is inspeded for any predictions made in the past
which fall due on the aurrent cycle. These predictions are mmpared with the adive
Sign List, and the hypotheses making the predictions are updated, for both
succesdul and failed expedations. This is the corroboration and reinforcement of
existingu-hypotheses (from postulates H3 and H4).

In step three the dgorithm evaluates the Behaviour List to prepare acandidate
adion and to determine which, if any, innate behaviours or goals are gpropriate in
the prevaili ng circumstances. The SRS/E agorithm requires that the Behaviour List
provide apriority associated with ead candidate adivity or goal. When the highest
priority adivity is greaer than the highest priority goal, no goa seeking behaviour
is considered and the dgorithm skips immediately to step 6 to perform the dosen
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adion. Whenever step three does not adively selea any purposive behaviour or

assert a goal a default, exploratory, action will be selected.

Step

Step
Step

Step
Step
Step
Step
Step

Step

1a) Gather Input Tokensto form I'*

1b) Update S*

1c) Cancel satisfied goals from G

2) Evaluate past u-experiments from 7

3a) Select default action candidate from R

3b) Select innate action and priority from B"*

3c) Set goals G and priorities from B¢*

3d) Innate priority > goal priority? — to step 6

4) Build Dynamic Policy Map (DPM) relative to g1

5) Select valenced action from (DPM U $%

6) Perform selected candidate action

7) Perform u-experiments from H* update P

8a) Novel occurrence? — create hypothesis on H

8b) Unexpected occurrence? — create hypothesis on #
8c) Partially effective hypothesis? — differentiate to €
8d) I neffective hypothesis? — delete from H

9) Tostepl

Figure 4-6: Summary of Stepsin the SRS'E Execution Cycle

In step four the dgorithm builds (if required) a Dynamic Policy Map. This is

performed as a sprealing adivation graph huilding algorithm. u-Hypotheses that

are known to lead dredly to the top-goal are mwnsidered to have avalencelevel of

one, and so define aset of sub-goals (their “s1” component), which in turn ad as

sub-goals at valence level two, and so on.

In step five the dgorithm matches the aurrent perceived situation, as expressed by

the adive Sign List from step one, with the Dynamic Policy Map generated in step

four, to seled a candidate adion to be performed in step six. Step five must also

cder for stuations where there is no intersedion between the arrent policy map



and any adive signs, and for circumstances where the policy map provesineffedive
at providing a goal path.

Having defined an adion to take, either as a high-priority innate adion, a goal
direded adion seleded from the Dynamic Policy Map or a default adion, this
action is passed to the animat actuatoséep six.

Once a adion is ®leded, and gven the adive Sign List from step one, a sub-set
of the Hypothesis List will be adive, able to make a prediction. Active u-
hypotheses take part in p-experiments. Step seven seleds al the adive p-
hypotheses and causes them to append their prediction about “s2” onto the
Prediction List. A u-hypotheses does not have to have cntributed to the adion
selected in step six to be considered aciivpl{cit activation).

Step eight concerns itself with the management of the Hypothesis List. In kegoing
with the principles defined in the previous chapter. u-Hypotheses may be created,
varied or removed within this step.

Having concluded one oycle (step nine), the dgorithm returns to step one and
begins the next. It might again be noted that SRS/E does not provide for any
terminating condition, there is nothing inherent in the basic dgorithm that
concludes the continued execution of cycles.

The base SRS/E algorithm, coupled to any behavioural definitions provided by the
originator in the éhogram, is expeded to imbue the animat with an appropriate
degreeof behavioural autonomy. The new-born animal or human child may require
protedion and nurturing, the child may be tutored and educaed, but these things
do not compromise our notion that they are aitonomous and so ultimately self-
sufficient. Should the undamaged individual require @ntinued nurture, not achieve
anormal degreeof self-sufficiency, or be unable to lean without continued tuition,
then it might reasonably be cncluded that an adequate level of autonomy had not
been adhieved within the eéhogram definition. Similarly the e@hogram design may
cdl for a proteaded maturational period, and as an esentialy autonomous leaning
system the animat may be teadable, but these do not undermine the defining
behavioural autonomy properties for the ethogram or animat.
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4.12. The SRSE Algorithm in Detail

Figure 4-7 illustrates the major steps in the SRS/E algorithm, the most significant
data pathways and their relationships to the various list structures. Individual steps
in the dgorithm are described in greder detail in the sedions that follow. Steps
which real from the list structures are indicaed with a solid line termination
(“e—"), those which add to a list structure by a“+” indicator (“®<"), and those
which remove dements from a list by a “-” termination (“©<+"). Each of the
subsumption points (SPL and SP2) indicaes a stage in the dgorithm where a

previousy seleded candidate adion may be replaced (subsumed) by an adion of
higher priority.

Activation trace
-

" pid
Predictions
II"EW SnEW
Existing Spenl Béy Add g
Tokens Existing Signs Prediclions Seleced Step 1c
Cancel
Satisfied
Gather Update Evaluate ﬁ_lil:tcet Select Sodls
» Tokens |I* Sign List |S*I w-Expts. [ Action Goals i :
ne geal
From Step T2 Step 1B Step2 || |g* Step3 | |gr  Sepdc
Transducers
Aclivas'an lrace 3 ¥
Select [B)LF',','\;’
R Default
Action Subsumption 5 Step 4
— Step 3a Point (SP) 1 ‘
Record Action Made
New Prediction _ Select
From Sign Trace From Sign Trace Valenced
e Action
From Action Tracc
Ci it Token 1o Diffe tiate : ‘ Step 5
urrent Token ta Differentiate ﬁ
. ) Create e Create |« e
Delete Differentiate, Hyooth Hypoth Perform [ Perform
p-Hypoth. p-Hypoth. l(tngf; ;CJ[) FI tln 0\3/:';” ' u-Expts. [ Action
Step 8d Step 8¢ Step 8b Step 8a Step 7 Step 6
Make Action

“To Actuators

KEY:
. Subsumption Point
e—» Read from List B ) Io_ » .
i Optional action at point B
@< Add to List has precedence over action
(O« Remove from List at point A to give C

Figure4-7: The SRS/E Algorithm
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4.12.1. Step 1. Processing Input Tokens and Signs

Figure 4-8 shows the list management activities undertaken during step 1.0 of the
SRS/E cycle. In step 1.1.1, input token strings are accepted from the input buffer
and converted into the internal token form (&). Steps 1.1.2 perform additional
processing on input tokens previously unknown to the system (i.e., any not already
on I). The novel token is appended to I (step 1.1.2.1). Additionally a new sign is
created from each novel token (step 1.1.2.2) and appended to the temporary list
S"®. Tokens present in the input buffer on the current cycle are assigned to the
active Token List, I¥ (step 1.1.3). New signs created in step 1.1.2.2 are added to
the Sign List (step 1.2). The temporary list $™" will be used to drive the learning
process of step 8.1. Once al input tokens have been processed, each sign is
evaluated according to the criteria laid down in equation 4-3, forms 1 through 4.
Every sign meeting the criteria defined for activation are placed on the active Sign
List $* (step 1.3). Step 1.4 matches elements on the Goal List (G) to any active
signs (§¥, and automatically cancels satisfied goals.

Initidlise " « {}; I*«{}; S*«{};
1.1 Accept tokensinto buffer, for each t oken_string do
1.1.1 & < I(t oken_stri ng) [convert input string]
[note: X(y) convert element of type y to element of type X]
1.1.2if & ¢ I [atoken previously unknown to the system]

11211« I+ [append & to I]
1.1.22 8™ « §™ + §(©) [create asign containing ]
113 % I*+ ¥
1285« §+8™

1.3 For each y where sy € §
1.3.1if (Eval Si gnConj uncti on($))
S* S*+ ¢ [eqgn. 4-3]
1.4 G+ G- (S*N G) [cancel satisfied goals]

Figure 4-8: Step One, Token and Sign Processing
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4.12.2. Step 2: Evaluating p-Experiments on the Basis of Prior Prediction

Once active signs have been determined the algorithm may assess the accuracy of
past predictions falling due on the current execution cycle and so update the
individual u-hypotheses responsible for those predictions (figure 4-9). Steps 2.1
process each element of P where the predi ct ed_t i me is equal to now. Where the
predicted_sign is on S$* the u-hypothesis identified by the Prediction List
element predi cti ng_hypo is updated according to equations 4-8 and 4-11 (step
2.1.1.1). The temporary list $P® records each sign that was correctly predicted
(step 2.1.1.2). Similarly step 2.1.2.1 updates each u-hypothesis responsible for an
incorrect prediction falling due at the current time, according to equations 4-9 and
4-12. For each failed prediction the system variable rebuil dpolicynet is
increased by the amount & (step 2.1.2.2). Spent predictions are removed from P
(step 2.1.3). The temporary list S""®P** records all active signs that were not
predicted by any u-hypothesis (step 2.3), these will be used to drive the learning
process of step 8.2.

Initidlise S« {};
2.1for every p (p € P), such that predi ct ed_t i me(p) = now, do
2.1.1if predi cted_si gn(p) € S* [prediction succeeds]
2.1.1.1 Update pr edi ct i ng_hypo(p) [according to o, egn. 4-11]
2.1.1.2 SPred . gred 4+ pr edi ct ed_si an(p)
2.1.2if predi cted_si gn(p) ¢ S* [prediction fails]
2.1.2.1 Update pr edi ct i ng_hypo(p) [according to 3, egn. 4-12]
2.1.2.2 rebui | dpol i cynet < rebui | dpol i cynet + 0
213P«P-p [remove spent prediction]
2.2 gunexpected gk gpred [record unpredicted signs]

Figure 4-9: Step Two, Evaluation of u-Experiments

4.12.3. Step 3: Selecting Innate Behaviours and Setting Goals

The availability of S* also alows the Behaviour List, B, to be evaluated (figure 4-

10). The default candidate action, candi dat e_acti on, for this cycle is selected
from R in step 3.1. In the present scheme the default candidate action is selected at
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random from those available. This forms the trial and error (or other default) action
if no other candidate is selected during the current cycle. A list of active
behaviours, B"¥ is sdlected from the primary behaviours part (B") of the
Behaviour List on the basis of a match between the condition part and the active
Sign List $* (step 3.2). The action with the highest priority is selected from the
active primary behaviours (B"¥) and assigned to i nnat e_act i on according to the
stored behaviour _priority values (step 3.3). The actua priority of that
behaviour is recorded in the variable innate_priority (step 3.4). If
i nnat e_acti on has a higher priority than the basal level threshold (g) it is
adopted as the candidate action, candi dat e_action, for the current cycle in
preference to the one selected in step 3.1 (step 3.7). The Goal Ligt is built from the
goal setting behaviours part of B (B in step 3.5, and the Goal List priority
ordered (according to goal _priority) in step 3.6. SRS/E selects between innate
and goal seeking behaviours on each cycle according to the priority of the top-
goadl, gl, and the value recorded ini nnate_priority (step 3.8). Where an innate
behaviour is selected the algorithm skips directly to perform the candidate action in
step 6 (step 3.8.1).

Initidise B*« {};
3.1 candi dat e_act i on < Sel ect RandomAct i on(R)
3.2 for each b- where acti on(b-) € B AND condi ti on(b) € $*
321B™*« B+ b;
3.3innate_acti on < acti on(max(behavi our _priority(B"¥)) [innate action]
34innate priority <« max(behaviour_priority(B"¥)
3.5 for each b- where act i on(br) € B AND condi ti on(b) € §*

351G« G+ b [build Goal List]
3.6 G« order(goal _priority(@G)) [order Goal List by priorities]
3.7if(innate_priority >¢) [above basal threshold?]

3.7.1 candi date_action < innate_action
3.8if(goal _priori ty(gl) <innate_priority) [select goal or innate]
3.8.1 skip to step 6.0

Figure4-10: Step Three: Select Innate Actionsand Set Goals
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4.12.4. Step 4: Building the Dynamic Policy Map

Steps 4.1 determine whether the Dynamic Policy Map is to be constructed on this
exeaution cycle. If the goal g1 is drealy satisfied, the goal is cancdled (step 4.1.1),
and the next lower priority goal seleded (step 4.1.2). If no goa remains on the
Goal List control passes diredly to step 6.0 (step 4.2). If the top-goal is unchanged
snce the last cycle axd the rebuildpolicynet vaue has not excealed
REBUI LDPQOLI CYTRI P no change is required and the dgorithm skips diredly to
valenced action selection in step (@& 4.3).

Steps 4.4 (stage 1 of the construction) build the first valence level in the DPM. For
al elements () of the Hypothesis List where the mnsequence “s2” is equivalent
to g1 the steps 4.4.n are taken. The estimated cost for the transtion is obtained
(equation 4-13) and held in W, the st estimate value for u-hypothesis v (step
4.4.1). The temporary list $"2is built from the context signs “sl” for u-hypotheses
seleded (step 4.4.2), these form the sub-goals at the next valence level. The
temporary list HE records the estimated policy cost for the p-hypothesis hv as h
(step 4.4.3). Similarly the temporary list SF records the lowest cost solution found
so far for ead sign implicaed in the @nstruction of the DPM (step 4.4.4). If the
context sign “s1” for any instance of kv is aready on the adive Sign List $* then a
path from the arrent situation to the goal has been found (step 4.4.5) and the flag
pat havai | abl e is &t TRUE. The lowest cost path estimate best cost is updated if
the estimated cost of this new path islower than any previously found solution path
from this ggn to the top-goa (step 4.4.6). Once pat havai | abl e is asserted the
algorithm might to skip to step 5.0 (i.e., perform the adion associated with the
element hv with the adive mntext sign), or it may continue to build the DPM to
discover possble lower cost paths. Were the animat to be constrained to perform
an adion within a given time this flag is an important indicator that a path exists.
The current implementation places no such time constraint on the algorithm.

Steps 4.5-4.8 (stage 2 of the @nstruction) continue the sprealing adivation
process for successve valence levels, vn+1 (step 4.5), until there ae no further
nodes to expand (step 4.6) which terminates the DPM construction. Each node
identified as a sub-goal at the previous valence level is expanded (steps 4.7) in the
manner described for steps 4.4. The temporary list HE records the policy value for
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ead u-hypothesis by adding the new cost estimate value for the transition to the
previously computed lowest policy value for the sub-goa “s2” (step 4.7.1). The
temporary list His updated to refled new policy values (step 4.7.2). Whenever a
new sign node or a lower estimated policy cost to a sign node is discovered (step
4.7.3), the sign is established at the new valencelevel (step 4.7.3.1) and the new or
lower cost isrecorded (step 4.7.3.2). The net effed of this processis to caegorise
every u-hypothesis, and so ead sign “sl1”, which is implicaed in the DPM by its
lowest estimated policy cost to the top-goal. The flag pat havai | abl e may be set
at any valence level (step 4.7.4). The variable best cost is updated whenever a
new lowest estimated cost is encountered (step 4.7.5). If there is no intersedion of
sub-goa node and S¥ pat havail abl e remains FALSE and best cost remans

undefined.



Initialise HE « {; 8« {}; SF {;
rebui | dpol i cynet < O; pat havai | abl e <~ FALSE;
best cost <~ MAXVALUE; vn « 1 [valence level one]

Rebuild map if goal changed or ‘rebuild’ greater than threshold

4.1 while (d eSH [top-goal already satisfied]

411G« G- g1 [so remove]

4.1.2 d < maxoal _priority(G)) [and lect next highest]
4.2 if(G = {}) skip to step 6.0 [no goals on Goal List]
4.3 (if g* = g*® AND r ebui I dpol i cynet < REBUI LDPOLI CYTRI P)

skip to step 5.0 [no need to rebuild DPM]

Stage 1 - create first valence level
4.4 for eachv such thas2(h) = ¢

4.4.1 0 « cet cost Est i mat e(h) [eqn.4-13]
4428« 8" +s1(h) [record valenced sub-goals]
4A3H — HE+ [cost of transition s1 to goal]
4448 sl(hE) [record sign cost]
4.45ifc1(h) e §%

pat havai | abl e <~ TRUE [path solution found]

4.4.6 iflest cost > 7’\/£) best cost « h¥

Stage 2 - continue spreading activation until done
45vn«<vn+1

4.6 if(S’ = {}) skip to step 5.0 [expansion complete]
4.7 for eachiv such thas2(h) € §" [expand each sub-goal]
4.7.1 0 « s2(SF) + Get cost Est i mat e(h) [eqn.4-13]
4721 « HE+ [record total costfopath]
4.7.3ifc1(h) ¢ S' OR s1(hf) > s1(55))  [new or better path]
47318« " +s1(h) [new sub-goals]
4.7.3.28F « §F + s1d) [record lower sign cost]
4.7.4ifc1(h) e §H
pat havai | abl e <~ TRUE [solution path found]
4.7.5 ifpest cost > 7’\/£) best cost « h&
4.8 return to step 4.5 [expand next valence level]

Figure4-11: Step Four, Construct Dynamic Policy M ap

14C



4.12.5. Step 5: Selecting a Valenced Action

Steps 5 (figure 4-12) determine whether a valenced adion is appropriate, and if so
seled the adion. These steps also manage the goal extinction process A value for
the valence break point is determined first. If VBP is already set, this value is used
(step 5.1). Where thisis the first instance of a DPM, or the previous valence bregk
point has been excealed, a new value for VBP is computed acmrding to equation
4-15 (step 5.3). The valencebreek point is cleaed if no path is found (step 5.2). A
temporary list of u-hypotheses, H, is formed from the intersection of those u-
hypotheses with valence (recorded on HE) and whose oondition part “sl1” is on the
adive Sign List $* (step 5.4). The candidate valenced adion, val enced_act i on,
is extracted from the dement of ' with the lowest estimated policy cost to the
goal (step 5.5). If the estimated cost of this proposed adion is gill [ essthan vBP,
this valenced adion is <sleded as the overal candidate adion,
candi dat e_action, for the exeaution cycle (step 5.7). Where there is no
intersedion of valenced u-hypotheses and the adive Sign List, the candidate adion
seleded in step 3 will be used. This siImmary of the dgorithm does not detail the
sub-steps for the goal recovery mechanism previously described. Step 5.8
determines if the total estimated cost of the path hes excealed the goal
cancellation level, Q , and if so removes the current top-goal from G.

5.1 VBP < Get Val enceBr eakPoi nt () [establish vBP]
5.2 if (pat havai | abl e = FALSE) VBP <« O [no path to goal]
5.3 eseif (vBP <0 OR VBP > best cost ) [compute vBP]
VBP <— best cost * VALENCEBREAKPQO NTFACTOR
54 H*E — HE A (s1(h) € $H [candidate active signg]
5.5 h « min(H*%) [select least policy cost]
5.6 val enced_action <« r1(h)
5.7 if(pol i cy_val ue() < VBP) [break-point reached?]
candi dat e_act i on < val enced_acti on [no, use valenced action]
5.8if(pol i cy_val ue(h) >Q) [goal cancellation level?]
581G« G- g1 [so cancel top-goal]

Figure4-12: Step Five, Select Valenced Action
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4.12.6. Step 6: Performing an Action

Figue 4-13 describes the adion reficaion process The adion
candi dat e_act i on, seleded either as an innate response from the Behaviour List
B (step 3.3), from the Dynamic Policy Map as a valenced adtion (step 5.7), or as
a default trial and error adion (step 31) is snt to the animat’s effedors to be
performed on the arrent cycle (step 6.1). The dement of the Response List finally
seleded is recorded on the adive Response List R * for the arrent exeaution cycle

(step 6.2).

6.1 DoAct i on(candi dat e_act i on) [reify candidate action]
6.2 R*« candi date_action [record in trace]

Figure 4-13: Step Six, Perform Action

4.12.7. Step 7: Conducting u-Experiments

Figure 4-14 describes the steps taken to create the predictive expectations. The
active Hypothesis List #* is constructed from every u-hypothesis where the
context sign “s1” appeas on the adive Sign List $* and the adion “r1” appeas on
the adive Response List R* (step 7.1.1). SRS/E does not distinguish between
adions made a part of the goa seeking process and those made due to innate
behaviour definitions or for any other resson. As a @nsequence SRSE
corroborates u-hypotheses whenever they establish an expedation. Such
expedations are alded to the Prediction List as a triple recording the u-hypothesis
responsible for the prediction, the predicted sign, the time & which that sign is
predicted (step 7.1.2). The value t is recovered from the tine_shift value
asociated with the p-hypothesis. These predictions will be corroborated in step 2
of later execution cycles.

initialise H* <« {};
7.1foral h, suchthat s1(l) € S¥*AND r1(h) e R*
711 H*— H*+ h [record activation]

712 P« P+ P(h, s2(h), now+ ) [make prediction]

Figure 4-14: Step Seven: Conduct p-Experiments
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4.12.8. Step 8: Hypothesis Creation and M anagement

Steps 8.1 (figure 4-15) are mncerned with the aedion of new u-hypotheses when
anovel event is deteded. These steps are triggered when the temporary list $™ is
not empty. Elements were placel on S™" in step 12. A new y-hypothesis is
creaed from a ontext sign (“sl”) seleded from the Sign List adivation trace
record (step 8.1.2), from an adion (“rl”) seleded from the Response List
adivation trace(step 8.1.3), and the novel sign extraded from §™" (“s2"), (step
8.1.4). The newly formulated u-hypothesis is added to the Hypothesis List (step
8.1.5) and its values =t to refled the creation bonus previoudly described. As the
u-hypothesis is creaed from a novel sign, there is no posshility that it will

dugicae an existing u-hypothesis. The timebase shift is achieved by predicting the
occurrence of “s2” n cycles in the future, where the “s1” and “r1” values were
previously extraded from the respedive adivation traces n cycles in the past. The
relative time shift, #; is recorded in thg-hypothesisi me_shi ft value.

The aeaion of a new p-hypothesis may affed the structure of the DPM, and so
the system value r ebui | dpol i cynet is incremented by A to hasten or trigger a
DPM rebuild (step 8.1.6). The novel sign is removed from ™ (step 8.1.7), and
steps 8.1 repeated until this list is empty. An explicit sampling learning strategy is
implemented by omitting steps 8.1.2 to 8.1.6 for one or more of the signs on $""
according to a frequency set by the learning probability rate. The learning
probability rate will also be referred to by the abbreviation Lprob and by the
symbol (A). When the learning probability rate is 1.0 every opportunity to create a
u-hypothesis will be used, if it were set to 0.0 no u-hypothesis creation would
occur. In electing to implement a sampling strategy at this point any sign passed
over will only seed a new u-hypothesis as a result of the process described in steps
8.2, asit will not reappear on ™",

Steps 8.2 create new u-hypotheses when unexpected signs are detected. Elements
were added to the temporary list S"P**™ i step 2.2. The basic mechanism for u-
hypothesis creation isidentical to that described in steps 8.1. In a sampling strategy
(A < 1.0) passed over signs can reappear on S""®P* again (as they may remain

unpredicted), and so be the subject of this process on a subsequent execution cycle.
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Creation on the basis of novelty

8.1 for eachy’™ such that (§™" = {}AND " € ™)
8.1.1if (rand(0.0 .. 1.0) > A) skip to step 8.1.7
8.1.2 51 « Sel ect (§ € $*@
8.1.3r1 « Sel ect (¥ € R*®Y
81452« ¢
8.1.5 H « H+ H(s1,r 1,52@+t), wheres1 #s2

8.1.6 rebui | dpol i cynet < rebuil dpolicynet +A
8.1.7 8™ « &N g

Creation on the basis of unpredicted event
8.2 for each "™ gych that (f”expwed #{}AND gonexpected f”expwed)
8.2.1if (rand(0.0 .. 1.0) > A) skip to step 8.2.7
8.2.2 51 « Sel ect (§ € $*@Y
8.2.3r1 « Sel ect (¥ € R*®Y
8.2.4 52 « gnexpected
8.25 H « H+ H(s1,r 1,52@+t), wheres1 #s2

8.2.6 rebui | dpol i cynet < rebuil dpolicynet +A
827 Sunexpected - Sunexpected _ ¢synexpected

Figure 4-15: Step Eight, Hypothesis Creation

Steps 8.3 (figure 4-16) describe the specialisation process by which individual p-
hypotheses are made more spedfic in their applicaion. Extra spedficity is achieved
by adding discriminant terms to the context sign conjunction (“s1”). The airrent
definition seleds p-hypotheses that are: (1) adive, (2) exceal the maturity
threshold (¥), in that they have been tested many times, and (3) have a
indeterminate confidence probability values (hypo_pr ob, or bpos) falling between
the upper (©) and lower (6) confidence bounds. A seleded u-hypothesis must be
adive to ensure that the alditional elements added to the @njunction are drawn
from the set of extant events at the time of modification (i.e., those falling within
the range defined by the respective activation traces).
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A new context sign is created by adding an additional term to the existing context
sign conjunction (step 8.3.1). This new term may be drawn from the Input Token
List, the Sign List, the Response List or the Hypothesis List. It may take any of the
four forms described in equation 4-3. Action (step 8.3.2) and consequence (step
8.3.3) parts are copied from the existing u-hypothesis. The new u-hypothesis is
appended to the Hypothesis List (step 8.3.4). The origina p-hypothesis is not
removed, and will compete with the new one. The new sign created in step 8.3.3 is
appended to the Sign List (step 8.3.5). On its first subsequent activation the new

sign will appear as a candidate on SUnePected

, asthere is no p-hypothesis to predict
it. This mechanism therefore provides a continuing source of new signsto drive the

learning process indefinitely.

Specialisation (differentiation)
8.3foral h, suchthat v € H*AND hypo_naturity(h)>W¥
AND hypo_prob(lv) >0 AND hypo_prob(h) <®

8.3.1s1 « S(s1(h) + ¥ [differentiate s1]
83.2r1«ri(h) [copy action]

8.3.3s52 «s2(h) [copy s2]

8.3.4 H«— H+ H(s1,r1,52% [install new u-hypothesis]
8355« S+s1 [install new signin S]

8.3.6 rebui | dpol i cynet < rebuil dpolicynet +A

Figure 4-16: Step Eight, Hypothesis Management - Specialisation

Step 8.4 (figure 4-17) defines the criteria for p-hypothesis deletion. u-Hypotheses
that persistently fail to make effective predictions may be removed. The degree of
maturity should be high and the corroboration measures should indicate that the -
hypothesis has little or no predictive value. u-Hypotheses are deleted by simply
removing them from the Hypothesis List (Step 8.6).
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Deletion (forgetting) under competition

initialise 2" « {};

8.4 for alllv, such thalv € H*AND hypo_maturity(h)>W¥
AND hypo_prob(h) <©

BALH « H'+ h [build candidate list]
8.5 W9 . min(hypo_pr ob(}%) [select a deletion candidate]
8.6 1 « 1 - Wi« [update Hypothesis List]

8.7 rebui | dpol i cynet < rebuil dpol i cynet + A

Figure4-17: Step Eight, Hypothesis Management - For getting

4.13. Implementation

The SRS/E agorithm is implemented in Microsoft Visual C++ and runs as a text
only Window under Microsoft Windows v3.1 or Windows 95. Each of the major
lists and their associated functions are defined as objed classes. The use of the
term “list” here does not imply the use of a list processng language such as LI1SP.
Elements of these Lists are dlocated and redlocaed dynamicadly, typicdly stored
and indexed as array members. In the interests of efficiency this implementation
eschews conventional objed oriented message passng in favour of crossclass
access functions.

4.14. SRSE - A Computer Based Expectancy M odel

In this chapter the Dynamic Expectancy Model developed in chapter three of this
thesis has been trandated into a single dgorithm, SRS/E. MadCorquodae ad
Meehl (1953 remgnised that their expedancy theory postulates were “incompl ete,
tentative and nonsufficient”. Bedker’'s ICM was only presented as a proposal for
implementation. Mott aciieved a substantive implementation of ALP, but was
heavily constrained by the timesharing technology available & the time, and by the
generally impoverished nature of the robot interface he employed. Drescher
provides <ant indicaion of the results for his claimed implementation, beyond an
indication of the extensive cmmputational resources required to sustain the marginal
attribution process.
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The SRS/E agorithm, and its implementation, stands as a “proof by existence”, a
working model creaed from the postulates presented in chapter three The SRS/E
algorithm claims to be “sufficient” in this resped, and as an implementation at least
one step beyond “tentative”. Each of the postulates contributes a small component
part of the whole. The processs are lesstightly coupled than, say, Watkins Q-
leaning; a repetitive gplicaion of a smple reinforcement transfer rule. More
tightly coupled than, say, the ideaimplicit in Minsky’s (1985 notion of a “society
of mind”. The relatively large number of Dynamic Expedancy Model postulates,
and so algorithmic steps, refleds the goparent need to construct a balanced and
functional medhanism; in much the same manner as an automobile design requires
many coupled systems to achieve an acceptable level of usability, safety, reliability,
maintainability and performance. It may be that further work will demonstrate that
the system is gill overspedfied, and elements may be deleted without affeding
overall functionality.

Yet SRSE does not clam completeness There is gill a substantial “bad-
caalogue” of published reseach describing a huge range of phenomena that must
eventually be explained or incorporated into alarger single model of the animat. In
keeping with an idea that evolution adds cgpabilities to the best of previous
generations and proto-typicd spedes it seams inevitable that extra postulates,
rather than simplification, will be found necessary.

The next chapter describes an experimental environment to investigate the
properties of the SRS/E algorithm as implemented.



Chapter 5

5. Experimental Design and Approach

The implementation of the SRS/E program may be wnsidered to be in two
separate parts. The first part encodes the behavioural and leaning adivities of the
algorithm discussed in the previous chapter. The second part provides an emulation
of an experimental environment that may be used to investigate the properties of
the dgorithm. This chapter considers the nature of this smulated “world” and
describes ©me of the fadlities available in the SRS/E program to assst the

experimenter investigating the algorithm as implemented.

Comnunicaion between these two parts of the program is primarily via asingle
sub-routine cdl, “Doworl dAction()”. This is a manifestation of the astrad
adivity described by the “DoAction()” construct of step six of the SRS/E
algorithm (figure 4-13). The “Dowerl dAction()” call takes two important
parameters. The first parameter pases an adion from the aimat to the
environment parts. The adion takes the form of a response_string, an ASCII
string extraded from an element of R representing the adion to be taken by the
animat on the aurrent exeaution cycle. The second parameter returns a sequence of
tokens representing sensory events deteded by the animat following completion of
the adion suppied in the first parameter. Tokens are returned from the
“environment part” to the “animat part” of the SRS/E program via an input buffer
and recorded in the Input Token List, I. Each token is defined as a sequence of
charaders from the ASCII set. Each token is sparated from others in the input
stream by a delineaion charader. Tokens have no embedded meaning to SRS/E,
but the naming policy that has been adopted here is convenient for experimenter
analysis of the generated trace ad log files. Certain of the user interface utilities
exploit this gedfic token format, and the aloption of an arbitrarily named but
otherwise equivalent token would disrupt their operation.
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5.1. Experimental Design

The eperimental design used here follows that devised by Sutton (1990 to
investigate the performance of the Dyna-Pl, Dyna-Q and Dyna-Q+ agorithms.
Environments for his sries of experiments took the form of smple grid mazes,
through which the animat may progress from some starting point to some other
finish or goa point. The animat may not lease the boundaries of the environment
(there is no wrap around), and obstades may be placal into the maze making
certain locaions unattainable. Blockages may be added at any point throughout the
experimental procedure to test the response of the aimat to changing
circumstances. In Sutton’s design the animat may make one of four basic adions,
eat trandating the aiimat into an adjacent cdl in the grid. These adions,
registered into the Response List R as “N”, “S’, “W” and “E”, are equivalent to
the adions “UP”, “DOWN?", “LEFT” and “RIGHT” defined by Sutton. Each
action is assigned attion cost value of 1.0.

The smplest of these environments is giown in figure 5-1. It will be referred to as
DynaWorld/Sandard in the aurrent work. Several other researchers have used this
environment. Booker (1990 and Riolo (1990 have both described extensions to
classfier systems tested with this environment. Peng and Willi ams (1992 describe
extensons to the origind Dyna framework. Littman (1994 investigated
“memoryless’ policies, where adions are based solely on current sensation -
“tracdess in SRSE terms. Eadh investigator is at liberty to adapt or crede their
own new or variant environment, and there ae ansequently a wide variety of
designs in use.

H

Figure 5-1: Sutton’s DynaWorld/Standard Environment




DynaWorld represents a onstrained and restricted experimental environment.
While not appeaing overly demanding as a leaning task the maze @vironment
follows in along tradition of utilising highly controlled experimental environments.
They have been espoused, in particular, by the behaviourist and instrumental
conditioning schoals of research. The latter group in particular place eperimental
animals in repeaable situations (as typified by the Skinner box) with the spedfic
am of investigating leaning phenomena in isolation from other aspeds of the
subjeds naturally occurring behavioural repertoire. The dwoice of a maze
environment is also particularly resonant of the reseach methods employed by
Tolman, of which a number of emulations follow in later sedions. All the

investigations performed here use simulated environments.

Severa other pre-defined environments are available in the arrently implemented
SRS/E program. At the beginning of ead experimental run the experimenter may
sdled from a number of predefined maze patterns. Besides the
DynaWorld/Standard environment Sutton (1990 defined an environment of the
same size but which is divided into two parts by a row of obstades. This
“Changing-World” environment is $own in figure 6-12. By seledively removing
or adding blocks the behaviour of the aiimat may be investigated under severad
conditions where previously known paths disappea, and where new paths become
available. A separate maze @vironment, not due to Sutton, is used in the latent and
placeleaning experiments described later. This environment is $own in figure 6-
22. It provides the animat with three distinct paths from the start to goal points,
ead of different length. The experimenter may, optionally, define environments of
arbitrary size, and add or remove blocked cdls as required. The experimenter may
also eled to alow the animat to trandate in all eight diredions, “N”, “NE”, “E”,
“SE”, “S’, “SW”, “W” and “NW”. Diagonal adions attrad an adion cost of 1.414
(i.e., V2). An adion that would cause the aiimat to leave the boundaries of the
environment, or to enter a blocked cdl, leaves the animat position unaltered, but
incurs the mst asociated with the adion. Following Sutton’s definition every cell
in the mazeis uniquely and reliably identified. In this implementation cdls are
identified by a single token of the form “XnYn”, where “n” is substituted with the
cdl’s X (or Y) co-ordinate. Cell co-ordinates are measured from (0,0), the bottom

left hand corner.
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Animals are notorioudly variable in their performance, even in the most controlled
of experimental conditions. The smulated environment holds a number of
significant advantages over experimentation with live animals. First among these is
the aility to maintain a high degree of control over the environment and the
animat. Various aspeds of the behavioural repertoire can be suppressed where they
would interfere with the progress of the experiment. Motivation, in terms of goal
setting, can be @ntrolled independently of the underlying requirement (for instance
hunger initiating food seeking adivity) by manipulating the equivalent drive. The
smulated animat also demonstrates a mnsiderable degree of variability, arising
from the nature of the randomising conditions used. Fortunately a ready supdy of
subjed animats may be aeaed to achieve asignificant or reliable demonstration of
highly variable performance phenomena & little or no cost and far less
inconvenience than their naturally occurring counterparts.

The SRS/E program offers a repedable experimental situation. From identica
starting conditions the program will run identicaly over successve trials. Once ay
condition varies the aurse of an experiment will diverge. This fadlity may be used
in several ways. First animats may be dfedively “cloned”, taken to some fixed
point in the procedure, which is then modified acording to the experimenta
schedule to investigate the spedfic dfeds of ead variation. Second the procedures
may be used in hulk, without constant monitoring and interesting instances
identified from the logged record and replicated for further, more detailed,
investigation. Finally the SRS/E program offers a high degree of visihility. The use
of on-screen information display, in conjunction with the recorded logged
information allows the experimenter accessto a record of the internal processes
that gave rise to spedfic behaviours and adions. The type and quantity of
information displayed and recorded has been refined over a period of time to best
reflea what isrequired for afull analysis. Examples exploiting these fadli ties occur
throughout the next chapter.

5.2. TheUser Interface

With an environment defined and major parameters sleded, the investigator may
intervene during ead experimental run to control the conditions required by the
schedule. At the conclusion of eat exeaution cycle the investigator may utili se the
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command interface to make danges, to request diagnostic or anayticd
information, or continue the experiment. This interfaceis presented on a command
line basis, and the options available ae shown in the printout of figure 5-2. The
interventions available to the investigator fall into five cdegories. (1) controlling
exeaution cycles; (2) displaying and recording list information; (3) managing goals;
(4) managing the animat and environment; and (5) accessng SRS/E program
utilities.

Conmmand: ?
<enter>: run for one cycle
<nunber>: run until cycle <nunber>
@nunber>: run for <nunber> cycles
I <x> <y>: break when ani mat reaches <x> <y>
t: show Token Li st
s: show Sign list
s<t oken_i d>: show signs using <token_id>
h[ <nunber >]: show Hypot hesi s <nunber> or Li st
e[filename]: Export hypothesis List
p: show current Prediction |ist
g: show goal Iist
g <sign_nunber>: set goal (G save tenp tally)
g- <si gn_nunber>: cl ear goal
M show policy Map (m val ence | evel map)
w. show Wrld (W-]: tenp tally [and clear]; W: world tally)
= <x> <y> Muwve Animat to X Y
r: nove animat to randomstarting |ocation
+ <x> <y>: Set obstacle at XY
- <x> <y> Cear obstacle at X Y
u: update system settings
; (or *): record coment in trace file

f: - not available (no trace file)
#: Show partial path
?: this Help
g: quit
Conmmand:

Figure5-2: The SRS/E Experimenter Command Options

5.2.1. Controlling Execution Cycles

Many experimental schedules to be described cdl for periods where the aniimat is
free to roam the ewironment, aternating with goal direded adivities. The
investigator may single step (“<enter>") through the experiment, giving time to
absorb the information about the previous cycle's adivity, or may alow the
experiment to run up to a spedfied cycle (“<number>"), or for a spedfic number of
exeaution cycles (“ @<number>"). Certain experimental regimes cdl for the animat
to be dlowed to locae the goa by random walk exploration, prior to detailed
investigation. SRSE alows the investigator to spedfy an interrupt condition
(“!<x> <y>") which returns the program to manual control once the named

locaion given by the m-ordinates “<x>" and “<y>" has been visited by the animat.



In the arrent program this is tied to the animat entering a spedfic named cel
(defined by its co-ordinates). Future versions could, more generaly, interrupt on
the detection of a specific token, sign, or some combination of these types.

5.2.2. Displaying and Recording List Information

At any command cycle the investigator may display the contents of the Token List
(“t"), the Sign List (“s’), the Hypothesis List (“h”), the Prediction List (“p”), or the
Goa List (“g’). Addtionaly the investigator may insped individua signs
asociated with a spedfic token (“s<token_id>"), and individual p-hypotheses
(“h<number>"). The complete Hypothesis List may be exported at any command
cycle in a form suited to later importation to a standard spreadshed utility
(“e[filename]”).

5.2.3. Managing Goals

In addition to viewing the goal list, the investigator may, at any command cycle,
assrt (“g<sign_number>") or clea (“g-<sign_number>") any goal. Goals may also
be aswerted from behaviours coded into the Behaviour List, and are auttomaticadly
cleaed when the goal is satisfied, or when extinguished by the extinction process
When asserting a goa the investigator is aso prompted to suppy a goal priority
for that goal. Whenever a goadl is asserted the temporary world tally is cleaed. The
world tally records the number of times eat cdl has been visited since last reset.
The use of the ommand “G” in place of “g” to as®rt a goal leaves the taly
unchanged to accumulate values.

5.2.4. Managing the Animat and Environment

The shape and size of the experimental environment is fixed at the start of eath
experiment, however the investigator may add (“+<X> <Y>") or remove (“-<X>
<Y>") obstructions in the ewvironment. The animat may be moved to a named
locaion (“=<X> <Y>"), or moved at random to a new starting location (“r’). The
animat may not be placed on a blocked location. When using the random relocation
command the investigator must be caeful not to creae any unintentional enclosed
pockets of cells into which the animat might become inappropriately trapped.
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At any command cycle the investigator may display the “World Tally”, showing the
number of visits to ead cdl either since the experiment started (“WT”), or the
temporary taly (“W”), which records visits to ead cdl since the goa was last
assrted. The temporary world tally is automaticdly initiaised when a goal is
asserted, or it may be eplicitly initialised with the “W-" command. Figure 6-10
demonstrates the use of these cmmands to record the genera movements of the
animat between stages in a single experiment. The “w” command shows the shape
of the environment, currently obstructed cdls and the aiimat position to confirm
the investigator has performed the required steps in the experimental schedule
correctly.

A representation of the aurrent Dynamic Policy Map may be obtained with the
command “M”. An example of this data is $own in figure 6-7. Information about
the u-hypotheses with the best estimated cost path to the top-goa for ead cdl in
the maze is mapped onto environment co-ordinates. There may be many u-
hypotheses aswciated with ead of the cdls that are not represented. The
information presented in the first line of ead cdl shows the individual u-hypothesis
name and the valencelevel at which it appeas in the DPM. The second line shows
the response adion asociated with the u-hypothesis. The third shows the
estimated cost for the adion acerding to the prevailing evaluation function. The
last line in each cell the total estimated cost of the valenced path to the goal.

Ead cdl represents the “s1” component of the seleded u-hypothesis. Any cdl that
has not been visited (through, for instance, insufficient exploration), or which is
blocked is siown Hanked. The DPM displayed is that resulting from the most
recent build. If no goal has yet been adivated duing the arrent experiment, no
DPM is available and none can be shown. A short form display of the aurrent DPM
is also abtainable with the “m” command, which displays only the u-hypothesis
identity and valence level.

5.2.5. Accessing Utilities

The investigator may change the values of the important system settings at any
point during an experiment using the “u” command. Comments may be recrded to
the trace file (“*” or “;”). The trace file may be temporarily suspended, and
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subsequently readivated if required (“f”). An experiment is concluded with the quit
(“9”) command.

5.3. The System Execution Trace Log

Eacd time the SRS/E program is run the experimenter has the option to creae a
record of all significant adivities that occur during that run (the log file), which
may be inspeded and analysed in detail after the experiment is concluded. The log
file records the following information. (1) The aedion and modificaion of al u-
hypotheses. (2) All predictions made, at the time of their corroboration. The
resultant cpos, bpos, recency and other significant values for the predicting -
hypothesis are recrded. (3) Periodic summaries of numbers of p-hypotheses
creaed and modified. (4) A copy of the valenced path (as figure 4-1) ead time the
DPM is recomputed. Trial and error adions are not recorded, but valenced (and
unvalenced) adions are. (5) The experimenter may request at any time alog record
of the cmmplete (or seleded elements of) the Token, Sign, Hypothesis, Prediction
or Goal Lists. (6) The system automaticdly logs important adivities, such as goa
adivations, satisfadions and extinctions, changes in goa priority, and adions by
the experimenter, that change the environment or animat. The user may also write
“freeform” textual comments to the log at any point.

At the @nclusion of the experiment the complete final Sign and Hypothesis Lists
are logged. Log files are aitomaticdly “watermarked” with the start and finish
times of the experiment. The arrent SRS'E program has been augmented with
several routines to display information about the DPM in a manner that relates the
internal representations to the layout of the simulated environment. Where such
representations are recworded in the log they are spedfic to the smulated
environments, not a general feaure of the SRS/E system. They will be introduced
as appropriate when experimental run results are considered.

5.3.1. Processing Log Results

A utility program, filter.exe, has been prepared to extrad relevant information
from SRS/E log files to fadlitate their analysis. Log files (as they are in human
readable form) can grow to an unwieldy size “filter.exe” contains options to
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prepare amore @ncise format for review, as well as to extrad data in a form
suited to graphing and tabulating utilities.

5.4. Important Schedule Variables

At the start of eat experimental run the investigator is able to define anumber of
parameters in addition to spedfying the form of the environment. The three most
significant of these variables are: (1) the action repetition rate, abbreviated to
Arep; (2) the action dispersion probability, abbreviated to Adisp; and (3) the
learning probability rate (Lprob, A). At the start of ead experimental run the
investigator will also be required to seled a seed (rseed) for the pseudo-random
number generator26 used. The seledion of the same seed alows an experimental
run to be replicated while all other conditions remain equal.

5.4.1. Action Repetition Rate (Arep)

Many of the experiments to be described cdl for adions to be seleded at random
during an initial period of trial and error exploratory behaviour. Sutton adopts the
term random walk to describe this adivity. A true random walk can lead to the
animat doubling badk on itself to such an extent that exploration of a mazeof any
sze may take an excessve number of exeaution cycles, with spedfic aeas
becoming “over explored’. Some of the experiments to be described require that
the animat has the opportunity to partially explore most of the environment. The
adion repetition rate parameter increases the probability that the animat will seled
a new adion at ead cycle. With Arep set to 0.0 a new adion is €leded every
cycle, with Arep set to 1.0 the system would always use the same adion. An Arep
value of 0.5 indicates that the same adion as the previous one will be seleded with
a probability of 0.5 and a new one with a probability of 0.5. Higher values of the
adion repetition rate increase the tendency for longer sequences of the same
action.

26The random number generator (“rand()”) supplied with the compiler has been used.
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Figure 5-3 summearises the dfed of the adion repetition rate on random walk
length over 2,500 trials for ead of four settings, where the animat must traverse
the maze (of figure 6-1) from start to goa in ead trial. The figure shows the
number of individual trials (a single traversal) falling into “buckets’ of 100 steps.
The minimum possble path length is 14 steps. The distribution is kewed, but it
may be seen that an Arep value of 0.0 (new adion aways) leals to a higher
average path length (8419 steps), and a mnsiderable number of instances where
the path length reades a large value than when higher values of Arep are seleded.
The average path length for Arep = 0.25was 5891, for Arep = 0.5 was 4195 and
for Arep = 0.75 was 3434. The minimum random walk length achieved in the
10,000 trials was 19 (Arep = 0.75). Any advantages gained by increased
exploration rates are somewhat off set with higher values of Arep by a tendency for
the animat to become trapped at edges and corners, an effed that has detrimental
effects in some experimental situations.

Effect of Action Repetition Rate (Arep)

Number of
Trials

Arep = 0.75
Arep=0.5
S o Arep = 0.25
%8 8 g
— 2 8 8 o Arep =0.0
N 4 O O
™M N~ O o
Steps to Goal ® Q3
<t Total samples: 2500 per value

Figure 5-3: Effect of Arep on Random-Walk Path Length

5.4.2. Action Dispersion Probability (Adisp)

Sutton defines a dassof noise for the Dyna environments in which adions made by
the animat are trandated into another adion (at the interface between animat and
environment) with a given probability p. Actions are trandated into either the
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adion one segment clockwise or the one segment anti-clockwise. So, for example,
“UP” will be converted to “LEFT” with a frequency defined by (1-p)/2, or to
“RIGHT” with a frequency defined by (1-p)/2, or left unchanged with a frequency
defined by (p), smilarly for the other adions available. The probability with which
this trandation occurs is controlled in the SRS/E program by the Adisp parameter.
When Adisp is st to 1.0 all adions are unmodified. With Adisp set to 0.5, 50% of
adions would be unmodified, 25% converted to the a¢ion viewed clockwise, 25%
to the adion viewed anti-clockwise. The source and destination states are till
recognised corredly in Sutton’'s definition. Other forms of “noise” might also be
defined.

5.4.3. Learning Probability Rate (L prob)

This shedule variable equates diredly with the learning probability rate (Lprob,
A) described previously. The implementation and properties of the leaning

probability rate were described in chapter four (sectid2.§.

5.5. Fixed Schedule Experiments

Severa of the experimental procedures to be described cdl for an intricae or
highly repetitive sequence of steps to be performed so as to appropriately
demonstrate the properties of the system. Where this is the cae the SRSE suite
incorporates program code to set up ead trial within the overall experiment and to
record the results obtained for subsequent analysis. Typicadly, the investigator will
be required to establish besic parameters for the experiment, but will not be
required to directly monitor or intervene in its progress.

Three such fixed schedule experiments have been used in obtaining the results
described later. The first schedule sets the animat to a defined starting position and
counts the number of steps (exeaution cycles) required for the animat to read a
defined goal locaion. Having readed the goa the animat is returned to the start
locaion and the run restarted. This may be repeaed as many times as required.
This fixed schedule is used to provide the comparative results relative to Sutton’s
Dyna dgorithms (sedion 6.2, next chapter), and to investigate the dfeds of noise
(sedion 6.3). These procedures were used to determine the results presented in
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figure 6-3, and to generate cntrol datafor arange of subsequent experiments. The
seoond fixed experimental schedule automates the path-blocking experiments,
presenting results in the style of a amulative reinforcement curve to alow easy
comparison with Sutton’s results (sedion 6.5.7). The third fixed schedule
automates the latent leaning task (sedion 6.6), and acamulates results such that
they may be presented in a manner fadlitating comparison with those of Tolman
and Honzik (1930. As every fixed schedule eperiment starts from known
parameters, it is possble to replicae aly particular experimental tria up to a
known point before transferring to manual control. In this way a particular
outcome may be investigated in greaer detall or pursued for additiona steps if
required. The full tracefile may be disabled duing the fixed schedule phase to
avoid recording unnecessary detail and subsequently re-enabled during the manual

phase to monitor results in detail.

The next chapter describes and discusses a number of experiments performed with
the SRS/E program.



Chapter 6

6. Investigationsand Experimental Results

This chapter describes a series of experiments with the SRS/E program. The
approach hes been to investigate the properties of the dgorithm under highly
controlled conditions, alowing a dea view of the dgorithm’'s behaviour and
performance Some of the investigations mirror those used to investigate
reinforcement leaning systems from the modern madine leaning paradigm, but
some revive and repea historicd investigations used to disambiguate between
competing theories of natura leaning. It is interesting to note that these issues are
il debated as adively as ever after decales of reseach. There ae significant
differences in the constitution of animals and animats, and some of the procedures
must be modified to refled these. Neverthelessit is hoped that the spirit of the
original experiments is faithfully captured, and some of the lesns and challenges
revealed will make a substantive contribution to this ongoing debate.

The previous chapter described the provisions that have made to enable the
investigator to design and conduct experiments with the SRS/E program and to
analyse and present the results obtained. Sedion 6.2 of this chapter describes a
series of “baseline” experiments in which the performance of the SRS/E algorithm
is compared dredly to the performance of the Dyna-Pl algorithm described by
Sutton (1990. The SRS/E agorithm performs the task described by Sutton more
efficiently by a fador of some 40 times. Additiona investigations in this dion
clealy demonstrate the development of the dasscd negatively accéerating
leaning curve from the widely varying performance of many individual animats, in
a manner predicted by tlsemulus sampling theories previously mentioned.

Experiments described in sedion 6.3 determine the dfeds of “noise” on the

performance of the SRS/E algorithm. These experiments adopt a definition of noise
provided by Sutton, and clealy indicae that the SRS/E agorithm will lean
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effedive solutions even when presented with high levels of disruptive noise. These
experiments also distinguish between the dfeds of noise on the leaning process
and on animat behaviour. Dired comparison with the Dyna-Pl algorithm was not
possible as Sutton did not report results with his algorithms.

The experiments described in sedion 6.4 investigate how the SRS/E algorithm
responds to multiple and alternative goals. A number of experimental situations are
explored which demonstrate the flexibility provided by the Dynamic Policy Map
approach adopted by the SRS/E agorithm. In the dternative goal experiments the
animat is required to traverse between a known start and goa situation, which is
then reversed (such that the start becomes the goal and vice versa). In the multiple
goal experiments the animat must visit several, arbitrarily seleded goals. These
tasks are not adhievable with an unmodified Q-leaning agorithm or any of
Sutton’s Dyna dgorithms, asthey all use astatic policy map, and so no comparison
of performance ca ke possble. These experiments therefore highlight a radicd
improvement between existing external reward and the Dynamic Expedancy based
methods of reinforcement learning introduced by this thesis.

The investigations described in sedion 6.5 replicae experimental conditions used
by Sutton to determine the dfeds of blocking known solution paths and opening
new solution paths during individual trials of his Dyna-Q+ dgorithm. Dyna-Q+ isa
spedficdly modified variant of the Dyna-Pl algorithm to addressthese tasks. The
SRS/E algorithm matched the published performance in al the tasks described,
although the method employed by the two algorithms is substantialy different.
SRS/E incorporates an extinction medhanism, not present in Q-leaning or the
Dyna dgorithms, which allows the animat to abandon unachievable goal direaed
tasks and thus escgpe from potentialy “life” threaening situations. The extinction
mechanism is developed on biologically plausible grounds.

The eperiments of sedion 6.6 replicate dasdc “latent learning” procedures. The
latent leaning experiments were the first to demonstrate anclusively that leaning
in animals could take placein the dsence of external reward or reinforcement.
Latent leaning may be ealy demonstrated with the SRS/E algorithm, and this
chapter replicaes the procedures adopted to show the dfeds in anima
experiments. Demonstration of latent leaning by a reinforcement algorithm

161



employing the Q-learning or Dyna methods would appea to be highly problematic,
and remains a dalenge to those espousing that school of thought. Similarly
sedion 6.7 describes a replicaion of the “placeleaning” experiments, in which the
animat must make different responses when placed in apparently identica stimulus
gtuations from trial to trial. While the SRS/E algorithm responds to the place
leaning challenge in a similar manner to experimental animals, it remains unclea
how a nventional reinforcement algorithm based on a static policy map could
achieve this.

It might be noted that Sutton was obliged to employ a family of agorithms, Dyna-
PI, Dyna-Q and Dyna-Q+, to demonstrate the experimental procedures described
in this chapter. A single program implementing the SRS/E algorithm has been used
for the experiments to be described.

6.1. Thelndividual Experiments

The sedions that follow describe aseries of individual experiments that attempt to
charaderise the performance of the SRS/E agorithm in well defined and controlled
environments with particular reference to its leaning cgpabilities. Each sedion is
divided into three major parts. Part one will consider the rationae for the
experimental schedule and describes the method and experimental procedures
adopted for the experiment. As these may be derived from two separate
methodologies, natural leaning and macdine leaning, some cae will be taken to
ensure the data is extraded appropriately to identify and acommodate aoss
domain issues. Part two will present the results from spedfic experiments.
Wherever possble this presentation of results will take graphicd or tabular form to
provide for easy asgmilation of the main points being investigated. Where a
comparative investigation is being performed (one which replicaes or substantially
adapts part or all of an established procedure) an attempt will be made to present
the SRS/E results in a form refleding that of the original or source work, where
this does not unduly impad or compromise the aurrent experiments. Part three
discusses the results of the experiment.



6.2. Baselinelnvestigations

These initial experiments attempt to charaderise the SRS/E agorithm under highly
controlled conditions, and to compare its performance to a well-established
example of reinforcement learning. Sutton (1990 has extensively investigated a
family of algorithms related to the idea of dynamic programming. To establish a
performance baseline SRS/E is tested under conditions functionally identicd to the
descriptions given for Dyna-Pl and “leaning curves’ (indicating improvement in
performance following pradice) obtained. Dyna-Pl is presented by Sutton as
showing substantial performance improvements over previous reinforcement
learning methods.

DynaPl dternates “adual” movements in its smulated environment with
“hypotheticd experiences’ derived from a world model creaed from data gathered
during the adual exploration phases. Sutton refers to these periods of hypotheticd
adivity as “planning”; a more gposite term might be “reheasal”. The three arves
of figure 6-1 indicae the dfed of increasing the ratio of “hypotheticd experience”
relative to “adual experience”. The outer curve, labelled “0 panning steps’ is
equivalent to the performance of the underlying leaning algorithm, converging
with the optimal performance line (14 steps/trial) after about 90 trials. Where the
animat is permitted 10“planning” steps interspersed with ead adual trial the airve
reades the optimal value dter some 12 trials. As the ratio increases, the
performance improvement becomes ever more gparent. In effed an equivalent
amount of computation hes been performed, athough observable adivity is
substantially reduced.

SRS/E retains no additional internal world model. To obtain baseline leaning
curves SRS/E will be successvely handicgpped by artificialy limiting the frequency
with which it can exploit a recognised leaning (by creaion) opportunity. This is
achieved by manipulating the leaning probability rate (Lprob), while leaving other
experimental conditions unchanged. Varying the leaning probability rate
introduces smpled leaning, partially emulating the dfeds of spurious or irrelevant
signs being incorporated intiehypotheses.
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Figure 6-1: Results from Sutton’s Dyna-Pl Experiments
(from Sutton, 1991, p. 219)

6.2.1. Description of Procedure

To perform the baseline experiments the first fixed schedule is used, which
automaticdly seleds and initialises the DynaWorld/Standard environment. Four
separate leaning curves are aeded with four different values of the learning
probability rate, 1.0 (all leaning opportunities taken), 0.25 (25% of opportunities
taken), 0.1 (10% of opportunities) and 0.025 (2.5% of opportunities). The other
fadors are held constant for the duration of the experiment. In addition a control
baseline is established indicating the aiimats performance without valenced
behaviour. Each curve is the average of 100 separate experimental runs, ead of
100 trids. For ead run a new animat (based on a new random starting seed) is
placel at the starting point (locaed at X =0, Y = 3) and alowed to run the maze
The number of steps taken to read the goal (at X = 8, Y = 5) are recorded for
each trial.
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At the conclusion of ead tria the animat is returned to the starting point, the goal
resserted (with a priority of 1.0) and the animat relessed to traverse the maze
following whatever valenced path is available. In Sutton’s experimental paradigm
reward is assgned and the animat is returned to the starting location when the goa
is readed. As corroborative leaning does not take place in SRS/E until
predictions are verified, the animat is alowed to remain undisturbed in the
experimental mazefor an additional 16 exeaution cycles after the goal is readed
before the trial ends. Each curve is therefore cmposed of 10,000 visits to the goa
locaion (100runs of 100trials). The @ntrol line is determined from 2,500 random
walks from start to finish. The complete experiment comprises 42,500 visits to the
goal location. This is comparable to Sutton’s experimental design. The remaining
system and animat parameters were held constant throughout the procedure (Arep
= 0.0, Adisp = 1.0¢. = 0.5, = 0.2,y = 0.0,y = 0.9,y° = 0.1,y* = 0.0).

6.2.2. Resultsand Analysisof Baseline Experiment

Figure 6-2 summarises the results of the baseline leaning experiments. With
leaning probability rate = 1.0 every opportunity to lean by credion is taken. As
the exploration by random walk is protraded due to the seledion of a new random
adion at ead cycle most of the possble u-hypotheses have been creded by the
first time the goal location is readed. The random walk length for the first tria is
highly variable (average of the 100 runs 74325, best 24 steps, longest 4,380). On
being returned to the starting point for a valenced trial to the goal location there is
consequently a good chance that an optimal (there ae many such paths), or nealy
optimal path will be aeaed. The arerage path length for this ond trial is 15.32
(best is 14 steps). Of the 100runs, 53% of the second trial achieved the optimal 14
step path, 34% the 16 step path, 8% the 18 step path, 4% the 20 step path and one
path of 22 steps. By trial 100the average valenced peth length had fallen to 14.96,
still above the achievable best.
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Figure 6-2: Baseline Learning Curves (Lprob = 1.0, 0.25, 0.1 and

With values of Lprob less than unity, the learning curves take on a more traditional
appearance. Discovery of the optimal (or near optimal) path is delayed. The effect
of decreasing the probability that a learning by create event will occur has a quite
distinctive effect on the rate at which performance improves (as indicated by falling

0.025)
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stepg/trial), and on the point at which performance stabili ses at its minimal level.
The last animat to find its dable valenced path for Lprob = 0.25 (diamond graph
markers) is at trial 26, the last one for Lprob = 0.1 at tria 56 (triangle markers).
The penultimate animat for Lprob = 0.1 stabilised at trial 40. This point of stabili ty
has not been readed for the Lprob = 0.025 curve dter 100 trials, four individuals
from the initial 100 animats gill not having found a complete valenced path. An
individual animat is defined here & an animat assgned a spedfic vaue to the
pseudo-random number generator seed (rseed) at parturition. This value will
remain unchanged for the individual for the duration of the experiment.

Figure 6-3 details the performance of a seledion of individual animats from the
Lprob = 0.025 curve. The five individuals are seleded on the basis of the total
number of adions they took during the experimental run. Individuals were ordered
acording to the total number of steps taken in the 100 trials, the sub-figures
indicate the “best” (fewest steps), the “worst” (most steps) and the quartile
individuals. The “best”, individual 84, (rseed = 840) made atotal of 8,152 adions
(minimum possble is 1,400 figures exclude the run-on period), stabilising by tria
11. Individual 69 (rseed = 690) had stabili sed by trial 10, but the precaling random
walks had taken more steps. The individual ranked 25h in the population
(individual 68) stabilised on tria 24, 50th (individual 78) at step 42 75th
(individual 9) on trial 56 and the “worst” (individual 99) finally stabilised on tria
116. The net effect is shown in the lower right sub-figure.

For ead trial, where Lprob # 1.0, the transition from a poor solution path to the
nea optimal, stable, one is in most cases quite distinctive and often abrupt - as
though “the penny dropped”. Inspedion of the traceinformation confirms that the
effed is primarily due to the probability with which u-hypotheses at low valence
levels leading to the goal sign are formed. Until these particular u-hypotheses have
been creaed the formation of an effedive Dynamic Policy Map is not possble, and
so the majority of adions remain unvalenced. Even though this final step is not in
placethe leaning of other u-hypotheses is dill taking place Once the nea god
connedions are made, with a probability regulated by Lprob, sufficient p-
hypotheses are invariably available to crede an effedive DPM from start to goal. A
less common effed where ashort “stub” DPM builds out from the goal, which
subsequently conneds to the main body of knowledge is also observed. The overall
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observable effect on measured path lengths of this stub phenomenon in relation to

random walk length is small. This interpretation of the probabilistic nature of the

learning process has much in common with the stimulus sampling theories
promoted by William Estes and others (Bower and Hilgard, 1981, Ch. 8 for

summary of this position).
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Figure 6-3: Contribution of Individual Animatsto L earning Curve
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6.2.3. Discussion

Under the learning conditions defined by the leaning curve where Lprob = 1 the
performance @mparison with Sutton’s Dyna-Pl system is clea. Where Dyna-Pl
takes approximately 90 trials to read a stable minimum path solution, SRS/E does
so0 in a single trial aadoss al individuals in the test population. Dyna's poor
performancein these drcumstances arises from two properties. First, reinforcement
is only made & the point the animat reades the goal, and secmnd, the dfeds of
that reinforcement only propagate badk towards the start state labelled “S’ one
level at atime. At a very minimum then the influence of the reinforcing goa state
canot read the starting point until the aimat has made many “forward’
trangtions. It might be mnjedured that there is a form of “two-steps-badk/one-
step-forward” strategy that would optimally spread the goal’s influence, but this
would be ahighly artificed strategy. In pradice sufficient numbers of propagating
trangtions are not made until a large number of trials have been completed.
Protraded leaning rates are rewmgnised as a limitation of this class of
reinforcement learning algorithm (e.g., Wyatt, 1995. The protraded leaning rate
of this class of reinforcement algorithm provides an advantage in terms of noise
immunity. The ladk of immediate commitment allowing an acarate model of the
variability to be onstructed. SRSE will be tested in a later experiment to
determine the degreeto which learning rate and task performance degrade under
the noise conditions defined by Sutton.

Isit not the cae then that all SRS/E is doing is recording every transition, building
a smple graph and so easlly traversing it? For Lprob = 1.0 the conditions for
leaning are indeed ided under these eperimental conditions. Each dtate is
recognised by a unique and reliable identifier, every adion reliably transitions
between two such states, the u-hypothesis creaion medanism explores exadly this
relationship first, and the animat is permitted to lean ad libitum. Why should
leaning be awthing other than one-shot when conditions are ided? As these
conditions move toward more redistic drcumstances the expeded, and observed,
leaning performance falls away from this ided case. In doing so they repeaably
demonstrate the forms of the leaning curve so ubiquitously observed in
experiments with animals.



Severa reinforcement agorithms clam to acdhieve optimal performance over a
fixed task of this nature?’, yet SRS/E does not demonstrate perfed performance
even after 100trials under the optimal conditions (Lprob = 1.0, figure 6-2). Recdl
that the average path length was 15.32 on the second trial, and improved only
marginaly to 14.96 after all 100 trials. Why should this be? SRS/E and
reinforcement leaning algorithms make fundamentaly different asumptions.
Dyna-Pl is st arepetitive task and builds a static policy map. For every condition
an optimal policy adion is ultimately made available. By successvely reducing the
leaning rates and adion seledion variability (by reducing the Boltzmann
distribution “temperature”) the policy map stabili ses. Under these mnditionsit may
be more germane to enquire how the performance of SRS/E improves at al while
the goal is continually ressserted. The aswer lies in the 16 run-on cycles following
the animat’s arrival at the goal locaion. Leaning occurs independently of valenced

behaviour and new-hypotheses can be created during this brief period.

SRS/E is gedficdly an agorithm for leaning and behaviour. Goals arise, are
satisfied (or not) and the animat moves on to some different adivity. Once agod is
asserted the dgorithm pursues it via the best path without additional exploration,
using whatever information is available & the time. The experimental circumstances
described here exclude avy variability due to noise, so that when the goa is
continually reasserted without interruption, the animat pursues the path without
variation. Where an optimal path is located first, then all subsequent paths are dso
optimal, where a sub-optimal path is locaed, all subsequent paths will be sub-
optimal. Under normal conditions the animat would pusue other adivities,
allowing new p-hypotheses to be aeded, and so overal improvement in god
aqquisition would occur over time. There is a detedable crrelation between the
amount of exploration during the random walk exploratory phase and the resulting
average path length under valenced test conditions. Enabling the oscill (y4)
component would explicitly add the dimension of exploratory behaviour, but would

always tend to detract from the performance of optimal solutions.

27 Notably those which reduce to an established dynamic programming technique and are thus
able to exploit the existence of optimal solution proofs (Rb883).
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6.3. TheEffectsof Noise

Sutton (1990 defines a test procedure for determining the dfeds of noise on the
Dyna family of reinforcement algorithms. Noise, by Sutton’s definition, perturbs
the proper adion of the animat by altering the dfed of its adions, effedively after
the animat has issued them, and so is completely outside the control of the animat.
Provision for adding this form of noise is made within the SRS/E system. It is
controlled by the adion dispersion probability (Adisp) parameter. Adisp is €leded
by the investigator at the start of ead experimental run. Its use ad effeds were
described ealier in chapter five. This ries of experiments is designed to evauate
the dfeds on both leaning and valenced behaviour in SRS/E. Sutton did not
publish noise results for the Dyna algorithms.

6.3.1. Description of Procedure

The experimental procedure described for the baseline experiments was repeaed,
with the exception that Adisp was st to 0.5 (50% of adions changed, 50%
unchanged). The data from the total of 42,500 trials was recorded and plotted as
before. A separate @ntrol line was determined for these experiments. The
complete experimental procedure was then repeaed with Adisp set to 0.75 (75%
of actions unchanged, 25% changed).

6.3.2. Resultsand Analysisof Experiment

Figure 6-4 summarises the results from this investigation for Adisp = 0.5. Two
points are of note. First is that the sope of the leaning curve is not noticedly
different for the results obtained in the noise free situation. Secnd the average
valenced path length following stabili sation (as measured by the mean of the last 25
trials for Lprob = 1.0, 0.25 and 0.1, total of 7,500 individual trials) is markedly
higher at 65.84 than that for the noise free cae, at 15.46. There is also more
variability in the valenced path lengths (as determined by the standard deviation,
45.99 as opposed to 1.34 for the noise free cae). The Adisp = 0.75 trials resulted
in amean of 2519 and a standard deviation of 14.42 wunder the same conditions.
The leaning curves in this case dso showed a similar sope to the Adisp = 1.0 and

0.5 investigations.
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Figure 6-4: Baseline L earning with Noise (Adisp = 0.5, Lprob =

1.0, 0.25, 0.1 and 0.025)

6.3.2.1.Tuning Parametersfor Static Environments

The “standard” set of selection factor values (yl =0.0, yz =0.9, y3 =0.1 and y4 =
0.0) was employed for the a&ove investigations. These settings are gpropriate to a
changing environment, as the st estimate values are biased toward more recent
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events. The experimental environment used here is essentially static, apart from the
introduced noise, the level of which remains constant. The investigation with Adisp
= 0.5 was repeated (for Lprob = 1.0, 0.25, 0.1 and 0.025 over 100 runs each of
100 trials), with the value of yl set to 1.0 (so yz = y3 = y4 = 0.0). Cost estimates
are therefore directly related to the probability of successful prediction of each p-
hypothesis. The estimates are calculated from the unadjusted count of frequencies
of satisfied expectations to total activations from the cycle on which the p-
hypothesis was created. Figure 6-5 shows the resulting learning curves. Conditions
were identical to the results shown in figure 6-4, except as indicated.
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The average valenced path length following stabilisation (as measured by the mean
of the last 25 trials for Lprob = 1.0, 0.25 and 0.1, atotal of 7,500 individual trials)
is indeed lower, at 56.83 (stddev = 56.18), than for the yz = 0.9 case, (65.84
stepg/tria), but still higher than that for the noise free case (15.46 stepdtria).
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These results indicae that aterations in the st estimation parameters have some
effed, but that thisis not as pronounced as might have been expeded under these
conditions.

6.3.2.2.The Effects of Noise: Learning or Behaviour?

The question remains whether the deaease in animat goal seeking performance is
primarily due to inacairades in the Dynamic Policy Map, or a consequence of the
disruption due to the animat’s individual adion seledions being thwarted by the
noise process This detailed investigation takes a spedfic individual and allows it to
run for 100 trials with the noise parameter Adisp set to 0.5 (to replicae the
baseline run). The investigator then regains manual control of the experiment and
forces the value of Adisp to 1.0 (no dispersive noise), returns the animat to the
start locaion, enables the standard goal and records the number of steps taken.
Figure 6-6 compares the two subsequent trial paths, trial 101 with Adisp = 0.5, and
trial 102 with Adisp = 1.0.

(A) Path with Adisp = 0.5 (trial 101) (A) Path with Adisp = 1.0 (trial 102)

Oycle 7299: Wrld is 6 by 9 Oycle 7314: Wrld is 6 by 9
0 0 0 0 0 1 1 xexx 1X o 0o 0 0 0 0 o0 1X
0 0 **xx 0 1 5 3*wxx 1 0 0 **xx 0o 0 0 o0 1
21 e 0 1 3 2 kwxx 3 1 1 wwx 0o 0 0 o0 1
1 0 xEwx i 1 o 1 3 3 0 1 *xxx i1 1 1 1 1
13 1 1 Q*wxx 0 0 O 0 1 1 1 0 xxx 0 0 O
06 2 0 0 0O 0O O O0 O 6 0 0o O0 O 0O 0 O0 O

Mean = 0.914894, std dev = 1.185013 Mean = 0.319149, std dev = 0.483779
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Figure 6-6: a) Path with Adisp = 0.5 (trial 101), b) Adisp = 1.0 (trial 102)

Inspedion of the Valenced Path printout (figure 6-8) from the experiment tracelog
file confirms the soundness of the valenced path creaed under noise cnditions.
Figure 6-7 shows the policy map generated at the wnclusion of tria 101 Each
locaion shows the gpropriate adion except X=5, Y = 0 (bottom row, fourth badk
from right corner). u-Hypothesis H223 (*S28<X5Y0> — D — S29%<X6Y0>") has
an estimated cost of 3.0, 14 of the 42 adivations to date having succeealed. The
“corred” u-hypothesis, H121 (“S28<X5Y0> — R — S29%<X6Y0>") has an
estimated cost of 4.66, only threeof the 14 trials to date having succealed. Such is
the onsequence of probabilistic dispersive noise. Each adion is sleded
independently, there is no guarantee & any point the ratio of the three possble
adions refleds the 0.5:0.25:0.25 seledion process The location is away from the

17¢



vaenced goa path and consequently these policy recommendations were
developed duing the exploration period. Were this locaion to fall on the valenced
path the system would naturally seled H223 On the assumption it would fail in
75% of cases its estimated cost would eventually rise aove that of H121, which
would then become the preferred choice. Note that the majority of other estimated
costs (line four in ead locaion cdl) more dosely refled the expeded value of 2.0.
Figures6-6, 6-7 and6-8 were all extracted from the Iatte,il(: 1.0) investigation.

Policy map at cycle 7299
+

Fomemmoon o e Foemmoon Fomemmmo- Fomemmoo- Fomemmoo- Fomemmo o - Fomemmo o - +
| HL64@4 | H378@L3 | H29@2 |HA5@1 | H276@0 | H380@ | HL48@ |........ | |
| R | R | R | R | D | D | D [ | &AL |
| 28.44] 26.64] 24.41] 22.28] 20.42| 18.68] 16.38]........ | |
| 1. 80| 2. 23 2. 13| 1. 87| 2.00| 2.00| 1.70) . ....... | |
Fomemmoon Fomemmoon Fomemmoon Foemmoo- Fomemmoo - Fomemmoo- Fomemmoo- Fomemmoo- Fomemmoo- +
|HL@5 |HI8@4 |........ | HLO9@O | H48@ | HA9@ | H301@ |........ | H93@ |
| D | D [ | R | R | D | D [ |U |
| 29.91] 28.20........ |  20.96] 18.42] 16.68] 14.68|........ | 2.33|
| 1. 38| 1.62]........ | 2. 55| 1. 74| 2.33| 2.18]. ... ... | 2.33)|
Fomemmoon Fomemmoon Fomemmoon Foemmoo- Fomemmoo - Fomemmoo- Fomemmoo- Fomemmoo- Fomemmoo- +
|H70@4 | HL76@3 |........ |H305@ | H213@ |HS0@ | HB31@ |........ | 2@ |
| R | D [ | R | R | R | D [ |U |
|  28.53] 26.58]........ | 18.70] 16.52] 14.35] 12.50|........ | 4.52|
| 1. 94| 2.00]........ | 2. 18] 2.17| 1. 85| 1.99]........ | 2.19|
Fomemmoon Fomemmoon Fomemmoon Foemmoo- Fomemmoo - Fomemmoo- Fomemmoo- Fomemmoo- Fomemmoo- +
| HL92@3 | H20@2 |........ |HLOO@ | H294@ | H382@ | H383@ | H3s4@ | H422@ |
| D | D [ | R | R | R | R | R |U |
|  26.66] 24.58]........ | 16.26] 14.45] 12.67|  10.51] 8. 51| 6. 59|
| 2.03)| 2.17] .. | 1.81| 1.78| 2. 15| 2.00| 1.93| 2. 08|
Fomemmoon Fomemmoon Fomemmoon Foemmoo- Fomemmoo - Fomemmoo- Fomemmoo- Fomemmoo- Fomemmoo- +
| HI82@2 | H247@1 | HB4@0 |HO5@ | H286@ |........ | H393@ | H350@ | H346@ |
| R | R | R |U |U [ | R |U |U |
| 24.63] 22.41] 20.45 18.22| 16.06]........ | 12.33]  10.45 8. 63|
| 2.21] 1. 96| 2. 23 1. 96| 1.61]........ | 1. 88| 1.93| 2.04|
Fomemmoon Fomemmoon Fomemmoon Foemmoo- Fomemmoo - Fomemmoo- Fomemmoo- Fomemmoo- Fomemmoo- +
| HI85@.3 | H205@L2 | H207@L1 | H209@L0 | H210@ | H223@ | H227@ | HUO7@ | H426@ |
| R | R | R | R |U | D | R | R |U |
| 25.43] 23.38] 21.51] 19.66| 17.85 17.00] 14.00] 11.65  10.10|
| 2. 08| 1.87| 1. 85| 1.81| 1.79| 3.00| 2. 35| 1. 54| 1. 48|
Fomemmoon Fomemmoon Fomemmoon Foemmoo- Fomemmoo - Fomemmoo- Fomemmoo- Fomemmoo- Fomemmoo- +

Figure6-7: Policy Map at Conclusion of Trial 101

Separate observations from a number of individual runs from both investigations,
and from ingpedion of Dynamic Policy Maps (“M” command) confirm that the
effeds on valenced path length are mainly from the exeaution of the behaviour,
rather than faults in the u-hypothesis credion processor construction of the policy
map. “Inappropriate” adions gill appea in the DPM, and may do so at any point
in the investigation due to the dhance of long sequences of noise dfeded adions
altering the relative strength of the u-hypotheses relevant to the adievement of any
given locaion in the path. Clealy this is more likely in the cae where leaning is
biased towards receit events. In this instance along sequence of noise dfeded
adions will have adisproportionate dfed at any point in the aiimat’s existence
Where yl = 1.0 the same sequence of noise dfeded adions will have greder effed
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while the total activations of the affected u-hypothesis is low. In practice the
system has shown itself (over thousands of trials) to be particularly tolerant of
these chance events, re-establishing appropriate paths once the sequence of
anomalous events is ended.

VBP @7256 = 285.322, bestcost = 28.5192

GOAL 46, Max val ence level is 16

H70 predicts S5[X1Y3] from SO[ X0Y3] (*active) after R (cost = 1.942029, total = 28.519203)
H176 predicts S6[ X1Y2] from S5[X1Y3] after D (cost = 1.978261, total = 26.577173)

H20 predicts S7[X1Y1] from S6[ X1Y2] after D (cost = 2.169492, total = 24.598913)

H247 predicts S22[ X2Y1] from S7[ X1Y1] after R (cost 1.942308, total 22.429422)

namnnN

H84 predicts S23[ X3Y1] from S22[ X2Y1] after R (cost 2.246154, total = 20.487114)
HO5 predicts S26[ X3Y2] from S23[ X3Y1] after U (cost 1.981482, total = 18.240959)
H100 predicts S20[ X4Y2] from S26[ X3Y2] after R (cost = 1.833333, total = 16.259478)
H294 predicts S25[ X5Y2] from S20[ X4Y2] after R (cost = 1.764706, total = 14.426144)
H382 predicts S33[ X6Y2] from S25[ X5Y2] after R (cost = 2.152542, total = 12.661438)
H383 predicts S40[ X7Y2] from S33[ X6Y2] after R (cost = 2.012987, total = 10.508896)
H384 predicts S42[ X8Y2] from S40[ X7Y2] after R (cost = 1.934307, total = 8.495909)
HA22 predicts S44[ X8Y3] from S42[ X8Y2] after U (cost = 2.051020, total = 6.561603)
HA92 predicts S45[ X8Y4] from S44[ X8Y3] after U (cost = 2.185185, total = 4.510582)

HA93 predicts S46[ X8Y5] (goal) from S45[X8Y4] after U (cost = 2.325397, total = 2.325397)
Val enced path in 14 steps, estimted cost 28.519203

Figure 6-8: Planned Valenced Path (trial 101)

6.3.3. Discussion

The introduction of dispersive noise into the SRS/E system is undoubtedly
reflected in the performance of the animat under these controlled experimental
conditions. These investigations also confirm that the learned component of the
system is resilient to this form of noise (as is aso claimed for certain Q-learning
systems), actions derived from available p-hypotheses at each choice point
reflecting probabilities from past experience. The system may be made more or less
reactive to change in the environment by the selection of parameters. Sutton
(1990) suggests the possibility that a second order learning phenomena might be
employed to determine the long term applicability to an individual animat of a
particular strategy. Alternatively selection pressures within a population of
individuals might be considered an appropriate strategy.

Dispersive noise, of the form investigated here is only one form of noise. The
current implementation of SRS/E also allows for the introduction of random tokens
into the input token stream. Such tokens emulate the presence of extraneous
events, unrelated to the performance of the task. Using the postulate system
described SRS/E will incorporate these random occurrences into u-hypotheses as a
meatter of course. SRSE will be sengitive to this form of noise. First in that it will
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predpitate the formation of spurious u-hypotheses, diluting the Hypothesis List and
adding computational overhead. Sewmnd in seleding whatever response was
incorporated into the spurious u-hypothesis at the time of its credion,
ingppropriate adions will be seleded in pursuit of the arrrent top-goal. As the
availability of more dfedive u-hypotheses increases, these spurious p-hypotheses
will contribute lessto the behaviour of the animat and will eventually be expunged
by theu-hypothesis deletion procedures considered in chapter four.

6.4. Alternative and Multiple Goals

These investigations demonstrate the dfed of the SRS/E system when confronted
with several different goals, either sequentially or smultaneously. The results of
these investigations illustrate the manner in which SRS/E handles goals and
valenced behaviour, and highlights the differences between the Dynamic
Expedancy Model and reinforcement leaning methods that creae astatic policy
map.

6.4.1. Description of Procedure

In investigation one of this experiment naive animats are dlowed an exploration
period in the chosen environment, in this instance DynaWorld/Standard (figure 5-
1). Eacdh run uses the defined starting point (“S”). The initial unvalenced trial-and-
error exploration period is chosen to alow the animat adequate opportunity to
thoroughly explore its environment (1,000 exeaution cycles). An adion repetition
rate (Arep) value of 0.5 is sleded to reduce initial random-wak time. The
unvalenced time to read the goal is noted. At the end of the exploration period the
animat is returned to the known starting point, and the goal state (“G”) is asserted
with a priority of 1.0. The valenced time to read to Goal is noted. On reading the
standard goa (“G”) the original starting location (*S”) is now asserted as the goal,
with a priority of 1.0, and the valenced time for the aiimat to re-traverse the
environment noted. To confirm these findings these two traversals are repeaed,
and the respective valenced path times noted.

As a ntrol, investigation two of the dternating goa experiment repeds
investigation one of the experiment with the start and goal locaions reversed at
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every stage in the procedure. The procedure is repeaed 10 times and the results
tabulated. A single instance is €leded and individual paths presented for detailed
discussion.

The third investigation of this experiment presents the animat subjeds with two
goals smultaneoudly. The path generated to read these two goas dould verify
the medhanism by which SRS/E seeks and satisfies elements on the Goal List G.
Individual naive animats are given an identicd training period to the previous
investigations using the DynaWorld/Standard environment, before being returned
to the start locaion “S’. Two goals are then enabled smultaneoudly, one of which
isthe original goa (“G”), with a priority of 2.0, and the other chosen to be & some
locaion (“G2” at X =1, Y = 5) on or nea an expeded valenced path between
start and original goal. The goal “G2” is assigned a lower priority (1.0), féyQre

g’ (priority 1.0) g' (priority 2.0)

G2 G

H

Figure 6-9: Simultaneous Goal L ocations

Start\

Graphic 5.12 from monolith\mazes.cdi

6.4.2. Resultsand Analysis of Experiment

Results for the first investigation are shown in table 6-1. The first column indicates
the starting random seed, the second the number of adions taken during the
random walk to read the locaion “G”. The goa is not asserted and so has no
spedal significance to the animat at this dage. The third shows the length of the
valenced peth for the first traversal from “S’ to “G”. The fourth column records
the length of the valenced path returning from “G” (as garting point) to “S” (now
valenced as the goal). The fifth and sixth columns record the valenced path lengths
from“S’ to “G” (valenced) and then from “G” to “S’ (valenced) respedively. The
animat position is only changed by the investigator once diredly following the

random-walk period.



Under these essentially ided leaning conditions the initial valenced path from “S’
to “G” is close to the minimum. The variation observed is consistent with the
observation that the 1000random-walk cycles was insufficient to completely build
the full potential Hypothesis List, so solution paths may be sub-optimal. The first
return path (*G” — “S’") consistently requires more ¢ycles than would be expeded
following this level of experience Figure 6-10 details the individual animat paths at
different stages in a single eperimental run and indicaes the reason for the
apparently anomaloudly extended path length. Figure 6-10a records (shown using
the “W” command) the number of visits by the animat to ead location during the
exploratory, unvalenced, random-walk period. The location cdl labelled “X” (X=8,
Y =0) indicates the position of the animat when it was removed by the investigator
to the start location for the first valenced run. Figure 6-10b shows the first
valenced path, non-optimal at 16 steps, no doubt as a wnsequence of the greaer
degree of exploration in the upper part of the environment on this particular run.

Seed 1stvisit “G” | S>G (1) | G=>S (1) | S—G (2) | G—>S (2)
10 915 16 23 15 14
20 317 14 28 13 14
30 216 14 18 13 15
40 101 15 15 13 16
50 534 14 19 15 14
60 167 14 14 15 13
70 379 14 18 15 16
80 265 16 27 15 14
90 134 14 33 15 16
100 140 14 29 13 14
Average| 316.8 14.5 22.4 14.4 14.6

Table 6-1: Resultsfor Investigation One of Dual Goal Experiment
Figure 6-10c shows the return path. The animat moves to locaion (X=8, Y=0)

immediately and appeas to bemme trapped there for some number of exeaution
cycles, thereby increasing the overall path length to 27 (from a possble 14). Thisis
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an experimental artefad, demonstrating that this emulation of leaning and
behaviour requires as much care in the cnduct of experimental procedure & does
work with red animal subjeds. The forcible movement of the animat to the start
locaion caused a spurious p-hypothesis (*H167: <X8Y0> — D — <X0Y 3>")28 to
be aeaed, which promises a short-cut to the aurrent goa locaion. The p-
hypothesis H167 fails to deliver this promise & every trail. Its cost estimate
contribution increases at ead attempt until it exceels that for the dfedive path,
which is adopted at the next DPM rebuild. When this path is again valenced, the
shorter path is adopted immediately, fig@r&Oe.

(A) 1000 stepsrandom-walk (rseed = 80

Cycle 1001: Wrld is 6 by 9
95 56 22 47 21 10 27 ***x 5
54 28 x*xx 22 16 12 31 *xx* 4
43 42 Exxx 21 12 6 19 *x*x 36
16 32 ***x 21 16 18 10 6 17
14 13 13 14 14 x*xx 3 2 17
12 20 7 23 5 8 10 15 46X

Mean = 21.297873, std dev = 17.189804

(B)S—> G (1 ©G—->S()
Cycle 1018: Wrld is 6 by 9 Cycle 1046: Wrld is 6 by 9
0 1 1 1 1 1 1w 1X 0 0 0 0 0 0 Q *xxx* 1
0 l * kK ok 0 0 0 l * ok k ok l 0 0 * ok k ok 0 0 0 0 * kK ok l
l l * kK ok 0 0 0 l * ok k ok l l lx**** 0 0 0 0 * Kk k ok l
0 Q *xxx* 0 0 0 1 1 1 0 1 xExx 1 1 1 1 1 2
0 0 0 0 Q *xxx* 0 0 0 0 1 1 1 Q *xxx* 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
Mean = 0.361702, std dev = 0.483779 Mean = 0.595745, std dev = 1.501772
(D)S—>G (2 (E)G—>S(2
Cycle 1062: Wrld is 6 by 9 Cycle 1077: Wrld is 6 by 9
0 1 1 1 1 1 1 xExx 1X 0 0 0 0 0 0 Q *xxx* 1
0 l * kK k 0 0 0 l * ok k ok l 0 0 * ok k ok 0 0 0 0 * Kk k ok l
0 l * ok kk 0 0 0 l * ok k ok l lx l * ok k ok 0 0 0 0 * ok k ok l
0 Q *xxx* 0 0 0 1 1 1 0 1 xExx 1 1 1 1 1 1
0 0 0 0 Q *xxx* 0 0 0 0 1 1 1 Q *xxx* 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean = 0.340426, std dev = 0.483779 Mean = 0.319149, std dev = 0.483779

monolith\figures.ppt:dide 5
Figure 6-10: Animat Random and Valenced Paths (investigation 1, r seed = 80)

Table 6-2 records the results of investigation two of this experiment, where the
roles of “S” and “G” from figure 6-1 are reversed throughout the procedure. The
results are broadly similar to those of investigation one and clealy demonstrate
that these results are independent of the actual start and goal locations.

28'H167 pedicts SO[XOY 3] (goal) from S36[X8Y Q] after D (cost = 1.818182 total = 1.818183":
from the valenced path summary recorded in the experiment trace file.
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Seed 1stvisit“S” | G=>S (1) | S—»>G (1) | G=>S (2) | S—>G (2)
10 125 16 33 16 15
20 113 14 28 14 13
30 355 16 22 15 13
40 355 16 24 15 15
50 103 16 29 16 13
60 228 14 35 14 15
70 921 16 15 16 15
80 111 14 15 14 15
90 66 14 18 14 15
100 216 14 17 13 13
Average| 259.3 15.0 23.6 14.7 14.2

Table 6-2: Resultsfor Investigation Two of Dual Goal Experiment

Table 6-3 summarises the results obtained for the smultaneous goal procedures of
investigation three The dfed of setting these two goals is to cause the animat to
visit ead in turn. In the majority of cases the animat visits the more distant, but
higher priority goa first, and then doubles badk to satisfy the secondary lower
priority goa. The average valenced path length to the first goal is 14.33, and the
average total travel to both goals is 32.44. The disruptive dfeds of the forced
return to “S’ are still apparent. In one instance the goals are visited in the reverse
order (rseed = 80), with valenced path lengths of 3 and 16 respedively. This is
purely because the secondary goal lay on the path taken by the animat to the
primary goa. A goal is stisfied by being adieved, regardless of whether or not
this was because of a valenced adion spedficdly intended to satisfy that goal. The
use of “cloned” animats for parts 1 and 3 of this experiment means the initia
exploratory and first goal paths are identical.



Seed 1st Visit “G” 1st Goal 2nd Goal
10 915 16 29
20 317 14 39
30 216 14 27
40 101 15 32
50 534 14 27
60 167 14 27
70 379 14 35
80 265 3 16
90 134 14 37
100 140 14 39
Average 316.8 13.2 30.8

Table 6-3: Resultsfor Investigation Three, Simultaneous Goals

Figure 6-11 shows two individual goal paths. Figure 6-11a records the path for
rsead = 30, and is typicd of the situation where the primary goal is visited first,
then the secondary goal. Figure 6-11b shows the situation where the secondary
goal is stisfied first because it happens to lie on the valenced path to the primary
goal (rseed = 80).

(A) S— G1— G2 (14/27 steps, seed =30) (B) S— G2 — G1 (3/16 steps, seed = 80)

Oycle 1029: Wrld is 6 by 9 Oycle 1018 Wrld is 6 by 9
o 1 1 1 1 x o 1 1 1

0 X
1 1 * 0
0 0 * 0
1 1 * 0
1 o * ok ok ok O
0 0 0 0

= 0.595745, std dev = 0.684167 Mea

0
0 0
= 0.361702, std dev = 0.483779

coNvNN R
cocoococowr
*
*
o *oocomr
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[
coRrRrRR

0 1 kx*
1 1 kx*
0 0 ***
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0 0
n
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1 0 **xx 0
1 0 **xx 1
1 1 1
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n

Meal
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Figure 6-11: Sample Simultaneous Goal Paths

6.4.3. Discussion

These investigations $iow substantial differences between existing reinforcement
leaning methods and the SRS/E algorithm. Goals may be seleded at will from the
available dements in the Sign List, and a Dynamic Policy Map built from the
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avail able u-hypotheses to attempt a solution path. A standard reinforcement or Q-
learning algorithm would presumably have to completely rearange the static policy
map over many trials before reasonable performance to the new goal is re-
established. As reinforcement does not take place until the danged goa is
adhieved, if that new goal did not fall on the solution path to the previous goal, this
might never happen. This result from the Dynamic Expedancy Model is considered
a significant challenge to conventional reinforcement learning algorithms.

Investigation three of this experiment demonstrates SRS/E’'s flexibility and
effedivenessin handling multiple goals. Much progresshas been made in adapting
reinforcement algorithms to build several policy maps to address multiple goals
(sedion 2.4.2). This approach krings a severe computational cost penalty as the
number of recorded goals increases, and means that all goals must be identified
before leaning can take place These limitations do not apply to SRS/E. Sedion
7.2 proposes me extensions to SRS/E to modify its goa seeking behaviour to
balance the estimated cost of achieving a goal with the given priority of the goal.

6.5. Multiple-Path, Blocking, Shortcut and Extinction I nvestigations

The individual investigations in this experiment series evaluate the performance of
SRS/E in a range of conditions where multiple paths exist, become available, or
ceae to be available, between a cnstant start and constant goal location. The first
investigation determines the learned behaviour of SRS/E in an environment where
two distinct paths, one longer than the other, exist between start and goal
(multiple-path). The aimat has been alowed to adequately explore the
environment fully before the start of the investigation. The investigation further
determines the effect of blocking the preferred route.

In the second investigation the dfeds of blocking one previously explored and
known path, and then two known paths is considered. This investigates the
extinction phenomena, where a goal is abandoned as unattainable. The third
investigation repeas a procedure reported by Sutton (1990 to determine the
enhanced performance of his Dyna-Q+ system, compared with Dyna-Pl, when
presented with the situation where aknown short path becomes blocked, and a
previoudy unknown path is relessed (path blocking). Results of this latter
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investigation are presented in a manner comparable to that employed by Sutton.
Finaly the performance of SRS/E and programs from the Dyna family are

considered in a situation where a previously unknown shortcut is introduced.

This series of investigations uses an experimental environment described by Sutton
(1990 and shown in figure 6-12. Start “S” and Goal “G” locaions are the same
throughout the investigation. Obstructions are seledively added or removed duing
individual investigations at the points marked “A” and “B”.

"Changing-World" Maze A "Changing-World" Maze B

G G
S S

"Changing-World" Maze C "Changing-World" Maze D

G G
- I
S S

Graphic 5.15 from monolith\mazes.cdi

Figure 6-12: Changing World Environments

6.5.1. Investigation One (Multiple-Path), Procedure

This investigation determines the adions of an animat in an environment with two
known paths, one of which is sorter than the other. Under these drcumstances the
animat is expeded to take the shorter of the paths (that of lower estimated policy
cost), but seled the longer path should the shorter become unavailable. In this
investigation the animat is alowed to explore the environment of figure 6-12a for
1000cycles as a random walk with no goal asserted. With Arep is <t to 0.5, this
dlows aifficient time for the environment to be @mpletely explored. On
completion of this first phase the animat is returned to “S” and goal “G” asserted
with a priority of 1.0. The investigator confirms that the animat reades the goal by
the shorter of the dternative routes (i.e., vialocaion “A”). The number of stepsis
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noted. The animat isreturned to S’ and location “B” isblocked. Goal “G” isagain
asserted with a priority of 1.0 and the behaviour of the animat noted. The animat is
returned to “S”, “G” asserted and the resulting path noted.

6.5.2. Investigation One, Results and Analysis

Figure 6-13 shows the dfed on animat behaviour of the procedure described for
investigation one. The 1000 cycles of random walk provide ample opportunity for
the animat to discover both available paths (figure 6-134). Figures 6-13b, ¢ and d
show the animat path from “S” to “G” with no additional obstruction, the first run
after locaion “B” is obstructed and the sewnd run after “B” is obstructed
respedively. This investigation was repeaed with ten individual animats (rseed =
10, 20 .. 90, 100, the instance shown is with individua rseed = 10. With no
dispersive noise and Lprob = 1.0 performance acossthese individuals is constant,
the average first path length being 10 steps, and the third 16 steps. The average
seoond peth length is 39.7. Nine of the individuals took 39 steps. One 46 die to the
appeaance of a spurious orter route u-hypothesis introduced by handling duing
the procedure (the forced return move to “S’ fell, by chance, in the lower right

catchment area).

(A) 1000 stepsrandom walk (seed =10)  (B) Trial One, “S' to“G”

Cycle 1001: Wrld is 6 by 9 Cycle 1012: Wrld is 6 by 9
86 37 29 21 42 19 26 39 50 0 0 0 0 0 0 0 ox 1
68 23 12 10 7 8 13 8 14 0 0 0 0 0 0 0 0 1
40 39 36X 25 22 20 16 4 16 0 0 0 0 0 0 0 0 1
4D KEAK KEKXK REKE KAKK KKK KKKE KKKK 9 O *HEE KERE KKK RRKK KRKK KKK KKK 1
41 12 10 9 6 9 2 2 6 0 0 0 0 0 0 0 0 1
43 12 6 10 5 12 6 7 22 0 0 0 1 1 1 1 1 1

Mean = 21.297873, std dev = 17.758427 Mean = 0.234043, std dev = 0.437595

(C) Location “B” Blocked, “S’ to“G” (D) Trial Three, “S’ to“G”

Cycle 1051: Wrld is 6 by 9 Cycle 1068: Wrld is 6 by 9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1X
1 0 0 0 0 0 0 0 0X 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 REEE KRKE KARK KKK KKK KKK KKK KKK 1 REEE KRKK KARK KKAK KKK RRKK KKK KKK
1 1 1 1 1 1 1 1 13 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0

Mean = 0.847826, std dev = 1.876630 Mean = 0.369565, std dev = 0.489010

monolith\figures.ppt:slide 7

Figure 6-13: Multiple Path Investigation, Individual rseed = 10
The medhanism by which SRSE seleds the original path, and then seleds and

stabili ses on the new path after the obstruction is deteded is graightforward. The
first path is the lowest cost path computed by the Dynamic Policy Map from
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elements in the Hypothesis List. On the seaond trial run the DPM indicates the
same path as run one. On reading location X=8, Y =1 the previoudly reliable a¢ion
“U” (from H14) fails, and the estimated cost of the step increases. The animat
repeds this adion until the estimated cost of the falled step raises the totad
estimated peth cost above that for the dternative known route via locaion X=0,
Y=2 (in the exemplar instance, 20.27). At this point the DPM is recomputed with
the new shortest route and the animat pursues the new route to the goal.

Figure 6-14 details the st estimate profile of the three valenced paths for the
seleded individual. The overal estimate for the remaining path is iown with
triangle markers. The first series (cycles 1001 to 1011 shows the uninterrupted
path from “S” to “G” via location “B”. The second series (cycles 1012to 1051
starts gmilarly to series one until the blocked locaion is deteded. Estimated path
cost increases as the ast contribution of the falled u-hypothesis H14 increases
(H14' s contribution to the path cost is iown with square markers). Eventually the
estimated cost of the preferred path exceels that of the dternative, then the DPM
policy estimates radicdly change and the animat follows the new path via location
“A” without further interruption (cycles 1030to 1051). The third series (cycles
1052 to 1067) confirms the preference for the new, longer, path.

Estimated Cost Profile
25 + A o Est. cost (H14)
@ 20 E'&AAA A Est. Path Cost
T
A A

E 15+ P
0 IS
W 10 %%A w
;]
= |
© 5 ﬂﬁﬂ

0 Q : : : |

1000 1020 1040 1060 1080

Cycle

monolith\results\chngwld\p14.xls

Figure 6-14: Estimated Cost Profile (Path and H14)



The gparent persistence with which the aimat pursues the newly faled u-
hypothesis (H14) is determined primarily by the extinction rate, B. Within a normal
population of individuals one might exped a range of values for this parameter and
so the number of failed attempts to vary between individuals before the dternative
path is adopted. The animat should not necessarily abandon its attempts at a known
path too soon, as there ae many circumstances where ntinued attempts are
indeed better than not doing so. Mott’s ALP robot controller being a cae in point,
the degree of persistence in goal seeking inadequately refleding the rarity of the
events ught. Other strategies could be proposed, including relating the degree of
persistence rate to the existing quality and maturity ofithypothesis in question.

6.5.3. Investigation One, Discussion

The adility of an animat to seled an aternate, known, route if thwarted in pursuit
of its preferred solution may appea as eamingly trivial. Yet this ability is an
important discriminator between pure reinforcement learning systems and sensory-
motor and intermediate level cognitive systems. Reinforcement leaning systems
(such as Dyna) which huild a static policy map based on a arrent sensory pattern
would not be expeded to demonstrate the dea shift of behaviour presented by
SRSJ/E, based as it is on a Dynamic Policy Map. Mimicking this ability therefore
remains a dhallenge to conventional reinforcement learning systems. The distinction
arises from the difference between categorising situations relative to a stable, but
distant, reward and the encgpsulation of situation and response & an independent
unit disassociated from external reward.

6.5.4. Investigation Two (Goal Extinction), Procedure

This investigation determines the goal extinction behaviour of the animat when a
single, known, path to the goal is obstructed, so that there is then no path to the
goal. The aimat is alowed to explore the eavironment shown in figure 6-12b for
1000 cycles (other conditions as for investigation one). The aiimat is returned to
“S’ and the goal locaion “G” asserted with a priority of 1.0. The animat’s path to
the goa noted. The animat is returned to “S’, the location “B” blocked (so that
there is no possgble route to the goal) and goal “G” reasserted with priority 1.0.
The behaviour of the animat in pursuing this unattainable goa is noted. The
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investigation is repeaed with the initial conditions from investigation one (figure 6-
12a), where there ae two initially available paths, with both paths being blocked at
the end of the period of random walk exploration. The behaviour of the aiimat is
noted under these conditions.

6.5.5. Investigation Two, Analysis of Results

Figure 6-15 shows the stages in the goal extinction process Sub-figures 6-15a and
b show the initial stages for this investigation (for the individual rseed = 10), the
random walk exploration and the demonstration of succesdul valenced god
seeking behaviour given an unblocked path. The path to the goal is blocked at this
step, the animat returned to “S’ and the goal “G” reasserted. Sub-figures 6-15¢ to
h show the stages in the extinction process Initialy valenced goa seeking
behaviour proceels as normal. As there is no aternative path the aiimat repeas
the failed u-hypothesis (H14) until the estimated cost of the path exceeals that for
the valence break point (VBP) value cdculated from the origina cost estimate
(10.28) for the path. At this point the animat reverts to unvalenced behaviour for a
period regulated by the goal recovery mechanism, figure 6-15d. This period of
exploration alows the animat to discover some new and previously unknown path
to the goal (it would have drealy tried other possble paths had they previousy
been identified during the exploration phase).



(A) 1000 stepsrandom walk (seed = 10)

(B) Test Valenced Path, “ S’ to “G”

Cycle 1001: World is 6 by 9 Cycle 1012: World is 6 by 9
93 27 31 17 36 20 38 19 44 0 0 0 0 0 0 0 0 1X
52 9 13 7 5 8 14 7 15 0 0 0 0 0 0 0 0 1
79 17 16 8 4 5 14 13 18 0 0 0 0 0 0 0 0 1

*khkkk Khkkk kkkk Kkhkkk kkhkkk kkhkkk Khhkkhkk Khkkk 32 *hkkk Khkkk khkkk Kkhkkk kkhkkk kkhkkk Kkhkkhkk Khkkk 1
43 11 13 11 18 15X 8 8 11 0 0 0 0 0 0 0 0 1
40 16 25 25 17 29 16 13 21 0 0 0 1 1 1 1 1 1

Mean = 21.760870, std dev = 17.820969 Mean = 0.239130, std dev = 0.442326

(C) Valenced to Step 1039 (D) Unvalenced to Step 1140

Cycle 1039: World is 6 by 9 Cycle 1140: World is 6 by 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*hkkk Khkkk Kkkkk Kkhkkk khkkk kkhkkk Kkhkkk K*hkkhkk Khkhkkk *hkkk Khkkk Kkkkk Kkhkkk khkkk kkhkkk Kkkhkkk K*hkkhkk Khkhkkk
0 0 0 0 0 0 0 0 21X 22 16X 6 3 4 9 1 1 7
0 0 0 1 1 1 1 1 1 12 3 6 0 0 2 2 2 5

Mean = 0.600000, std dev = 3.094799 Mean = 2.244444, std dev = 4.553387

(E) Valenced to Step 1159 (F) Unvalenced to Step 1360

Cycle 1159: World is 6 by 9 Cycle 1360: World is 6 by 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*hkkk Khkkk Kkkkk Kkhkkk khkkk kkhkkk Kkhkkk Kkhkkhkk Khkhkkk *khkkk Khkkk kkkk Kkhkkk khkkk kkhkkk Kkkhkkk K*hkkhkk Khkhkkk
0 1 1 1 1 1 1 1 12X 45 18 6 3 12 5 16 9 6
0 0 0 0 0 0 0 0 0 27 14 1 1 3 6 12 13 4X

Mean = 0.422222, std dev = 1.782632 Mean = 4.466667, std dev = 8.615232

(G) Valenced to Step 1371 (H) Extinguished at Step 1593

Cycle 1371: World is 6 by 9 Cycle 1593: World is 6 by 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*khkkk Khkkk Kkkkk Kkhkkk khkkk kkhkkk Kkhkkk K*hkkhkk Khkhkkk *khkkk Khkkk Kkkkk Kkhkkk khkkk kkhkkk Kkkhkkk K*kkhkk Khkhkkk
0 0 0 0 0 0 0 0 10X 0 4 6 10 10 12 11 9 43
0 0 0 0 0 0 0 0 1 7 2 6 18 13X 11 11 23 26

Mean = 0.244444, std dev = 1.483240 Mean = 4.933333, std dev = 8.667949

monoalith\figures.ppt:dide 8

Figure 6-15: Goal Extinction (rseed = 10)

This process is repeated with aternating periods of valenced and unvalenced (trial
and error) behaviour until the total cost estimate for the goal path exceeds the goal
cancellation level, Q, figure 6-15h. At this point g1 is forcibly removed by SRS/E
from the God List. The Innate Behaviour List B¢ might reassert the goal, but to
little useful effect. Figure 6-16 records the relative values of the cost estimate for
the goal path and the computed value of VBP. Note in particular that the estimated
cost rises quickly to meet the VBP at the end of each period of unvalenced

behaviour. Note also that the estimated cost can rise during this unvalenced period

due to the animat testing u-hypothesis on the valenced path, but purely as a

consequence of trial and error activities. This is particularly apparent in the latter

stages of the extinction process and is in no small part due to the confined space in

which the animat operates.
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Figure 6-16: Goal Extinction, Comparison of Cost Estimateto VBP

This investigation was repeaed with both paths (“A” and “B”) available during the
1000 step random walk exploration phase (figure 6-12a). Both paths are then
blocked before starting the extinction phase (as figure 6-12d). The aiimat
behaviour is modified to appeaing to scuttle badk and forth between the two
previoudy effedive paths during the periods of valenced adivity. Figure 6-17
shows the resulting estimated cost and VBP values of this investigation. The insert
to the figure shows the detailed effeda of this suttling behaviour. Each rise in the
cost estimate aises from the animat attempting the blocked u-hypothesis, first at
one end, and then at the other. The animat appeas deaeasingly persistent in its
attempts to traverse eabt docked path with ead attempt. Gaps between the rises
indicate the g/cles during which the animat is (under valenced control) travelling
between the two places where the known paths had been located. Note that the
cost estimate and VBP are not shown during these periods as they are only
reomputed when an event causes changes in A or & that exceda
REBUI LDPCOLI CYTRI P. The net effed is to increase the number of cycles that elapse
before goal extinction takes place Over 10 separate trials (rseed = 10, 20 .. 100
the average time to extinction was 8709 cycles for the single path case, and
1,443.2 cycles for this dual path case.
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Figure 6-17: Goal Extinction (Two Path), Cost Estimate and VBP

6.5.6. Investigation Two, Discussion

Goal extinction phenomena are well documented for natural learning, and are
supported by a wealth of experimental data. The rate at which extinction takes
place appears to be highly variable. Razran (1971, p. 167) points out that under
some operant conditioning regimes pigeons will continue with ineffective pecking
behaviour (introduced with food reward) for over 10,000 events, expending more
energy than would have been obtained from the reward. Classica conditioning
regimes tend to demonstrate much more rapid extinction phenomena (Razran
posits a median conditioning-extinction ratio of 36:1). The number of unrewarded
actions required to produce goal extinction appears to depend on many factors
including experimental conditions and procedures, the nature of the reward, its

presentation and subject animal.
The onset of extinction can be continuoudly delayed by occasiona reward (as in

variable reward ratio regimes). Such is aso the case in SRS'E where a single valid
prediction restores the value of bpos for any u-hypothesis disproportionately to the
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effed of a falled prediction. In its current implementation SRS/E does not
demonstrate aty spontaneous rewmvery of extinguished valenced behaviour. Such
phenomena might be implemented by either an explicit second order term in the
cost estimate function or by the incluson of a spedfic habituation process
disadvantaging u-hypotheses used repeaedly. This would refled Hull’s approach
to the extinction process (secti@r, eqn.2-1).

The presentation of data in figures 6-16 and 6-17 mirrors that for experimentally
observed extinction patterns in animals (figure 3-1). Note that while these two
presentations appea superficialy similar they are not diredly comparable, though
they may indicate a similarity in underlying mechanism. The data in the figures
presented in this chapter record internal values, those for anima experiments
record externaly observed events. Extinction in retural leaning is a subtle
phenomenon, no doubt deserving of a more sophisticated model that currently
provided for in the SRS/E algorithm.

6.5.7. Investigation Three (Path Blocking), Procedure

This investigation determines the behaviour of an animat when faced with a block
to a known path, but where a previoudy unknown path is smultaneousy made
available. To locae the new path the aiimat must balance eploration of the
environment with exploitation of the previousy known, and successul, solution
path. In this investigation the animat is alowed a period of 1,000 cycles of
continuoudly valenced adivity using the mazeshown in figure 6-12b (shorter path).
The animat is always darted at “S’, with “G” asserted as goal. Once the animat
reades “G”, it isreturned to “S” and “G” reasserted. The other investigations in
this experiment allowed random walk exploration during this initial phase. As in
pervious experiments a small number of run-on cycles are permitted to ensure
SRS/E may lean the steps leading diredly to the goal. At cycle 1000the location
“B” is blocked and the previoudly blocked location “A” opened. The aiimat must
discover the new path and continue to traverse from “S’ to “G” as in the first
phase of the investigation. Figure 6-18 shows the results obtained by Sutton (1990
for this blocking task with the Dyna family of reinforcement learning algorithms.
The procedure used here follows that employed by Sutton. Effeds of dight
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variations in experimental procedure will be noted and dscussed. The procedures
for this investigation are available as a fixed schedule within SRS/E.

Cumulative
Reward

0 1000 2000 3000
Time Steps

Graphic 5.21 from monolith\dyna.cdr
Figure 6-18: Average Performance of Dyna Systemson a Blocking Task

From Sutton (1990), p 222.

This investigation retains a amulative record of the number of visits to the goal
locaion, referred to as cumulative reward in figure 6-18. The slope of the line
refleaing the frequency with which the goal is achieved. The shorter path allows
the dope to be steger, a flat period indicaes a sedion in the investigation during
which no “reward” is recaved, after locaion “B” is blocked and “A” opened.
Results are plotted as curves recrding individual animat performance ad as an
average of many individuals. Results for SRS/E are obtained with no dispersive
noise (Adisp = 1.0), and with 10% dispersive noise (Adisp = 0.9).

6.5.8. Investigation Three, Resultsand Analysis

Figure 6-19 shows 10 individual performance airves for the anditions described
by Sutton for the path docking experiments (rseed = 10, 20... 100). As with figure
6-18 the dope of ead curve indicaes the path length from “S’ to “G”, the stegoer
the dope the more frequently the god is visited. This form of presentation is
analogous to that often used in Skinner box experiments to record the bar pressng
adivity of experimental animals in relation to reward delivery. Flat sedions on a
curve indicae periods where no reward is obtained. The first flat sedion indicaes
the initial random walk trial and error path to the goal. As Lprob is st to 1.0 in
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these investigations the dope of the aurve represents the length of the learned path
(sometimes optimal, 7 cases of ten, sometimes not).

The second flat portion represents the time taken for the longer path to be locaed
by trial and error random walk during the unvalenced parts of the goal extinction
process In four of the ten instances (individuals with rseed = 10, 50, 60 and 80
goal extinction took placebefore the dternative route was locaed. The amulative
curve ends abruptly in these caes. Members of the Dyna family of systems do not
employ this medhanism. Of the remaining six individuals four found the shortest
path from “S” to “G”.

Blocking Task (Adisp = 1.0, Arep = 0.5)

200

"Cumulative Reward"
= =
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o o o
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T T

0 500 1000 1500 2000 2500 3000
Time Steps

o

monolith\robtest\blocking\block1.xls
Figure 6-19: Investigation Three, Individual “Cumulative Reward”
Curves

Figure 6-20 shows the areraged results of the ten individual trials described above.
The performance of SRS/E under these conditions is comparable with the best of
the Dyna series, Dyna-Q+, under similar experimental conditions (see discusson
below). Addition of 10% dispersive noise (lower curve) has a onsistently adverse
effed on the performance of this gistem. The alvantage of any additiona
exploratory effed being completely masked by the extra dfort required to read
the goa. This finding appeas consistent with previous conclusions about the
effects of dispersive noise.
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Figure 6-20: Investigation Three, Average “Cumulative
Reward” Curves

6.5.9. Investigation Three, Discussion

Being fully aware of the difficulties of taking acarate measurements from a
published graph (figure 6-18), a line drawn tangential to the first portion of the
Dyna-Q+ curve indicates a dope of 10.76 steps/reward and for the second portion
of the aurve adope of 18.2 steps/reward. Minimum path lengths are 10 and 16
respedively. Compensating for run-on cycles cdled for in the arrent experimental
procedures, SRS/E attains average dope vaues of 10.6 and 1833 respedively. It
would be unreasonable to diredly compare the total number of cumulative rewards
at cycle 3000 (about 150 for DynaQ+, 16033 for SRS/E) as the four worst
instances in SRS/E were @andoned die to the extinction process By adjusting the
parameters involved SRS/E could be tailored to allow greaer periods of random

walk exploration during the unvalenced stages of the goal extinction process.

Sutton also tested members of the Dyna family of systems on a shortcut task.
Animats were set arepeaed goa seeking task using mazeC (figure 6-12) in which
only the longer path via “A” is available initially. After 3,000 cycles the shorter
path “B” is aso made available. Dyna-Q+, with its additional exploration
component demonstrated some improvement in performance, indicaing the shorter
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path had been discovered and adopted. SRS/E has no explicit mechanism for
exploration during valenced goal seeking behaviour. Consequently, if SRS/E is
continuoudly tasked it will aways adopt the best known path. Such wilful
overtasking is a pathologicd case for SRS/E, the system expeds to be presented
with a range of tasks and to have periods where no goal is asserted. Under such
conditions SRS/E has every opportunity to locae and subsequently employ the
shortcut route.

6.6. Latent Learning

The demondtration of latent learning phenomena was a significant step in the
historicd development of leaning theory. Each of the major behaviourist leaning
theories is based on the notion that leaning takes placein response to a reward (or
conversely a punishment). If it were to be demonstrated that learning had occurred
without any reward then the findings of the behaviourist school would be cdled
into question. Clealy a demonstration of this type would have suited Tolman in the

promotion of his expectancy theory.

A classc “latent leaning” experiment is replicaed with SRSE. In the origina
Tolman and Honzik (1930 tested three groups of food deprived rats in a maze
apparatus. The first group were dlowed to wander the maze ad obtained a food
reward at the end locaion. The second group were dlowed to wander the maze
but on reading the ed locaion they recaved no food reward. Each rat was
placal in the maze once per day before being returned to their normal
acommodation. Oncethe rat had readed the end locaion it was prevented (by a
one-way door) from re-entering the body of the maze Sufficient time was allowed
in the end locaion to prevent any reward effeds associated with food availability in
their normal acommodation. On the deventh day (i.e., after 11 runs through the
maze the second group were given accessto food reward in the end locaion. A
third, control, group was allowed to run the mazewith no food reward throughout

the duration of the experiment.

Tolman found that the performance of the seaond group on the twelfth daily run
(thefirst after the introduction of reward) was as good as or better than that on the
first group that had been rewarded on every run, who had shown a gradual



improvement in performance. Tolman's mazewas constructed from 14 multiple T
units, with doors between the units to prevent the rats retradng their steps in the
maze Tolman interpreted this as clea evidence that reward was not required for
leaning to take place Tolman and Honzik’s results are reproduced in figure 6-21.
The measure of performance is the number of errors made by the experimental

animal in traversing the maze.

10 -

" No food reward

Average errors

T Regularly rewarded

No food reward
until day 11
\ N B

12345678910 12 14 16
Days
Graphic from monolith\latent.cdr
Figure 6-21: Tolman and Honzik’s Latent Learning
Results

adapted from Bower and Hilgard (1981, p. 338)

6.6.1. Description of Procedure

A latent learning schedule is available a a fixed procedure in the SRS/E program.
Figure 6-22 shows the experimental environment seleded for this investigation. It
is charaderised by having three distinct paths of varying length from the defined
start “S’ to defined goal or finishing locaion “G”. The maze arangement used
here differs from that of Tolman and Honzik.

In the procedure 100 “clone” animats are seleded for ead of the three groups
(i.e., eat of the three groups comprises 100 individuals with rseed = 100Q 1001
... 1099. All 16 traversals of the mazeby the first group are valenced. The first 11
traversals of the second group are unvalenced, but the twelfth and subsequent
traversals are. All traversals by the wntrol group are unvalenced. The essential
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parameters are: Arep = 0.5, Adisp = 1.0, Lprob = 0.25, the other leaning
parameters are standard.

||

Graphic 5.25 from monolith\mazes.cdi

Figure 6-22: The SRS/E Latent L ear ning Environment

6.6.2. Resultsand Analysis of Experiment

Figure 6-23 shows the results of the experiment, indicaing that the esential
properties of the Tolman and Honzik experimental results are present. The first
group show a gradual improvement in performance throughout the procedure. The
second group show a dramatic improvement following the introduction of goal
valencing. The third, control, group shows no significant change in performance
Note the different representation of performance stepdftrial rather than errors. A
logarithmic representation of the performance &is has been used for cosmetic
reasons. Neither of these fadors sould materiadly affed the interpretation of the
results.

The gradual improvement seen in the ontrol group of Tolman and Honzik's
results is not replicaed by SRS/E. This might be interpreted as evidence that some
other form of reinforcement is available to the anima prior to the main reward
(Bower and Hilgard, 1981, p. 339. Alternatively it might be noted that rats (and
many other mammeals) show a quite distinct curiosity29, seeking out the novel and
then ignoring it once it is no longer novel. The design of Tolman and Honzik’s
maze has many dead-ends, which once discovered can be safety ignored in

29As MacCorquodale and Meenl (1953 p. 204 put it “No one who has observed rats during their
early exposure to a maze could dismiss the exploratory disposition as of negligible strength”.
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subsequent traversals of the maze - leading to a reduction in measured error rate.
SRS/E differsin that it responds to novelty, but does not seek it out. An additional
mechanism, such as prioritized smveeping of Moore and Atkeson (1993), might be
adapted for use in SRS/E to demonstrate the gradual improvement findings in the
control group.

Latent Learning

1000

R K — x5~ g —XE B —py —py =R~y —X X ~x X=X No goal set
100 \

Goal always set

10

No goal setuntil trial 11

log Average stepsitrial

1

e e e
0123 456 7 8 91011121314151617 1819 20

Trials

monolith\results\latent\lat100.xls

Figure 6-23: Resultsof the SRSE Latent L earning Experiment

6.6.3. Discussion

That SRS/E should demonstrate latent learning is hardly in doubt, nor a surprise.
Reinforcement is generated internally, and is not dependent on external reward.
Given therevival of interest in behaviourist and reinforcement learning methods for
machine learning models it is nevertheless a timely reminder that these are well-
trodden paths. Latent learning has been extensively researched. Thistlethwaite
(1951) identifies and evaluates over 30 different latent learning experiments under
a variety of different experimental conditions. MacCorquodale and Meehl (1953)
placed considerable emphasis on the latent learning phenomenon, indeed stating
that it provided the main motivation to add their contribution toward the
formalisation of expectancy theory. MacCorquodale and Meehl note that not all
experiments to demonstrate latent learning actually do so, in part, no doubt, due to
variations in experimental design and procedure. Observation of the latent learning
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phenomenon places a cnsiderable strain on behaviourist and reinforcement based
theories, whereas the dsence of the phenomenon hes little impad on expedancy
based models.

SRS/E’s demonstration of the latent learning phenomena aises from one by now
well explored propensity - to pursue a known route to a valenced goa in
preference to exploring for a possble better alternative. With group one (always
valenced) some, typicaly small, proportion of the individuals traverse the mazeto
the goal location by one of the longer paths during the first trial. Once they have
that path, those individuals tend to continue to use it, as their behaviour is always
valenced while in the maze Gradual improvement in performanceis a consequence
of the dhoice of Lprob = 0.25, and is consistent with the leaning rates previously
shown in the baseline investigations of figure 6-2. Group two has adequate
opportunity to explore the mazeby random walk during the 11 unvalenced trials.
Once the goa locaion beames vaenced individua animats have invariably
encountered, and so use, the shortest route. Consequently, on average, the
performance of group two exceals that for group one, once the goal is valenced.
The mntrol group have no reason to trea the “goa” differently from any other

location, and show no performance improvement.

6.7. PlaceLearning

Tolman aso devised a place learning experiment, again using rats in an
experimental mazeto demonstrate what he referred to as “inferential expedation”
or “insight” in these aimas (Tolman and Honzik, 193M). In this classc
demonstration experimental rats were placel in a mazeof the form shown in figure
6-24. With adequate experience of the mazerats $i.ow a dea preference for the
shorter of the available routes, path 1. When path 1 was blocked the rats siowed a
distinct preference for path 2 and when path 2 was also blocked, then the rats
would adopt the longer path 3. The key to the experiment is the pladng of the
block. Tolman argued that if the block was placed at point B arat guided by blind
habit would first try path 2, its choice d this dedsion point being dreded by the
response previously associated with the stimulus at that point. However, one
cgpable of cognitive “inferential expedation” or “insight” would conclude that the
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block also affeded path 2 and would consequently employ path 3 dredly. He
found this to be the case.

Food box
Table
---1-- Block B
Path 1
o --41-- Block A
% , E
C p Path3

i Starting place

Graphic 5.27 from monolith\tolmaze.cdr

Figure 6-24: Tolman and Honzik’s “Insight” Maze

adapted from Bower and Hilgard (1981, p. 337)

6.7.1. Description of Procedure

These “insight” experiments are replicaed with SRSE using the experimental
environment of figure 6-22. The procedure replicaes the magjor functional feaures
of Tolman and Honzik’s “insight” maze In the replicaion of this experiment naive
animats are dlowed to explore the mazefor 2,000 cycles by unvalenced random
walk. This allows sufficient time for the animats to explore every path. Each animat
is then given one valenced trial from “S’ (*G” asserted as goal) with no path
blocked to confirm that the animat will seled the most dired route. In the next step
the locaion at point “A” is blocked. The animat is returned to “S” and “G” is
valenced. The number of steps required to traverse the environment to the goal is
noted. The aiimat is returned to “S’, “G” is valenced and the number of steps
required to read the goa locaion again roted. In the next step the block at
location “A” is removed and a block added at location “B”, the animat is returned
to “S’. The goal locaion “G” is valenced and the number of steps to traverse the
modified environment noted. The animat is returned to “S” and the number of steps
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to complete another valenced traversal to the goa locaion again noted. This
experiment uses the standard leaning parameters and Arep = 0.5, Adisp = 1.0,
Lprob = 1.0.

6.7.2. Resultsand Analysis of Experiment

Figure 6-25 shows the performance in this experimental procedure by a single
individual (rseed = 10). Sub-figure 6-25a @nfirms that eat path hes been fully
explored, though by no means evenly. Sub-figure (b) confirms the animat takes the
dired route when “G” is valenced. Sub-figure (c) shows the dfed of the first
valenced run after block “A” is st. After 10 failed attempts to traverse path 1, the
animat proceels along peth 2, as Tolman would have predicted. Sub-figure (d)
confirms the new path on the next valenced run. Sub-figure (€) shows the dfed of
the first valenced run after block “A” is cleaed and block “B” set. Asthe aimat is
valenced it follows the known available route (via path two) until the unexpeded
block is encountered at “B”. After a number of falled attempts to traverse the now
blocked location “B” the animat badktradks down path one and round to the goa
locaion via path three The still |onger path involving path two is ignored. Sub-
figure (f) confirms the new route via path 3 on the next valenced run.
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(A) 2000 stepsrandom walk (seed = 10) (B) Confirm Path 1

Cycle 2001: Wrld is 10 by 10 Cycle 2011: Wrld is 10 by 10

KREK KKK KKK KAKK  JFT KKK KKK KKK KKK KKAK KRRk KKKK KKAE Kkkk LXKHRHE KEEE KA KEKE KEEK
Kkkk kKKK KKAE Kkkk 55 5 3 22 15 *xxx Kkkk kKKK KKAE Kkkk 1 0 0 0 0 *xx*
Kkkk kKKK KKAE Kkkk 84 FEEE KEEkE KRRk 6 *xxx Kkkk kKKK KKAE Kkkk 1 oKEREE KEEE KEEE 0 *xx*
Kkkk kKKK KKAE Kkkk 73 KEEE KEEE KEEE 1 *Exx Kkkk kKKK KKAE Kkkk 1 oKEEE KEEE KEEE 0 *xx*
Kkkk kKKK KKAE Kkkk 84 *rEE KEEkE KREk 19 ***% Kkkk kKKK KKAE Kkkk 1 oKEEE KEEE KEAE 0 *xx*
*xxx 25 4 21 110 **rx Kkxx Kkkx 18 **** Fa—_— 0 0 0 ] oKEEE KEEE KEAE 0 *xx*
Fa—_— B KEEE AR 4] KAKK KEKE KEAK G *xxx a—_— 0 **Ex xxEx ] oKEEE KEEE KEAE 0 *xx*
***¥x 92 51 77 70 67 64 7 33 ***x ***¥x 00 0 1 0 0 0 0*r*x
KREK KKK KRKEK KKK DD YKAKK KAKK KKK KKK KKAK Kkkk kKKK KKAE KKk ] KEREE KEKEE KA KKKE KKEK
KREK KKK KKK KAKK ]G KAKK KKK KAKK KKK KKAK Kkkk kKKK KKAE Kkkk ] KEEE KEKEE KKK KKKE KKEK
Mean = 64.133331, std dev = 75.047981 Mean = 0.333333, std dev = 0.483046

(C) Add Block “A” (D) Confirm Path 2

Cycle 2036: Wrld is 10 by 10
Xk

Cycle 2052: Wrldis 10 by 10
xx

Kkkx kKKK KKKk LXEHRHE KEKEE KKK KEKE KEEK KRRk KKKE KKAE Kkkk LXEHRHE KEEE KA KEKE KEEK
Kkkk kKKK KKAE Kkkk 1 0 0 0 0 *xx* Kkkk kKKK KKAE Kkkk 1 0 0 0 0 *xx*
Kkkk kKKK KKAE Kkkk 1 oKEREE KEEE KEAE 0 *xx* Kkkk kKKK KKAE Kkkk ] oKEEE KEEE KEEE 0 *xx*
Kkkk kKKK KKAE Kkkk 1 oKEEE KEEE KEEE 0 *xx* Kkkk kKKK KKAE Kkkk 1 oKEEE KEEE KEAE 0 *xx*
Kkkk kKKK KKAE Kkkk 1 oKEEE KEEE KEAE 0 *xx* Kkkk kKKK KKAE Kkkk 1 oKEEE KEEE KEAE 0 *xx*
Fa—_— 1 1 1 1 oKEEE KEEE KEEE 0 *xx* a—_— 1 1 1 ] oKEEE KEEE KEAE 0 *xx*
Fa— 1 KEEE KEEKE KKK KKK KKK KRKE 0 *xx* a—_— 1 REEE KEEKE KKK KKK KKK KRKE 0 *xx*
Hoxkx 1 1 1 10 0 0 0 Q x*xx Hoxkx 1 1 1 1 0 0 0 Q x*xx
Kkkk kKKK KKAE KAk 1 KEREE KEKEE KKK KKKE KKEK Kkkk kKKK KKAE Kkkk ] KEEE KEKEE KKK KKKE KKEK
Kkkk kKKK KKAE Kkkk ] KEREE KEKEE KA KKKE KKEK Kkkk kKKK KKAE Kkkk ] KEREE KEKEE KKK KKKE KKEK
Mean = 0.862069, std dev = 1.800383 Mean = 0.551724, std dev = 0.525226

13 ” 13 ” M

(E) Remove Block “A”, Add Block “B (F) Confirm Path 3
Cycle 2098: Wrld is 10 by 10 Cycle 2116: Wrld is 10 by 10
KRRk kKKK KKAE Kkkk LXEHRHE KEEE KKK KEKE KEEK KRRk kKKK KKAE Kkkk LXEHRHE KEEE KKK KEKE KEEK
Kkkk kKKK KKAE Kkkk 1 1 1 1 1 EExx Kkkk kKKK KKAE Kkkk 1 1 1 1 1 EExx
Nkkk kKKK KKAE KAk KkKK KKKK KKKK Kkkk 1 EExx Nkkk kKKK KKAK KAk KkKK KKKK KKKE Khkk 1 *Exx
Kkkk kKKK KKAE Kkkk 15 *kxx Kkxx KEkkx I Kkkk kKKK KKAE Kkkk 0 *EEE KEEkE AEEE 1 EExx
Kkkk kKKK KKAE Kkkk D KEEE KEEE AEEE I Kkkk kKKK KKAE Kkkk 0 *EEE KEEE AEEE 1 *Exx
Fa— 1 1 1 D KEkE KEEE AEEE I Fa— 0 0 0 0 *EEE KEEE AEEE 1 EExx
Fa— 1 REEE KEEE 1 oKEEE KEEE KEAE 1 EExx Fa— 0 **Ex ExEx 0 *EEE KEEE AREE 1 EEEx
Fa— 1 1 1 2 1 1 1 1 EExx Fa— 0 0 0 1 1 1 1 1 EEEx
Kkkk kKKK KKAE Kkkk ] KEREE KEKEE KKK KKKE KKEK Kkkk kKKK KKAE Kkkk ] KEEE KEKEE KKK KKKE KKEK
Kkkk kKKK KKAE Kkkk ] KEREE KEKEE KA KKKE KKEK Kkkk kKKK KKAE Kkkk ] KEREE KEKEE KKK KKKE KREK
Mean = 1.586207, std dev = 2.559633 Mean = 0.620690, std dev = 0.491304
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Figure 6-25: Results from “Insight” Experiment

As with the latent learning experiment the key to succesgul demonstration of the
phenomenon under investigation is careful experimental layout and procedure.
Where the latent leaning procedure cdled for careful rationing of experiencein the
maze during the initial stages of the sequence, this procedure cdls for adequate
exploration. Without this the various routes may not be fully known to the animat,
and consequently it will not seled the preferred (by the experimenter in this case)
routes. Other reseachers subsequently found Tolman and Honzik’'s results
repedable, but prone to disruption, apparently due to elements in experimental
design.

6.7.3. Discussion

SRS/E confirms Tolman's view of “insight”. It seems unlikely that Tolman will
have won much approbation from his peas by the use of the term, implying as it
does, aleve of intelligence well above that normally associated with the laboratory
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rat. Perhaps paradoxicdly, and with the benefit of hindsight, we may seethat this
behaviour is fully explicable in terms of problem solving, at best a minor form of
“indght”. Nevertheless the caabilities demonstrated by Tolman's rats and
replicaed by the SRSE agorithm in this procedure still present considerable
difficulties to the behaviourist and readive ayent schools of thought that promote
reinforcement learning by explicit reward.

6.8. Chapter Summary

This chapter has described a series of experiments that investigate the properties of
the SRS/E algorithm as an implementation of the Dynamic Expedancy Model. To
fadlitate dired comparison with previously published algorithms, Sutton’s (1990
Dyna family of reinforcement leaning programs, the experimental conditions
employed for those previously published works have been replicaed. In the
baseline investigations of sedion 6.2 the performance of the SRSE algorithm was
direaly compared to that of Sutton's Dyna-PI agorithm. SRS/E shows a marked
performance gain over Sutton's agorithm. Under “ided leaning conditions’
SRS/E was clealy able to master the mazetraversal problem within a single tria
(the Lprob = 1.0 curve of figure 6-2), whereas Dyna-PI is recorded as requiring
over 80 trials (the “zero planning steps’ curve of figure 6-1). It may be estimated
that this represents approximately a forty-fold improvement in leaning efficiency,
in terms of the overall number of steps required to master the given task. The
improved curves $rown for Dyna-Pl are adieved by added internal computation,
the degraded curves for SRS/E are aeded by restricting the dfediveness of the
learning process (Lprob < 1.0).

Sutton did not report on the performance of Dyna-Pl in the noise disrupted
environment he described. However, these investigations were performed with the
SRS/E agorithm, and are reported in sedion 6.3. The results obtained are
summarised in figures 6-4 and 6-5. The figures demonstrate that while the rate &
which the task is leaned is not markedly affeded by the aldition of this form of
noise, the overall leaned task performance is degraded by the presence of the
noise. It was subsequently argued in sedion 6.3.2.2 that the Dynamic Policy Map
isindead corredly formed by the leaning process It is the task performancethat is
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disrupted by the presence of noise in the test trials. When this noise is removed,
animat task performance is restored to near optimal levels.

The dternative and multiple goal experiments described in sedion 6.4 highlight a
sgnificant difference between the Dynamic Expedancy approach and that of
conventional Q-learning algorithms. By recomputing the policy map on demand it
becomes clea that any sign known to the system nmay be treded as a goa and
seleded on some abitrary basis, not just those signs that were assgned as goals
during the learning process The SRS/E agorithm may therefore aldress stuations
where the animat is faced with goals that vary over time, and where several goals,
of varying priority, must be tackled in an appropriate order.

The investigations of sedion 6.5 explored the response of the SRS/E agorithm to
a variety of situations in which different paths from a starting point to a fixed goa
point are presented to the aimat. These tasks are esentialy beyond the
cgoabilities of conventional Q-leaning algorithms of the form described by
Watkins (1989. The performance of Sutton’s Dyna-Q+ algorithm, an adaptation
of the Q-learning approad, was compared diredly with the unmodified form of the
SRS/E agorithm. Even though the medanism by which new paths are discovered
is radicdly different in the two algorithms, the gparent recorded performance was
generaly very similar. This is omething of a surprise, as it might be thought that
the inclusion of a cntinuoudy adive exploratory component in the Dyna-Q+
algorithm would degrade its otherwise optimal levels of performance Exploration
is only invoked in SRS/E when an obstruction to the policy map path is
encountered. The provision of an extinction mechanism in the SRS/E algorithm is a
radical departure from the Dyna approach, and has some biological plausibility.

The demonstration of latent leaning, described in sedion 6.6, highlights a
substantive difference between the Dynamic Expedancy Model and previous
reinforcement leaning techniques. Leaning is demonstrated to take placein the
absence of external reward. This result, for which there is a substantial body of
corroborating literature from anima leaning experiments, would be wholly
unexpected from a conventional reinforcement learning mechanism.
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Similarly the place learning experiments, described in section 6.7, demonstrate the
ability of the SRS/E algorithm to negotiate obstructions in its policy path in a
manner that would be unpredicted from any algorithm employing a static policy
map. Again, these results are consistent with findings from well-established animal
learning experiments.

207



Chapter 7

7. Extensionsto SRS/E and Further Work

SRYE is an experimental system. By their nature such experimental systems are
vehicles for extension and enhancement. The SRS/E agorithm is a working and
workable implementation of the Dynamic Expedancy Theory, but there is sope
for additional capability. This section describes a small number of the possibilities.

7.1. An Association List

A component part of MadCorquodale and Med’s interpretation of Tolman's
expectancy theory proposed a separate sign to sign asciative dfed (denoted
“S,S*"). Such pairings may in particular record the asciation of arbitrary signs
(Sz) to signs (S*) spedficdly identified as relating to desirable goal situations; the
secondary cathexis postulate. The aedion of a separate Association List, A4,
within SRS/E would allow the @tadment of multiple (secondary) goal states to a
single (primary) goal definition. Signs deteded as occurring concurrently with, or
dightly preceading (giving a predictive dement to the asociation) a predefined goal
sign would be paired with the desired sign and this association saved on 4, figure
7-1. The dsrength of this asociation being subjed to strengthening by
mnemonization and weakening by extinction processes based on the frequency and

temporal adjacency of the pairing.
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Graphic 6.1 from monolith\dpmex.cdr

Figure 7-1: Sign-Sign Associations (Secondary Cathexis)

This arrangement allows greater flexibility in selecting goals from the Behaviour
List, as there is no longer a requirement for the originator to identify specific
tokens or signs to describe the goal. This form of association is different from the
association phenomena described in the classical conditioning literature, in that it
is not dependant on an unconditioned response (UR). The S,S* sensory
preconditioning effect has been demonstrated under controlled experimenta
conditions, what relationship it may or may not have to classical conditioning
phenomena is a matter of some conjecture. Bower and Hilgard (1981, pp. 330-
331) review some of the evidence.

7.2.  Seeking Multiple Goals Simultaneously

Multiple goals may be pursued in a more effective manner than the sequential
strategy currently employed by SRS/E. Given severa goals active on G, the SRS/E
algorithm currently actively seeks the top-goal, and will pass secondary goals by,
regardless of how close they are to the current path, or of the overal estimated
cost of achieving the main goal and subsequently continuing to the secondary one.
This was demonstrated in section 6.4. The algorithm normally takes the path of
least estimated cost to the top-goal. Where a secondary goal is on the path, by
either good-fortune or chance, then it is satisfied in passing.
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Changes to the goa seeking process may be implemented either by building a
single DPM where the adion seleded depends on both cost to goa and relative
goal priority, or by computing several DPMs, and seleding an adion on the basis
of some, as yet undetermined goal strength function, f(esti mated_cost,
goal _pri ority), thuscombining cost and priority. This would alow the animat to
divert to secondary goals when they are dose to the primary path. This, coupled to
the proposed Association List, alows svera paths to the desired spedfied goal
state to be defined and pursued concurrently. Figixdlustrates the concept.

Catchment Space
forSz=g'

Catchment Space
for Sx=¢'

Catchment Space
forSy=¢'

Graphic 6.2 from monolith\dpmex.cdr

Figure 7-2: Enhanced Goal Acquisition

In this example eab goal (or goal by association) has a “cachment area”, defined
by the goal strength function. For ead recomputation of the Dynamic Policy Map
every signin S will fall within the cachment areaof one of the prioritised goals. So
in this example if “Sb” was adive (“Sb*”), the animat would use the u-hypothesis
“Hbv” to satisfy the lower priority goal gz, even if the path “Sb*”-“Se” represented
the lowest estimated cost path to gl. The animat would then proceal to the
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original gl, posshbly via the path “Sh”-“Sk” and so on. In the arrent
implementation the animat seleds from the available dternative paths “ Sb*”-“Sv”,
“Sb*”-“Se” or “Sb*”-“Sd” entirely acwrding to the lowest estimated cost path to
gl, and so may increase the total path to satisfy both goals unnecessarily. Even in
the proposed regime the animat would pusue the path “Sd*”-“Sc” if that
represents the lowest cost path, as“Sd” falls outside the cachment areadefined for
“Sv”,

Goodwin and Simmons (1992 describe a dedsion theoretic goproach to the
balancing of multiple goals for a HERO 2000 series mobile robot. Haigh and
Veloso (1996 describe Rogue, a system for generating and exeauting plans with
multiple interacting goals, where goal tasks may be interrupted or suspended.

7.3.  An Explicit Template List

This extension to the SRS/E algorithm proposes an additiona list type, the
Template List, T, to record the pattern of signs and adions used to build a new u-
hypothesis. Templates may at first be aeaed at random, much in the manner that
u-hypotheses are in the present version of SRS/E. After a period of corroboration
the dfedivenessof eat template may be assessd by reference to the confidence
measures of the u-hypotheses it was responsible for creding. Future bias being
then given to those templates that are demonstrated to give rise to successul p-
hypotheses. This meta-leve learning may be instrumental in explaining learning-
to-learn phenomena described in the natural leaning literature (although these
phenomena may also be in part due to an increase in overal competence). The
provision of a Template List would further allow the originator to bias the leaning
strategy of the aimat acwrding to pre-conceved notions of an intended

environment or behavioural strategy.

The provision of a separate Template List equates, in some smal measure, to
Popper’s notion of a “theory”. Individual u-hypotheses are generated from these
meta-level objeds, and in turn these meta-level objeds may be judged acwrding to
the performance of their generated descendants.
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7.4. Directing Learning Effort

The SRS/E agorithm is an implementation of an expedancy theory, reinforcement
for individual u-hypotheses is contingent upon their effediveness as a predictive
element. This reinforcement is not, in the system and experiments © far described,
contingent on any notion of the value (as defined in the @hogram or elsewhere) in
adhieving goals defined for the system. There is a huge body of evidence that
leaning is indeed contingent upon the adieving a “desired” outcome (i.e. one
which “reinforces’.) An absolute distinction between predictive outcome and
desrability is therefore a unnecessary one, and utimately potentialy
disadvantageous to the system.

MadCorquodale and Meenl (1953 pp. 238239 suggest increasing the
expedancy-growth strength to a greder rate acording to valence level. This is
equivalent to increasing the value of the leaning rate parameter oo when a reward
is deteded as a result of satisfying a highly valenced prediction. In pradice
adopting this grategy will have only a margina effed on the system’'s overall
observable behaviour. It also serves to confound two quite separate isaues - the
reliability of an expedancy and the usefulnessof an expedancy. The reliability (as
refleded in the various confidence measures) of the p-hypothesis is properly
determined by the ratio of successul to unsuccesdul predictions, as has been the
case. If an outcome is useful, then emphasis ould be placel on the aquisition of
u-hypotheses that achieve it either directly or indirectly.

Eadh signin S may therefore be graded acwrding to the highest valencelevel it has
adhieved in the past in various Dynamic Policy Maps creded by the system.
Therefore, if a sign & has been nominated as a goal in the past, the leaning sub-
system should always crede anew u-hypothesis if the opportunity arises. If the
sign & has been implicaed at valence level two, then the leaning system should be
strongly biased to creae anew p-hypothess, and so on, reducing as the highest
recorded valence level for & fals away. In a pradicd system the probability of
leaning would reasonably be afunction of (1) the highest (“best”) valence level
adhieved by the sign; (2) the priority of the goal giving rise to the valencing; and
(3) how recently the goal was valenced. Thus:
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P(creation) < f(best _val ence_l evel *goal _priority*recency_of _goal)
egn. (7-1)

Giving a situation where higher valence levels and greater goal priorities increase
the probability that the unexpected occurrence of § will give rise to the
formulation of a new p-hypothesis to predict that sign. The probability further
decreasing as time elapses since the goal was last asserted.

The current implementation of the SRS/E agorithm records the most significant
valence level assigned to every element of the Sign List in the value
best _val ence_l evel . In an optional process to be referred to as valence level
pre-bias u-hypothesis creation by unexpected event (SRS/E step 8.2) always
creates a new expectancy if the unpredicted sign has any valence level defined for
it. This has no effect when the learning probability rate (Lprob) is 1.0, as all
opportunities to learn are exploited unconditionaly. The results of the experiments
described in section 6.2 show the deterioration in learning performance as Lprob is
reduced. Figure 7-3 compares the effect of enabling the valence level pre-bias
option for the data in figure 6-2 (where Lprob = 0.1, Adisp = 1.0 and Arep = 0.0)
against the original results.

Valence Level Pre-bias (Lprob =0.1)
1000 —+
900 4% Control
% 800 -\
£ 700 + 4 With VLPB
2 600 \
»n 500+ x Without VLBP
% 400 +
5 300 -
Z 200+ x
100+ \
0 ,7XXXXXXXXXXXXXXXXXX X MQ&MKAMKMMMMMMK
0 10 20 30 50
100 samplest/trial
Trials

monolith\resultsivipb\vipb.xls

Figure 7-3: The Effect of Valence Level Pre-Bias
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The dramatic improvement in learning performance is explained by the rate at
which the valence level may propagate from the goal sign. With Lprob = 0.1, there
is effectively only 10% chance that the crucial u-hypothesis that connects the goa
to asign at valence level one will be created. Without this critical link, no DPM can
be built, and goa seeking performance is restricted to random walk search. Once
this link is created the catchment area within the DPM is widened and the
corresponding random search time reduced.

The step-like performance shifts for many individua trials (which appear as the
classical negatively decelerating learning curves when averaged over many trials)
are a consequence of the abrupt connection of the growing network of latently
learned expectancies, with those connected to the goal. By ensuring that the final
connection is made (by pre-biasing it), and that the second connection is made on
the next attempt, and so on, the portion of the graph connected to the goal is
guaranteed to expand by at least one valence level on each trial. In figure 7-3 this
would be a maximum of 14 trials. In practice this is reduced to around half this
figure due to latent learning of the graph made during the tria-and-error search
period of each trial.

7.5. Averson

The discussion of SRS/E up to this point has only considered goals that are
actively sought, and has not included situations where an action is to be avoided as
it may lead to an undesirable outcome. There is a considerable body of evidence
(Campbell and Masterson, 1969; Schwartz, 1989, Ch. 6) that animals and humans
will actively avoid situations leading to certain sensations, variously described as
undesirable, unpleasant or painful. The mechanism by which sensations are
characterised in these ways in nature is not entirely clear.

For the purposes of the SRS/E agorithm it is sufficient to designate certain
sensations, as encoded as input tokens or signs, as undesirable. Thisis a function of
the ethogram design. u-Hypotheses that predict the occurrence of these outcomes
may be disadvantaged by additional cost estimates. The degree of this disadvantage
being related to the given degree of undesirability of the resulting sensation, and
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the confidence with which the outcome is predicted. It may be inappropriate to
chain these aversions, in the manner of the positive goa seeking activities, as this
may lead to a form (or analogue) of a phobia. Actions are avoided on the basis
they might lead to an undesirable outcome at some time in the future, irrationaly,
as many actions may be taken to easily avoid the undesirable outcome. Clinica
symptoms of phobiasin humans seem unlikely to be related to this mechanism.
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Chapter 8

8. Discussion and Conclusions

8.1. Reactive or Cognitive?

The initial problems remain. Is behaviour in animals and animats primarily or
wholly acaording to responses mediated by the immediate readion to impinging
stimuli? Is leaning smply a matter of strengthening or wegkening the wnnedions
between stimulus and response, as the readive or Stuated agent behaviourists
would have us believe? Or is behaviour primarily instigated by “goals’, internal
states of the animat set and satisfied acarding to the physiologicd needs of the
animat, with the processes of the animat selecting actions to pursue those goals?

These questions have been hotly debated for nealy a ceantury, with a mountain of
evidence acamulated for both viewpoints. Brooks (1991b) has argued (and many
before him), much of what we observe in animal and human behaviour can ke
perfedly adequately explained with a purely stimulus-response analysis. Yet from
the time of Tolman (1932 psychologists have agued that readive behaviourism is
wholly inadequate to explain the behavioural abilities of the human spedes and, as
demonstrated through ingenious experiment, to explain al the behavioural abilities
of animals.

8.2. Expectancy Model as “Missing Link” in Learning Theory

The Dynamic Expedancy Model may be thought of as the “missng link” between
pure SR behaviourism and the “cognitive”, goal based, approach. While the
Dynamic Policy Map is creaed by a goa driven process utilising the three part
representation of the u-hypothesis, a purely cognitive notion, immediate behaviour
is sleded only on the basis of the aurrent stimulus st, and so may be thought of
as purely readive. In many experimental designs the two may appea amost
indistinguishable from one another. A similar distinction hes been developed in the
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ideaof universa planning, which is considered in more detail later in this chapter.
Criticdly, and in keegping with the observation that reward is most effedive if
applied immediately following an event, reinforcement is gill applied dredly to the
main unit of leaning, the up-hypothesis, immediately the outcome (of the
prediction) is known. The alaptive component of the leaning process is pure
reinforcement; behaviour due to the combination of these units to produce goa
seeking behaviour by the spreading activation process Dired reinforcement
relative to a known system “motivation” is not excluded, as demonstrated by the
valence level pre-bias experiments. There is aso no restriction to the re-ordering
or strengthening of elements of the Behaviour List B in a manner entirely

consistent with a pure S-R behaviourahforcement regime.

Given the obvious diversity of both physicd and behavioural charaderistics aaoss
al the spedes of the aiimal kingdom, it would appea idle to suggest that there
would not be a smilar diversity of behavioural and leaning strategies. Some
animals with simple behavioural strategies may employ no adaptive aility, or
limited learning strategies. In others the number and complexity of these strategies
increase, manifest as improved behavioura ability. Razan (1971 p. 252 has
proposed an “evolutionary ladder of readions’, which argues for a rrelation
between an anima’s place on the evolutionary scde with the gpeaance of
experimental evidence for various learning strategies at the different levels. In this
context adoption of different and varied reinforcement strategies, and similar
strategies to varying extents, by different species seems inevitable.

8.2.1. Typesof Reinforcer

The onventional view of a reinforcer is related to underlying biologicd nedls,
such as “food, water or sexual contact for appropriately deprived individuals’
(Bower and Hilgard, 1981, p. 2698). It is exadly these nedals that can repededly be
demonstrated as the motivations or drives to initiate and sustain behaviour. It
makes design sense to lean behaviours relating dredly to those aspeds that will
be most germane to the everyday existence of the animat. Such primary
reinforcers may be eaily identified and caegorised into phenomena that do, and
those which do not, ad to modify behaviour. In SRS/E, with the valence level pre-



bias (VLPB) option enabled, any sign placed on the Goal List will subsequently

adopt the role of a primary reinforcer.

It is clea that phenomena other than dired biologicd need can ad as a learning
reinforcer. Such secondary reinforcers may include “money, praise, social
approval, attention, dominance and the spoken exclamation "good"” (Bower and
Hilgard, 1981, p. 268). At a level below even the primary reinforcers, notions of
“pleasure” and “pain” appea to “pre-classfy” stimuli and sensations into desirable
phenomena, to be sought and undesirable phenomena, to be avoided. The eistence
of spedfic nerve types to deted “painful” stimuli would indicae that this is a very
primitive medhanism, one it is easy to argue will have avery immediate impad on
the survival rate of an organism. “Pleasure”, on the other hand, seems to be
asociated with a much higher level of neural organisation. In this context the
application of expedation satisfadion appeas as a bridging reinforcer. Expedation
satisfadion is neither a primary reinforcer - it serves no dired biologicd need, nor
a seondary reinforce - as it does not require asocial infrastructure implicit in the

list of secondary reinforcers.

8.3. Reationship to Policy Maps and Universal Plans

A feaure of the Dynamic Policy Map is that it indicates the most appropriate
adion to take in the spedfic set of circumstances defined by the goal being sought
and by the prevailing sensory pattern. In SRS/E this pattern may include dements
from the traceof past sensations. In this resped the adion seledion medhanism has
many similarities to the policy map described for reinforcement and Q-leaning
procedures. These procedures suffer in comparison to the DPM when the goa
definition changes, or the path to the goal bemmes blocked or radicaly altered.
Schoppers (1987 1989 1995 develops the notion of universal planning that
addresses the plan/react issue from a different direction

In Schoppers system a conventional planner builds a problem-solution path using
goal reduction operators. The resulting structure is converted into a dedsion tree
This may be traversed for ead current stuation to determine the adion
appropriate to the prevailing conditions defined by a set of known and
predetermined predicae tests, a cache of pre-formulated step solutions. The
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readive nature of the universal plan overcomes a form of brittleness inherent in
conventional planning, where failure of any stage during exeaution causes failure of
the plan as a whole. Universal plans read to successes and failures in adivity
without recourse to additional computationally expensive replanning.

Ginsberg (1989 argues againgt the universal plan as a useful approach. He agues
that the size of the cade will grow exponentially with the number of sensors, that
there will be only a minor computational cost saving, and that this will be & the
expense of greaer storage requirements. Ginsberg's exponential growth argument
is based on the notion that all sensors are independent, and that ead sensor may be
conneded to every adion. He further argues that, unless the “universal plan’
covers al eventualities it should properly be referred to as an approximate

universal plan

Strict application of the exponential complexity argument is edous. The world is
clealy non-uniform. Were the world “uniform” then it would make no difference
which adion was taken under what circumstances, and such is palpably not the
case. All asociationist, behaviourist and cognitive models are based on the
exploitation of this non-uniformity. Rivest and Schapire (1990 have presented an
algorithm to deted and uilise equivalence in detedable wnditions. Using this
agorithm the 10 states of the sometime popular children’s toy the Rubik’s Cube
may be reduced to 54 conditions. Yet it may be that important conditions in the
environment are poorly distinguishable, either because they are in some true sense
similar, or becaise the sensory capabilities used to differentiate between them are
ineffedive. Under these conditions the behavioural (and learning) mecdhanisms will
be obliged to incorporate a broader spedrum of sensations to disambiguate

between candidate options.

If we view the evolution of spedes as nature’'s “universal plan generator” (as made
manifest in an individua’s ethogram), it bemmes clea that these exponentia
complexity pre-conditions relating to sensors do not hold. As discussed in an
ealier sedion, nature gparently tailors and tunes otherwise undifferentiated
sensory apparatus to ead task. Tinbergen's birds responded quite spedficdly to
cetan “predator” slhouettes, but were gparently oblivious to other shapes.
SRS/E and other like systems may take alvantage from similarly tuned sensory

21¢



apparatus, but even without this advantage will seek to identify those combinations
of sensations that are significant, and ignore the remainder. In summeary there is no
need for sensory apparatus to be uniform or homogeneous.

Clasgcd Al planning systems have two potentia advantages over readive and
policy based approadhes. First, they are (or should be) incorporated into formally
corred seach procedures. More significantly thisimplies that the operators defined
must themselves be wrred; that is achieve the outcome they promise, under the
conditions they promise them. Seoond, the dasscd planner may take different
adions based solely on its current position in itsinternal solution path, although the
incoming sensor vedor is identicd. The aurrent detedable nditions are used for
confirmation, or not at al. Purely readive systems based on the arrent sensor
vedor do not have this advantage. SRS/E addresses this problem by the use of
adivation traces and recancy values. Other approaches may alow redrculation of
sensory data (for instance, Bedker’s proposal to re-circulate kernels into STM,) or
some other method for the explicit recording of past events into the representation.

However, classcd Al planning can lead to a form of brittleness If the operators
are not corred the solution path generated will not be crred. Advantage gained
from the orredness of the seach procedure is compromised. SRS/E operators,
the u-hypotheses, are, by their nature, only an estimate of the described transition.
The Dynamic Policy Map allows the SRS/E agorithm to seled adions on the basis
of combined probabilities, as manifest in the st estimation procedures, and then
to update its confidence in individual p-hypotheses on the basis of the outcome. It
is particularly robust in the face of unexpeded outcomes caused, among other
reasons, by faulty or unconfirmed u-hypotheses. It takes advantage of
serendipitous transitions forward to the goal where the @mst estimate unexpeded
falls, and may continue dong some other route to recver from a failure to traverse

the expected path.

In a wide range of circumstances Peeal of response is the aiticd iswe in
behaviour. The tardy prey, absorbed in careful planning of its escgpe, might exped
no quarter from the stooping hawk. Perhaps predictably, Schoppers (1989 in his
reply to Ginsberg argues in favour of the increased space utili sation for the cabe
to adiieve responsiveness Given the incompleteness of most behavioural

22C



repertoires, and of the scope of the arrent generation of forma planners,
“universal plan” may indeed be something of a misnomer.

8.4. One-Shot Learning Phenomena

The SRS/E model clealy demonstrates the one-shot Iearning phenomena. As son
as the u-hypotheses is creded the animat has a possble path between the two
points in the “cognitive” map represented by the signs “s1” and “s2” embedded in a
u-hypothesis. An effedive u-hypothesis becomes rapidly adopted as the path of
choice, and the animat will appea to lean quickly, possbly as a result of a single
trial. Because its outcome is succesdully predicted, discovery of an effedive
solution also has the dfed of suppressng further leaning adivity related to the
sgn “s2”. If, as is more likely, the new u-hypothesis fails to encgpsulate dl the
conditions necessary for a perfed prediction, further learning may occur at ead
instance of an imperfed prediction. At some point it may be that there ae
sufficient imperfed u-hypotheses to ensure that every instance of “s2” is predicted,
and learning for this restricted sub-domain will cease, at least temporarily.

This procedure may serve to explain the conundrum (described by Bower and
Hilgard, 1981, p. 341) of why a rapidly leaned path is quickly extinguished, yet
onethat is leaned over an extended period takes longer to disappea. Individual p-
hypotheses are (in SRS/E at least) extinguished at an esentialy equal rate, on the
basis of adivations, not elapsed time. Where one-shot leaning has taken place a
single u-hypothesis is available to read the solution while the goal is asserted. No
further u-hypotheses being creaed as none ae required. The observed extinction
time is therefore equivalent to that for a single u-hypothesis. Where several such
aternative, abeit imperfed, u-hypotheses exist, more than one path will be
available through the Dynamic Policy Map. As ead path fails, another will be
seleded from the recomputed DPM. The animat will continually swap between the
aternatives as the estimated policy cost shifts (at a rate determined by the
parameters previoudly discussed) due to prediction failures. Eventually one, then
another and finaly all the different paths are extinguished and the godl is finaly
abandoned as unachievable in the normal way.
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Overdl time to extinction, as measured by the count of adions ascribed to
pursuing the god, is then (in the SRS/E algorithm at least) a function of the
number of aternative paths through the DPM. Alternative paths arise through
imperfed  u-hypothesis formulation, which extends leaning time. Therefore,
extended leaning times lead to extended extinction times. Careful examination of
results from extinction experiments (sedion 6.5) reved this effed, which is
particularly apparent in thaual-path extinction procedures (figuré-17).

Taken to a natura conclusion, SRS/E attempts to build a hypothesis about every
sign it might deted, and also to predict every occurrence of those signs. Under
certain circumstances these @nditions can hold true, for instance those described
by some Markov Decision Processes (MDP) worlds. In the finite and deterministic
(FDMSSE) environment the SRS/E algorithm will stabili se with a u-hypothesis to
predict every sign and for every appearance of each possible sign.

8.5. Expectancy Theory and XBL - a Proposal

The development of expedation based leaning dredly impads one of the long
standing conundrums asociated with madhine learning; how to make leaning truly
autonomous. Autonomous leaning means that the animat or learning program can
lean without any form of external supervision or guidance & to what represents a
“good” or “bad” choice In the cae of the novel Dynamic Expedancy Model
described in this thesis, and tested in the form of the SRS/E agorithm and
implementation, a reinforcement signa is generated internally from succesful and
failed predictions.

Generaly madine leaning agorithms fall into two caegories, supervised and
unsupervised leaning. In the former category a teader is on hand to indicae to
the system the gpropriatenessof its adions and so provide the feedbad to guide
the leaning mechanism. In the latter case information about the task to be leaned
has been embedded in the cde. Buchanan, Smith and Johnson (1979 refer to this
component as the critic. The aitic compares the outcome of the performance
element, responsible for the overt (and possbly faulty behaviour) with the
predefined desired behaviour and supgies an error or difference signa to a
learning element, which modifies the performance dement accordingly. Their
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model of machine learning is a genera one, but the form in which eat of the
elements appeas and the nature of the signals passed between them is particularly

diverse.

Expectation Based Learning (XBL)39, based on the principles laid down for the
Dynamic Expedancy Mode, at last releases the etho-engineer3! from the
obligation, but not the option, to spedfy goal or purpose related criteria for the
learning element. Evaluation of an SRS/E n-hypothesis on the basis of its predictive
ability forms a measure of the dfedivenessof that u-hypothesis. Its usefulnessis a
separate isaue, related to the degreeto which it enables the performance dement to
pursue some pre-defined or otherwise generated pupose. The valence level pre-
bias (VLBP) experiment demonstrates that when leaning and performance ae

indeed linked, both may be advantaged.

Drescher (199]) suggests the term “Schema Based Leaning” be alopted as
appropriate to the dass of intermediate level cognitive models. Notwithstanding
the importance of the tri-partite representation adopted by SRS/E, ALP and JCM,
it, however, does not align diredly with the notion of expedancy. The satisfadion
of an expedancy is not tied to this particular representational formulation. It is
possble that the notion of an expedation and its subsequent satisfadion may prove
to be gplicable to a wide range of other otherwise quite cnventional structures
aready employed in the fields of Artificia Intelligence, Madine Leaning and

Adaptive Behaviour research.

30 XBL, rather than EBL, as this term is already in widespread use (“Explanation Based
Learning”, Minton et al, 1990)
310ne who engineers ethograms - for want of a more apposite term
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9. Appendix One

This appendix collates all the stages in a single execution cycle of the SRS/E
algorithm, as previously described in Chapter 4.

1.0 Gather Tokensand Update Sign-list
Initidlise " « {}; I*«{}; S*«{};
1.1 Accept tokensinto buffer, for each t oken_string do
1.1.1 & < I(t oken_stri ng) [convert input string]
[note: X(y) convert element of type y to element of type X]
1.1.2if & ¢ I[atoken previously unknown to the system]

11211« I+ [append & to I]
1.1.22 8™ « §™ + §(©) [create asign containing ]
113 % I*+ i
1285« §+8™

1.3 For each $ where € §
1.3.1if (Eval Si gnConj uncti on($))
S* S*+ ¢ [eqgn. 4-3]
1.4 G+ G- (S*N G) [cancel satisfied goals]

2.0 Evaluate u-Experimentson Basis of Prior Prediction
Initialise S « {};
2.1for every p (p € P), such that predi ct ed_t i me(p) = now, do
2.1.1if predi cted_si gn(p) € S* [prediction succeeds]
2.1.1.1 Update pr edi ct i ng_hypo(p) [according to o, egn. 4-11]
2.1.1.2 SPred . gred 4+ pr edi ct ed_si an(p)
2.1.2if predi cted_si gn(p) ¢ S* [prediction fails]
2.1.2.1 Update pr edi ct i ng_hypo(p) [accordingto 3, egn. 4-12]
2.1.2.2 rebui | dpol i cynet < rebui |l dpol i cynet + 0
213P<P-p [remove spent prediction]
2.2 gunexpected gk gpred [record unpredicted signs]
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3.0 Select Innate Action and Set Goals
Initidise B*« {};
3.1 candi dat e_act i on < Sel ect RandomAct i on(R)
3.2 for each b- where acti on(b-) € B AND condi ti on(b) € $*
321 B« B+ b;
3.3innate_acti on < acti on(max(behavi our _priority(B"¥)) [innate action]
34innate priority < max(behaviour_priority(B"¥)
3.5 for each b- where act i on(br) € B AND condi ti on(b) € §*

351G« G+ b [build Goal List]
3.6 G« order(goal _priority(@G)) [order Goal List by priorities]
3.7if(innate_priority >¢) [above basal threshold?]

3.7.1 candi date_action < innate_action
3.8if(goal _priori ty(gl) <innate_priority) [select goal or innate]
3.8.1 skip to step 6.0

4.0 Build (re-build) Dynamic Policy Map (Hypo: : Bui | dPol i cyNet ())
Initidlise H < {}; §' < {}; $" < {};

rebui | dpol i cynet < O; pat havai | abl e < FALSE,;

best cost <~ MAXVALUE ;vn ¢ 1 [valencelevel one]

Rebuild map if goal changed or ‘rebuild’ greater than threshold

4.1 while (g* € $% [top-goal already satisfied]

411 G+ G- g1 [so remove]

4.1.2 gt < max(goal _priority(G)) [and select next highest]
4.2if(G={}) skipto step 6.0 [no goals on Goal List]
4.3 (if g* = g*®™ AND r ebui I dpol i cynet < REBUI LDPOLI CYTRI P)

skip to step 5.0 [no need to rebuild DPM]

Stage 1 - create first valence level
4.4 for each v such that s2(h) = g*

4.4.1 W « cet cost Est i mat e(h) [egn. 4-13]
442. 8" « 8"+ s1(h) [record valenced sub-goals]
AA3HE — HE+ [cost of transition s1 to goal]
4.4.4 S  s1(h) [record sign cost]
445if(s1(h) € §%

pat havai | abl e < TRUE [path solution found)]

4.4.6if(best cost > 7’\/£) best cost « h¥
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Stage 2 - continue spreading activation until done
45 vn<vn+1

4.6if(S' ={}) skipto step 5.0 [expansion complete]
4.7 for each v such that s2(h) € §™" [expand each sub-goal]
4.7.1 W « s2(SF) + Get Cost Est i mat e() [egn. 4-13]
472 H — HE+ S [record total cost of path]
47.3if(s1(h) ¢ ' orR sl(h) > s1(SF))  [new or better path]
47318« ™" +s1(h) [new sub-goals]
4.7.3.2 8t S+ s1(W) [record lower sign cost]
A74if(s1(h) e §%
pat havai | abl e <~ TRUE [solution path found)]
4.75if(best cost > 7’\/£) best cost « h&
4.8 return to step 4.5 [expand next valence level]

5.0 Select Valenced Action (Hypo: : Sel ect Val encedAct i on())

5.1 VBP < Get Val enceBr eakPoi nt () [establish vBP]
5.2 if (pat havai | abl e = FALSE) VBP <« 0O [no path to goal]
5.3 eseif (vBP <0 OR VBP > best cost ) [compute vBP]
VBP <— best cost * VALENCEBREAKPQO NTFACTOR
54 H*E — HE A (s1(h) € $H [candidate active signg]
5.5 h « min(H*%) [select least policy cost]
5.6 val enced_action <« r1(h)
5.7 if(pol i cy_val ue() < VBP) [break-point reached?]
candi dat e_act i on < val enced_acti on [no, use valenced action]
5.8if(pol i cy_val ue(h) >Q) [goal cancellation level?]
581G« G- g1 [so cancel top-goal]

6.0 Perform Action
6.1 DoAct i on(candi dat e_act i on) [reify candidate action]
6.2 R*« candi date_action [record in trace]

7.0 Conduct u-Experiments (Hypo: : Eval uat eHypot heses())
initigise H* < {};
7.1fordl h, suchthat s1(h) € S¥*AND r1(h) € R¥*
711 H*— H*+ h [record activation]
712 P« P+ P, s2(h), now+1) [make prediction]
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8.0 Hypothesis M anagement (Hypo: : NewHypo() )

Creation on the basis of novelty

8.1 for each " such that (§™" = {}AND &' € &™)
8.1.1if (rand(0.0 .. 1.0) > A) skip to step 8.1.7
8.1.2 51 « Sel ect (§ € $*@
8.1.3r1 « Sel ect (¥ € R*Y
81452« &
8.1.5 H « H+ H(s1,r 1,52@+t), wheres1 #s2

8.1.6 rebui | dpol i cynet < rebui | dpolicynet +A
8.17 8™« SV g

Creation on the basis of unpredicted event
8.2 for each $"PeM gych that (SUNPEd . £} AND ginePected o gunexpected,

8.2.1if (rand(0.0 .. 1.0) > A) skip to step 8.2.7
8.2.2 51 « Sel ect (§ € $*@

8.2.3r1 « Sel ect (¥ € R*Y

8.2.4 52 ¢ ginexpected

8.25 H « H+ H(s1,r 1,52@+t), wheres1 #s2

8.2.6 rebui | dpol i cynet < rebui | dpolicynet +A
827 S.mexpected - S.mexpected _ ¢synexpected

Specialisation (differentiation)
8.3foral h, suchthat v € H*AND hypo_naturity(h)>W¥
AND hypo_prob(lv) >0 AND hypo_prob(h) <®

8.3.1s1 « S(s1(h) + ¥ [differentiate s1]
83.2r1«ri(h) [copy action]

8.3.3s52 «s2(h) [copy s2]

8.3.4 H«— H+ H(s1,r1,52% [install new p-hypothesis]
8358« S+s1 [install new signin S]

8.3.6 rebui | dpol i cynet < rebuil dpolicynet +A

Deletion (forgetting) under competition
initidise #* « {};
8.4foral h, suchthat v € H*AND hypo_naturity(h)>W¥
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AND hypo_prob(h) <©

BALH « H'+ h [build candidate list]
8.5 W9 . min(hypo_pr ob(}%) [select a deletion candidate]
8.6 1 « 1 - Wi [update Hypothesis List]

8.7 rebui | dpol i cynet < rebuil dpol i cynet + A

9.0Returntostep 1
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