
Text-to-Image Generation

Msc Laboratory Experiment

September 21, 2023

1 Aims:

The main aim of this experiment is to give the students the concepts of deep generative model (diffu-
sion model) and foundation natural language processing model (transformer). Moreover, it will give
them the idea of probability and statistics, stochastic process, convolutional neural network, machine
learning, and computer simulation of deep leaning. All the experiments will performed using PyCharm
or Jupyter Notebook.

2 Introduction:

Deep generative model (diffusion model or knows as diffusion probabilistic model) is one of the key
enabling technologies of deep leaning, often typically refers to a specific type of probabilistic model used
in machine learning and artificial intelligence. It is a powerful framework for generative modelling,
particularly in image and data generation task. Technically, diffusion models are inspired by non-
equilibrium thermodynamics, which focus on the process of generating data by iteratively refining
a random noise source as opposed the previously held belief that noise was a troublemaker. It was
defined a Markov chain of diffusion steps slowly add random noise to data and then learn to reverse
the diffusion process to construct desire data samples from data so that creating data from noise.
Hence, high-fidelity generation of images and other data could be obtained over the training, thereby
decreasing the communication noise.

3 Model Architecture

Fig.1 shows the architecture of latent diffusion model whose diffusion and denoising processes happen
on the latent vector z. The denoising model is a time-conditioned U-Net, augmented with the cross-
attention mechanism to handle flexible conditioning information for image generation. Each type of
conditioning information is paired with a domain-specific encoder τθ to project the conditioning input y
to an intermediate representation that can be mapped into cross-attention component, τθ(y) ∈ RM×dτ :

Attention(Q,K,V) = softmax
(QK⊤

√
d

)
·V (1)

where Q = W
(i)
Q · φi(zi), K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y) (2)

and W
(i)
Q ∈ Rd×di

ϵ , W
(i)
K ,W

(i)
V ∈ Rd×dτ , φi(zi) ∈ RN×di

ϵ , τθ(y) ∈ RM×dτ (3)

4 Forward (Reverse) Diffusion Process

Fig. 2 shows the Markov chain of diffusion steps to slowly add random noise to data and then learn
to reverse the diffusion process to construct desired data samples from the noise. Given a data point
sampled from a real data distribution x0 ∼ q(x), the forward diffusion process in which we add small

1



Figure 1: One kind of diffusion model architechture.

amount of Gaussian noise to the sample in T steps, producing a sequence of noisy samples x1, . . . ,xT .
The step size are controlled by a variance schedule {βt ∈ (0, 1)}Tt=1.

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (4)

The data sample x0 gradually loses its distinguishable features as the step t becomes larger. Even-
tually when T → ∞, xt is equivalent to an istropic Gaussian distribution.

A nice property of the above process is that we can sample xt at any arbitrary time step t in a
closed form using reparameterization trick. Let αt = 1− βt and ᾱt =

∏t
i=1 αi:

xt =
√
αtxt−1 +

√
1− αtϵt−1 ;where ϵt−1, ϵt−2, · · · ∼ N (0, I)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2 ;where ϵ̄t−2 merges two Gaussians (*).

= . . .

=
√
ᾱtx0 +

√
1− ᾱtϵ

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

(5)

Usually, we can afford a larger update step when the sample gets noiser, so β1 < β2 < · · · < βT and
therefore ᾱ1 > · · · > ᾱT .

If we can reverse the above process and sample from q(xt−1|xt), we will be able to recreate the
true sample from a Gaussian noise input, xT ∼ N (0, I). Note that if βt is small enough, q(xt−1|xt)
will also be Gaussian. Unfortunately, we cannot easily estimate q(xt−1|xt) because it needs to use the
entire dataset and therefore we need to learn a model pθ to approximate these conditional probabilities
in order to run the reverse diffusion process.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (6)

It is noteworthy that the reverse conditional probability is tractable when conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI) (7)

2



Figure 2: The Markov chain of forward (reverse) diffusion process of generating a sample by slowly
adding (removing) noise..

Using Bayes’ rule, we have:

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)

∝ exp
(
− 1

2

( (xt −
√
αtxt−1)

2

βt
+

(xt−1 −
√
ᾱt−1x0)

2

1− ᾱt−1
− (xt −

√
ᾱtx0)

2

1− ᾱt

))
= exp

(
− 1

2

(x2
t − 2

√
αtxtxt−1+αtx

2
t−1

βt
+

x2
t−1−2

√
ᾱt−1x0xt−1+ᾱt−1x

2
0

1− ᾱt−1
− (xt −

√
ᾱtx0)

2

1− ᾱt

))
= exp

(
− 1

2

(
(
αt

βt
+

1

1− ᾱt−1
)x2

t−1 − (
2
√
αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0)xt−1+C(xt,x0)

))
(8)

where C(xt,x0) is some function not involving xt−1, and details are omitted. Following the standard
Gaussian density function, the mean and variance can be parameterized as follows (recall that ᾱt =∏T

i=1 αi:

β̃t = 1/(
αt

βt
+

1

1− ᾱt−1
) = 1/(

αt − ᾱt + βt

βt(1− ᾱt−1)
) =

1− ᾱt−1

1− ᾱt
· βt

µ̃t(xt,x0) = (

√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0)/(

αt

βt
+

1

1− ᾱt−1
)

= (

√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0)

1− ᾱt−1

1− ᾱt
· βt

=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

(9)

We can represent x0 = 1√
ᾱt
(xt −

√
1− ᾱtϵt) and plug it into the above euqation and obtain:

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtϵt)

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

) (10)

5 Loss Function:

Recall that we need to learn a neural network to approximate the conditioned probability distributions
in the reverse diffusion process, pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). We would like to train µθ

to predict µ̃t = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵt

)
. Because xt is available as input at training time, we can

3



reparameterize the Gaussian noise term instead to make it predict ϵt from the input xt at time step t:

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)

Thus xt−1 = N (xt−1;
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
,Σθ(xt, t))

(11)

The loss term Lt is parameterized to minimize the difference from µ̃:

Lt = Ex0,ϵ

[ 1

2∥Σθ(xt, t)∥22
∥µ̃t(xt,x0)− µθ(xt, t)∥2

]
= Ex0,ϵ

[ 1

2∥Σθ∥22
∥ 1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
− 1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
∥2
]

= Ex0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(xt, t)∥2

]
= Ex0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
(12)

Empirically, Ho et al. (2020) found that training the diffusion model works better with a simplified
objective that ignores the weighting term:

Lsimple
t = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
= Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

] (13)

6 Exercise

Exercise 1: Due to time constraints, it is challenging to fully develop our own text-to-image model
code. Therefore, the code for the Latent Diffusion model based on the training set has already been
provided, and it is needed to write yours own testing set code for this model. Additionally, it is aimed
to bring the training model’s loss within an acceptable range.

Note: In deep learning, different models have different metrics for evaluating loss values. Therefore,
here, we consider the loss converging as an acceptable range.

Exercise 2: With the aim of assessing the performance of the final model, we need to generate images
for the following six specific texts:

• a drawing of a star with a jewel in the center,

• a drawing of a woman in a red cape.

• a drawing of a dragon sitting on its hind legs

• a drawing of a blue sea turtle holding a rock

• a blue and white bird with its wings spread

• a blue and white stuffed animal sitting on top of a white surface

Exercise 3: Let’s take a moment to reflect on what areas can still be further improved in the current
latent diffusion model or text-to-image model, such as aspects related to the quality and speed of
generating images.

References

[1] Jonathan Ho et al, “Denoising diffusion probabilistic models.,” arxiv Preprint arxiv:2105.05233,
2021.

[2] Rombach & Blattmann, et al., “High-Resolution Image Synthesis with Latent Diffusion Models.,”
CVPR, 2022.

4



Figure 3: The examples of the generating images for the latent diffusion model in Pokemon style.

5


	Aims:
	Introduction:
	Model Architecture
	Forward (Reverse) Diffusion Process
	Loss Function:
	Exercise

