
1

MSc Laboratory Experiment MB1
Digital Filter Design

Background
This experiment is concerned with the design and implementation of discrete time digital filters. It

will look at a number of different filter design methods and compare the performance of the resultant

filters.

To do this experiment you will need to download two toolboxes:

1. Download http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.zip into a temporary

location and extract its contents into a folder of your choice, e.g. H:\voicebox. The web page

at http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html gives more information about

the routines.

2. Download http://www.ee.ic.ac.uk/hp/staff/dmb/courses/msc_lab/mb1_experiment.zip into a

temporary location and extract its contents into another folder of your choice, e.g.

H:\mb1_experiment. A copy of this labsheet will be saved in the doc subfolder.

3. In MATLAB click on “Set Path” in the “Environment” tab and add the two toolboxes to your

path, e.g. H:voicebox and H:\mb1_experiment\matlab.

Test Signal Generation
Run the MATLAB script mb1_demo (appended to this lab sheet). This script creates a test signal and

then filters it with a Butterworth filter. In the description below “{�}” refers to line � of the script.

Variables and code fragments use Arial font.

The test signal, y, consists is the sum of a clean signal, x, and added noise, v. The clean signal, x, is

the sum of sine waves at 80 and 100 Hz; these are specified in {6} as xfa=[80 0.5; 100 -1i] where each

row of xfa gives the frequency and complex phasor amplitude of a sine wave component. The added

noise, v, consists of two sine wave components at 210 and 280 Hz {7} together with white noise at

−8 dB relative to the average power of the clean signal {8}. The function mb1_testsig {10} creates

the clean, noise and noisy signals; each signal is of 4 seconds duration {9} and is sampled at fs=4 kHz

{5}. The upper plot of Figure 1 shows a 0.1 second portion of the clean signal, x, in blue and the test

signal, y, in red.

2

Figure 1: The upper plot shows the clean signal (in blue) and the noisy test signal (in red). The lower

plot shows the power spectrum of the test signal.

The lower plot of Figure 1 shows a portion of the 2-sided average power spectral density of the test

signal (i.e. energy per Hz) which is plotted by mb1_plotpsd {20}; we only plot the range 0 to 300 Hz

although the full spectrum covers ±2 kHz. The purpose of the filters that you will design in this

experiment is to preserve the clean signal components within the range 80 to 100 Hz while attenuating

all the other frequencies.

Exercise 1: (a) Calculate the theoretical average power of the clean, noise and noisy signals and

hence the SNR of the test signal. (b) Compare these with theoretical values with the actual average

powers of x, v and y and explain why they are not the same. (c) Why is the noise floor in the lower

plot of Figure 1 so much less than the noise power? (d) Calculate the SNR that would be obtained if

you filtered the test signal with (i) an ideal lowpass filter with cutoff frequency 100 Hz and (ii) an

ideal bandpass filter with pass band 80 to 100 Hz. These represent the best possible SNRs than we

can obtain from filtering. In practice the lowpass or bandpass filters will have a stopband attenuation

that is less than ∞ dB. (e) For both the above cases, calculate the stop band attenuation that would

result in an SNR within 0.1 dB of the ideal target. There is little benefit in designing filters with a

stopband attenuation much greater than this.

Butterworth Filter
The script mb1_demo also designs and evaluates a Butterworth lowpass filter. The filter design

parameters are the passband ripple, rp {30}, the stopband attenuation, rs {31} and the frequency

range of the transition between passband and stopband, ftr {32}. The MATLAB routine butterord

{33} calculates the filter order required, n1, and the filter cutoff frequency, wn1, at which the gain is

−3 dB. The routine butter {34} then calculates the numerator and denominator filter coefficient

vectors, b1 and a1. Note that the filter design routines in MATLAB normalize frequencies by

dividing them by 0.5fs rather than by fs as everyone else in the world does; this is very weird and a

frequent source of errors {33}.

N
o
is

y
P

S
D

 (
d
B

)

3

Figure 2: The upper plot shows the magnitude response of a Butterworth filter. The lower plot shows

the power spectrum of the filtered test signal as well as showing the gain and phase shift applied to

each of the clean signal frequency components.

Figure 2 shows the magnitude response {43} of the resultant filter which, as the title {47} indicates,

has an order, n1, of 9. The filter is applied to the test signal, y, {35} and then the routine

mb1_snrtone {36} estimates the SNR of the filtered signal, z1. It does this by first estimating the

amplitude and phase of each of the test signal’s tonal components using cross correlation and then

subtracting these tones to leave just the noise components. The lower plot {39} in Figure 2 shows the

power spectrum of this residual noise component, v1. The routine mb1_snrtone also estimates the

gain and phase shift, e1, that the filter applied to each of the passband tonal components. These

values are printed on the power spectrum plot by the somewhat cryptic but useful {40}.

Exercise 2: (a) What is the unnormalized cutoff frequency corresponding to wn1? (b) Explain the

values of the power spectrum plot at 50, 150 and 210 Hz. (c) Plot the phase response of the filter (the

MATLAB function unwrap is helpful) (d) What is the group delay of the filter at low frequencies; how

is this related to the pass band phase shifts? (e) How many multiplications per sample would be

needed to implement this filter?

Elliptic Filter
An elliptic filter has a much narrow transition region than a Butterworth for a given filter order which

it achieves with multiple z-domain zeros on the unit circle.

Exercise 3: Use the ellipord and ellip MATLAB functions to design a suitable elliptic filter.

Determine the appropriate order and the resultant SNR. Plot the z-domain poles and zeros of the

filter. How do these relate to the filter’s magnitude spectrum that you observe and to the noise power

spectrum? Can you explain the unwrapped phase spectrum graph? Estimate the number of

multiplications per sample needed for this filter. What are the advantages and disadvantages of an

Elliptic filter over a Butterworth filter?

Exercise 4: Design an elliptic filter of order 14 (using the same wn frequency as in Exercise 3) and

assess its performance. A more stable implementation of a high-order IIR filter is as a sequence of

second order filters (also known as biquads) because lower order filters are less sensitive to

coefficient roundoff errors. Use the three output-argument form: [z,p,k]=ellip(…) to find the zeros

and poles and then use zp2sos and sosfilt to implement the filter. Compare its performance with the

direct implementation.

Frequency (Hz)
0 50 100 150 200 250 300

-80

-60

-40 Gains:

80Hz: +0.2dB ∠+134°

100Hz: +0.2dB ∠+68°

Frequency (Hz)
0 50 100 150 200 250 300

-60

-40

-20

0
Butterworth Filter Order 9, SNR = 4.2 dB

4

Window Filter Design
The previous filters have been IIR which allows rapid transitions in the frequency domain with

relatively few coefficients. An alternative is to use an FIR filter which typically requires many more

coefficients but can have exactly linear phase (if it is symmetric) and is always stable. There are two

common ways to design an FIR filter: the window method gives a closed form solution that is quite

close to optimum while the iterative Parks-McLellan algorithm designs a filter that has the minimum

worst case deviation from the target magnitude response.

Exercise 5: Use kaiserord and fir1 to design a suitable FIR low pass filter and assess its

performance. How high an order do you need to match the SNR performance of the elliptic filter?

Plot the filter impulse response and the pole-zero diagram. What are the advantages and

disadvantages of this filter over the elliptic filter?. How many multiplications per sample are

required? How can you take advantage of the symmetry of the filter impulse response?

Exercise 6: Use firpmord and firpm to design an optimal FIR filter and assess its performance.

Polyphase filter implementation
Since the output of the filter is bandlimited, it is possible to subsample by a factor of � without losing

information. In the diagram �(�) is and FIR lowpass filter (from exercise 5 or 6) which is applied

twice. In between the signal is downsampled by � and then upsampled by � to restore the original

sample rate. Finally, the signal is multiplied by � to restore the original signal level.

Figure 3: The input signal, �[�], is lowpass filtered by �(�), downsampled by a factor �,

upsampled by �, lowpass filtered again and finally multiplied by �.

As covered in lectures the total number of multiplications per sample needed to implement this is

1 + 2(M + 1)/K where �(�) is of order �.

Exercise 7: Calculate the appropriate value of K so that the new Nyquist frequency lies close to the

centre of the transition band (i.e. 150 Hz). Implement the diagram using the filter from Exercise 6 as

H(z). The effect of downsampling and then upsampling is equivalent to setting K-1 out of every K

samples to zero and, for a signal x of length N, can neatly be done in MATLAB with the command

x(mod(0:N-1,K)>0)=0. Calculate how many multiplications are now needed per sample. Can you

explain the amplitude and frequency of all the peaks in the residual noise power spectrum?

Optional Extensions
See if you can improve the output SNR by, for example, using a bandpass instead of a lowpass filter.

How high an SNR can you obtain assuming that the entire signal range between 80 and 100 Hz must

be preserved unchanged? See what happens if you have a higher sampling frequency (e.g. 20 kHz).

Mike Brookes

27 September 2016

25/09/16 11:34 Z:\dmb\teach\labs\labmsc\mb1\matlab\mb1_experiment\mb1_demo.m 1 of 1

 1 close all; clear all; % clear all plots and variables
 2 %
 3 % create the test signal
 4 %
 5 fs=4000; % sample frequency
 6 xfa=[80 0.5; 100 -1i]; % signal frequencies and phasor amplitudes
 7 vfa=[210 1; 280 0.5]; % tonal noise frequencies and phasor amplitudes
 8 snr=-8; % white noise SNR in dB
 9 nt=round(4*fs); % 4 seconds worth of samples
10 [y,t,x,v]=mb1_testsig(xfa,vfa,snr,nt,fs); % y=test signal, t=time axis, x=clean signal, v=noise signal
11 snr0=mb1_snrtone(y,xfa,fs); % Find the SNR of the noisy signal
12 %
13 % plot the signal and its power spectrum
14 %
15 fplot=300; % max frequency to plot
16 fax=linspace(0,fplot,100); % frequncy axis for magnitude responses
17 iplot=0.1*fs:0.2*fs; % samples to plot
18 figure(1);
19 subplot(2,1,2);
20 mb1_plotpsd(y,fplot,fs); % plot PSD of noisy signal
21 ylabel('Noisy PSD (dB)');
22 subplot(2,1,1);
23 plot(t(iplot),y(iplot),'-r',t(iplot),x(iplot),'-b'); % plot time waveforms
24 axisenlarge([-1 -1.05]); % make axes fit the plot
25 title(sprintf('Clean and Noisy signals, SNR = %.1f dB, fs = %.2gkHz',snr0,fs/1000));
26 xlabel('Time (s)');
27 %
28 % now design a butterworth IIR filter
29 %
30 rp=0.1; % target passband ripple (dB)
31 rs=35; % target stopband attenuation (dB)
32 ftr=[100 200]; % transition frequency range: 100 to 200 Hz
33 [n1,wn1]=buttord(2*ftr(1)/fs,2*ftr(2)/fs,rp,rs); % determine order and f0
34 [b1,a1]=butter(n1,wn1); % design a Butterworth filter
35 z1=filter(b1,a1,y); % filter the noisy signal, y
36 [snr1,ax1,e1,v1]=mb1_snrtone(z1,xfa,fs); % find the filtered SNR, gain errors and residual noise
37 figure(2);
38 subplot(2,1,2);
39 mb1_plotpsd(v1,fplot,fs); % plot PSD of residual noise
40 texthvc(0.02,0.1,['Gains:' sprintf('\n%.0fHz: %+.1fdB \\angle%+.0f^\\circ',[xfa(:,1) e1(:,1) e1(:,2)*180/pi]')],'LBk');
41 ylabel('Noise PSD (dB)');
42 subplot(2,1,1);
43 plot(fax,20*log10(abs(freqz(b1,a1,fax*2*pi/fs)))); % plot the magnitude response
44 axis([fax(1) fax(end) -60 4]); % limit the gain range to -60 dB
45 xlabel('Frequency (Hz)');
46 ylabel('Gain (dB)');
47 title(sprintf('Butterworth Filter Order %d, SNR = %.1f dB',n1,snr1));
48 %
49 tilefigs([0 0.5 0.8 0.5]); % display all the figures in the top half of the screen

