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Aim and outline

Sparse signal processing has become a major component in modern signal processing theory, underpinning com-
pressed sensing, linear regression, machine learning, big data processing, etc. It is based on the observation that
most signals, under certain transform or dictionary, only contain a few significant components. Based on this
sparsity, efficient ways for data acquisition, processing, and analysis can be developed.

The main aim of this experiment is to familar students with the concept of sparse signals and the easy-to-
understand techniques for sparse signal recovery.

In the first section, we highlight the limitations of least squares methods when applied to sparse signal processing,
and suggest the paradigm shift from least squares approach to modern sparse recovery techniques.

In the second section, three greedy algorithms are introduced to solve sparse recovery problem. Matlab imple-
mentations and numerical comparison of these three algorithms are required.
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1 Background

Consider a linear system
y = Ax, (1.1)

where y ∈ Rm denotes the observation vector, A ∈ Rm×n is a given linear transform, and x ∈ Rn stands for an
unknown data vector. The task is to find x based on the observation vector y. It is clear that when m < n, i.e.,
the number of equations is less than the number of unknown variables, the solution of the linear system (1.1) is not
unique.

Remark. Henceforth, we assume that each column of A has unit `2-norm. Let A:,i be the i-th column of A. We

assume that ‖A:,i‖2 :=
(∑m

j=1A
2
j,i

)2
= 1.

Exercise 1. Let m = 128 and n = 256. Let A ∈ Rm×n be a random Gaussian matrix. (Generate A using the
‘randn’ function in Matlab. Pay attention to column normalization.) Generate the observation y by using y = Ax
where x ∈ Rn is a Gaussian random vector. In matlab, compute x̂1 = pinv (A) · y and x̂2 = A\y. Compare the
vectors x, x̂1 and x̂2. Typically these three vectors are distinct though all of them are valid solutions.

Let us introduce some definitions.

Definition (Sparse Vectors). A vector x ∈ Rn is said to be S-sparse if there are S many nonzero entries in x.
Define the support set of x by S = {i : xi 6= 0}. Then the sparsity of x is given by the cardinality (size) of the
support set S = |S|. A signal x is called sparse if S � n.
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It has been observed that most natural signals are approximately sparse, that is, they can be approximated by
S-sparse signals where S is much less than the signal dimension. For example, an audio signal is typically sparse
in the time-frequency domain, and an image is typically sparse under wavelet or discrete cosine transform (DCT)
transform, or in other words, most of the wavelet or DCT coefficients of a given image are close to zero.

As an under-deterministic linear system (m < n) admits infinite many solutions, we are trying to find the
sparsest one among all possible solutions.

2 Greedy Algorithms

Here, we introduce the several greedy algorithms to find a sparse solution of an under-deterministic linear system.
To proceed, we need to introduce several definitions.

Definition (Truncation). Let S ⊂ {1, 2, · · · , n} be an index set whose cardinality is S. Let Sc := {1, 2, · · · , n} \S
be its complement. For any given vector x ∈ Rn, xS ∈ RS denotes the subvector of x indexed by S and xSc ∈ Rn−S

is the subvector of x indexed by Sc. Similarly, for any given matrix A ∈ Rm×n, AS ∈ Rm×S gives the submatrix of
A formed by the columns indexed by S and ASc ∈ Rm×(n−S) represents the submatrix of A consisting the columns
indexed by Sc.

Example. Let n = 5, S = {1, 3}, and x = [9, 8, 7, 6, 5]
T

. Then xS = [9, 7]
T

and xSc = [8, 6, 5]
T

.

Definition (Projection and Residue). Let y ∈ Rm and A ∈ Rm×d where d < m. Suppose that ATA ∈ Rd×d is
invertible. The projection of y onto the subspace spanned by A is defined as

yp = proj (y,A) := AA†y

where A† :=
(
ATA

)−1
AT denotes the pseudo-inverse of the matrix A. The projection residue is given by

yr = resid (y,A) := y − yp.

Remark. In order to compute A†y, it is recommended in Matlab to use A\y rather than pinv (A) · y.

Definition (Hard Thresholding Function). For given vector x ∈ Rn and positive integer S < n, the hard thresh-
olding function HS (x) set all but the largest S entries (in magnitude) of x to zero.

Example. Let x = [3,−4, 1]
T

. Then H1 (x) = [0,−4, 0]
T

and its support set supp (H1 (x)) = {2}; and H2 (x) =

[3,−4, 0]
T

and supp (H2 (x)) = {1, 2}.

With the above definitions, we describe the orthogonal matching pursuit (OMP), subspace pursuit (SP), and
iterative hardthresholding (IHT) algorithms below. There are many possible exit criteria that can be used to
terminate the loops in the algorithms. The commonly used criteria include 1) the normalised error ‖y −Ax̂‖2 / ‖y‖2
is less than the preset tolerance, and/or 2) the algorithm starts to diverge, i.e., the error in the current iteration is
larger than the error in the previous iteration.

Algorithm 1 The Orthogonal Matching Pursuit (OMP) Algorithm

Input: S, A, y.
Output: x̂.
Initialization:
x = 0, S = φ, and yr = y.
Iteration: ` = 1, 2, · · · , S or the exit criteria are true

1. S = S
⋃

supp
(
H1

(
ATyr

))
. (Add one index)

2. x̂S = A†Sy and x̂Sc = 0. (Estimate `-sparse signal)

3. yr = y −Ax̂. (Compute estimation error)
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Algorithm 2 The Subspace Pursuit (SP) Algorithm

Input: S, A, y.
Output: x̂.
Initialization:

1. S = supp
(
HS

(
ATy

))
.

2. yr = resid (y,AS).

Iteration: ` = 1, 2, · · · until the exit criteria are true.

1. S̃ = S
⋃

supp
(
HS

(
ATyr

))
. (Expand support)

2. Let bS̃ = A†S̃y and bS̃c = 0. (Estimate 2S-sparse signal)

3. Set S = supp (HS (b)). (Shrink support )

4. Let x̂ = A†Sy and x̂Sc = 0. (Estimate S-sparse signal)

5. Let yr = y −Ax̂. (Compute estimation error)

Algorithm 3 The Iterative Hardthresholding (IHT) Algorithm

Input: S, A, y.
Output: x̂.
Initialization:
x̂ = 0.
Iteration: ` = 1, 2, · · · until exit criterion true.

x̂ = HS

(
x̂ + AT (y −Ax̂)

)
.

Exercise 2 (Test greedy algorithms). Let m = 128, n = 256 and S = 12. Let A ∈ Rm×n be a random Gaussian
matrix. Generate an S-sparse vector x ∈ Rn of which the support set is randomly generated (use Matlab function
‘randsample’) and the nonzero entries are N (0, 1) distributed. Generate y using y = Ax. Let x̂1 = pinv (A) · y,
x̂2 = A\y, and x̂OMP, x̂SP, x̂IHT be the outputs of OMP, SP, and IHT respectively. Compare these estimates with
the ground truth signal x.

Exercise 3 (Success Rate Comparison). In this exercise, we compare the three greedy algorithms using the success
rate of recovering the ground truth signal (‖x̂− x‖2 / ‖x‖ < 10−6 will be regarded as a success). Let m = 128 and
n = 256. We vary S from 3 to 63 with step size 3. We use the same models in the previous exercise for matrix
A and ground truth sparse signal x. For each value of S, we run 500 independent tests (both A and x will be
generated independently in each test) and compute the corresponding success rate. We compare the performance
of the three greedy algorithms in a single figure where the horizontal axis denotes S and the vertical axis denotes
the success rate.


