crest.gif (7651 bytes)

A Robot Zoo

 

I have been involved with a large number of robot related activities, a number of which are shown below:

 

Industrial Networking for FMS Control

Flexible Manufacturing CellThis photograph shows an test set up for a computer controlled Flexible Manufacturing System (FMS) established at Cranfield to test a protocol conversion unit. The set-up included a CNC lathe and milling machine, each fed by a robot, an ASEA manipulator for the lathe and Cincinnatti-Milacron for the milling machine. Materials were passed between the various stations using a mechanical conveyer system. The protocol conversion unit was later marketed by Texas Instruments as UNILINK (IMechE abstract, INRIA abstract, ISATA abstract).

Enlargement (113k)

The "Pumarist" Manipulator Sensor System

Pumarist sensor systemThis experimental set-up transferred much of the sensor system from QMW Mk. 5 robot onto a Unimation PUMA robot. Force sensing was provided in the X, Y and rotational modes, range sensing by ultrasonic sonar and infrared object sensing across the gripper jaws; adapted from the Mk. 5 proximity sensing circuits, Close-up of Gripper (101k). Sensor information was processed by a 8-bit -processor and fed to the I/O module of the PUMA controller. This then integrated with the VAL programming language supplied with the manipulator.

 

Enlargement (188k)

 

 

The QMW Mk. VI Mobile Research Robot

This research robot vehicle replaced and extended the capabilities of the QMW Mk. 4 robot. Drive was provided by a pair of stepper motors, centrally placed this time. Power from a 12-volt automotive accumulator, or alternatively a 300W switched mode power supply. Forward facing contact plates allow recharging. Sensor capabilities included improved contact sensing, higher resolution sonar rangefinding and improved colour photo-receptors and additional angled monochrome photo-receptors. A standard 625-line CCTV camera provided rudimentary vision capabilities. This machine was used to provide rangefinder map information, used as input to a parallel algorithm for route planning (abstract). Capabilities such as these may be purchased from companies such as I.S. Robotics Inc., Real World Interface and Nomadic Technologies. K-Team produce a natty line in miniaturised robots, the Khepera.

Enlargement (202k)

The QMW Mk. V Tele-operator Robot

QMW Mk.5 Teleoperator RobotThe Mark 5 tele-operator robot sported a pair of seven degree-of-freedom manipulators mounted on a substantial mobile platform. The operator moved the vehicle via a control panel and by speech input. Feedback was provided by multiple closed-circuit television cameras and from instrumentation attached to the gripper and forearm of the manipulator, ( Close-up of manipulator, 120k). The forearm was clad in a prototype proximity sensing "skin", the gripper a combination of sensors including range and contact sensing (abstract). This work was conducted in collaboration with the UKAEA, Harwell and ICL Research Centre, Stevenage and was in large part funded by the SERC (EPSRC).

Enlargement (181k)

The QMW Mk. IV Mobile Research Robot

QMW Mk. 4 Mobile Research RobotThe final version (Mk. 4) of our first attempts at a mobile robot for machine learning research. It had a somewhat unusual (and not entirely satisfactory) drive layout with wheels at the front of the vehicle. D.C. motor drive was complemented with gray-code shaft encoders. Forward facing sensors included sonar rangefinder, colour photo-receptors and a 32x32 binary camera. Other sensors were all round touch bars and battery level monitoring. The contacts at the top of the front face allowed the vehicle to nestle against a charger pad. This robot had no on-board computing(!), relying on communications via an umbilical wire to a DEC PDP-11. The machine was programmed to give a plausible emulation of the Pavlovian conditioned reflex; and was used extensively by D.H. Mott in his thesis "Sensory-motor Learning in a Mobile Robot", an investigation into Piagetian forms of learning. Despite its simplicity this robot made several television appearances and enjoyed considerable press coverage.

 

Enlargement (43k)

 

A Simulation of Klino-kinesis

Photo-taxis simulationThis minature robot was inspired by W. Grey Walter's light seeking Machina Speculartrix, but was designed to give a true simulation of various animal movement and orientation strategies. Three strategies were emulated, klinotaxis (as seen in the larval stage of the common fly Musca), orthokinesis (documented for the woodlouse Porcello scaber) and klinokinesis (emulating the planarian Dendrocoelum). The robot was adapted to each strategy by installing the appropriate hard-wired circuit card (seen on the true right of the vehicle in the photograph). Note on-going work by Barbara Webb on phonotaxis (orientation to sound) in the cricket.

Enlargement (151k)

 

Return to Home Page