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Abstract: A novel method for parameter estimation of minimum-phase autoregressive moving
average (ARMA) systems in noise is presented. The ARMA parameters are estimated using a
damped sinusoidal model representation of the autocorrelation function of the noise-free ARMA
signal. The AR parameters are obtained directly from the estimates of the damped sinusoidal model
parameters with guaranteed stability. The MA parameters are estimated using a correlation
matching technique. The simulation results show that the proposed method can estimate the ARMA
parameters with better accuracy as compared to other reported methods, in particular for low SNRs.

1 Introduction

The problem of identifying an autoregressive moving
average (ARMA) system with unknown white noise input
excitation from its noisy observations arises in many areas
of science and engineering, such as speech processing,
radar, time-series analysis, spectral estimation, economics,
seismology, communications, and biomedical signal pro-
cessing [1–4]. However, the widespread use of ARMA
systems is particularly limited by the difficulty involved in
the MA parameter estimation.

The problem becomes even more difficult when noise
corrupts the observations. As an approximate alternative,
autoregressive (AR) systems are more frequently used to
bypass this difficulty. Many effective techniques have been
reported in the literature for identification of AR systems in
noise [5–11]. In contrast, only a limited number of results are
available for the identification of ARMA systems corrupted
by noise [9, 12–14], though many effective techniques exist
for noise-free ARMA system identification [15–18]. The
Yule-Walkermethod and the lattice filter (LF) are commonly
used in both noisy and noise-free cases. The LF in the
estimation ofARMAparameters presents several advantages
[19]. The LF parameters, called partial autocorrelation
(PARCOR) coefficients, provide an alternative parametrisa-
tion of ARMA systems. In [12], an overfitting LF that
estimates the ARMA parameters from noisy measurements
has been reported. The performance of these methods,
however, is satisfactory above amoderate SNR but they have
been found to fail at a low SNR. Moreover, stability of the
noise-compensated LF (NCLF) is not guaranteed [9].

In this paper, we investigate a new method of ARMA
parameter estimation from noisy observations. A damped

sinusoidal model for the autocorrelation function of
the noise-free signal is adopted for ARMA parameter
estimation. The parameters of the sinusoidal model are
estimated using the given noisy observations and the desired
AR system parameters are then directly obtained from this
model’s parameters. For MA parameter estimation we
propose an iterative method that selects the desired
parameters from a set of over-determined parameters
using a correlation-matching technique. The method
proposed here may be viewed as an extension of the
method reported by the authors in [11] for identification of
AR systems in noise. This extension is important as ARMA
modelling is a more generalised form for representation of
signals using linear systems.

2 Problem formulation

Consider the following ARMA( p, q) system:

xðnÞ ¼ $
Xp

i¼1

aixðn$ iÞ þ
Xq

j¼0

bjuðn$ jÞ ð1Þ

where x(n) is the output signal of the minimum-phase
ARMA system, which is excited by a sequence of white
noise u(n) with distributionN 0; s2u

! "
; p and q are the known

AR and MA orders, respectively. If the signal x(n) is
contaminated by a white noise process v(n) with distribution
N 0; s2v
! "

; the observed signal y(n) is obtained as

yðnÞ ¼ xðnÞ þ vðnÞ ð2Þ

The observation noise v(n) is assumed to be independent of
the input noise u(n), i.e. E½uðnÞvðn$ mÞ' ¼ 0 for all m,
where E½(' denotes the statistical expectation operator.

This paper estimates the AR ðai; i ¼ 1; 2; . . . ; pÞ and
MA ðbj; j ¼ 1; 2; . . . ; qÞ parameters using only the noisy
signal y(n).

3 Estimation of AR parameters

To develop a new mathematical model for estimation of the
autocorrelation function of x(n) from a finite set of
observations of the noisy signal y(n) we introduce an
alternative representation for x(n). The model we introduce
here may be viewed as an extension of the model reported in
[11] for identification of AR systems.
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The transfer function of an ARMA( p, q) system in the
z-domain can be expressed as

HðzÞ ¼ BðzÞ
AðzÞ

¼
Xp

k¼1

Gk

1$ zkz
$1

ð3Þ

where AðzÞ ¼ 1þ a1z
$1 þ a2z

$2 þ ( ( ( þ apz
$p; BðzÞ ¼

1þ b1z
$1 þ b2z

$2 þ ( ( ( þ bqz
$q; zk denotes the kth pole

of the ARMA system and Gk is the partial fraction
coefficient corresponding to the kth pole. In the above
expansion it is assumed that the ARMA system has no
multiple-order poles.
The unit impulse response h(n) of the causal ARMA

system described in (3) can be expressed as

hðnÞ ¼
Xp

k¼1

Gkz
n
k ; n ¼ 0; 1; 2; . . . ;1 ð4Þ

If this relaxed ARMA system is excited by u(n), then the
response x(n) is given by

xðnÞ ¼ uðnÞ ) hðnÞ ¼
Xn

l¼0

uðlÞhðn$ lÞ ð5Þ

Using (4), (5) can be written as

xðnÞ ¼
Xp

k¼1

Xn

l¼0

GkuðlÞzn$l
k ð6Þ

Note that (1) is the difference equation implementation of
x(n) using the system parameters and (6) is the convolution
sum implementation of x(n) using the system roots. Using
(6), the autocorrelation of the noise-free signal x(n) can be
obtained as [20]

RxxðmÞ ¼
Xp

k¼1

bkz
m
k ð7Þ

where

bk ¼ s2u
G2
k

1$ z2k
þ

Xp

i¼1;i 6¼k

GkGi

1$ zkzi

" #

ð8Þ

The coefficient bk may be real or complex depending on
whether the pole k is real or complex. Let the number of real
poles be pr and the remaining pc ¼ ð p$ prÞ poles be
complex, occurring in pcc ¼ pc=2 complex conjugate pairs
if x(n) is real. As pcc cannot be a fraction, for a pth order
AR system with p being odd, pr must be odd. Separating the
terms with real poles from the terms with complex poles,
we can write (7) as

RxxðmÞ ¼
Xpc

kc¼1

bkc z
m
kc þ

Xpcþpr

kr¼pcþ1

bkr z
m
kr ð9Þ

For a pair of complex conjugate poles, the corresponding b
will also be a complex conjugate pair. Let us consider a pair
of complex conjugate poles z1 ¼ r1 expð jo1Þ and z2 ¼
r1 expð$jo1Þ with corresponding b1 ¼ z1 expð jf1Þ and
b2 ¼ z1 expð$jf1Þ: We can write

b1z
m
1 þ b2z

m
2 ¼ Gc

1r
m
1 cosðo1mþ f1Þ ð10Þ

where Gc
1 ¼ 2z1 is a constant that depends on b1: Hence the

sum of terms with complex poles in (9) can be expressed as

Xpc

kc¼1

bkc z
m
kc ¼

Xpcc

jc¼1

Gjcr
m
jc cosðojcmþ fjcÞ ð11Þ

where Gc
jc
¼ 2zjc is a constant that depends on bjc : As in the

case of a complex pole, a real pole can be expressed as
zk ¼ rk expð jokÞ; where o is 0 or p; with corresponding
bk ¼ zk expð jfkÞ; where fk is also 0 or p: Hence the sum of
terms with real poles in (9) can be expressed as

Xpcþpr

kr¼pcþ1

bkr z
m
kr ¼

Xpr

jr¼1

bjr z
m
jr

¼
Xpr

jr¼1

Gr
jr r

m
jr cosðojrmþ fjrÞ

ð12Þ

where Gr
jr ¼ zjr is a constant that depends on bjr : Substitut-

ing (11) and (12), we can write (9) as

RxxðmÞ ¼
Xpccþpr

j¼1

Gjr
m
j cosðojmþ fjÞ ð13Þ

where Gj is a constant. Equation (13) can be further
expanded as

RxxðmÞ ¼
Xpccþpr

j¼1

rmj ½Pj cosðojmÞ þ Qj sinðojmÞ';

for m * 0

ð14Þ

where Pj ¼ Gj cosðfjÞ and Qj ¼ $Gj sinðfjÞ are constants
that depend on bj: In general, rj governs the decay rate of the
ARMA system response and oj determines the angular
position of a pole of the ARMA system in the z-plane.

The damped sinusoidal functions constituting RxxðmÞ as
shown in (14) can be estimated sequentially by defining a
residue function from the autocorrelation function RyyðmÞ of
the observed noisy data y(n). The jth residue function is
defined as

<jðmÞ ¼
RyyðmÞ; j ¼ 0
<j$1ðmÞ $ rmj FjðmÞ; j ¼ 1; 2; . . . ; pcc þ pr $ 1

#

ð15Þ

where FjðmÞ ¼ Pj cosðojmÞ þ Qj sinðojmÞ; and RyyðmÞ is
calculated as

RyyðmÞ ¼
1

N

XN$1$jmj

n¼0

yðnÞyðnþ jmjÞ ð16Þ

The parameters oj; rj;Pj; and Qj of the jth component
function rmj ½Pj cosðojmÞ þ Qj sinðojmÞ

$ %
are chosen such

that the sum-squared error (SSE) between the ð j$ 1Þth
residue function and the jth component function is
minimised. The SSE, J

ðiÞ
j ; is defined as

J
ðiÞ
j ¼

XM

m¼1

<j$1ðmÞ $ r
ðiÞ
j

& 'm
F
ðiÞ
j ðmÞ

(((
(((
2
;

j ¼ 1; 2; . . . ; pcc þ pr $ 1

ð17Þ

where M denotes the number of autocorrelation lags to be
used in the minimisation process. Since the proposed
method is iterative, the superscript ‘(i)’ denotes the
iteration index, i.e. oðiÞ

j denotes the angle of the jth pole
at iteration i.

To estimate the kth component function of the damped
sinusoidal model, if ok and rk are searched in their entire
domain, e.g. ½0; p' and [0, 1], respectively, with an
acceptable resolution, the computational cost will be
extremely high. Instead, we use a high-order AR model to
obtain a solution space for the underlying problem. It is
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known that the noisy process y(n) can be more accurately
characterised by a higher-order AR process containing
both noise and system poles [5]. Then this mixture of
noise plus system poles can be used as candidate solutions
for (17) and the desired system poles are to be extracted
as the ones that minimise the cost function Jj: Using a
higher-order AR model and then extracting the desired
roots based on a root matching technique has also been
reported in [10] for autoregressive spectral estimation
from noisy observations. In contrast with the main aim of
computational complexity reduction, we first estimate
poles of a higher-order AR model fitted to the observed
noisy process by using the stable noise-uncompensated
lattice filter (NULF) [19]. The order ~pp of the over-fitted
AR model may be determined using a standard technique
[21]. Now, instead of scanning the entire range of ok and
rk; only the angular positions ol; l ¼ 1; 2; . . . ; ~pp; and
magnitude rl; l ¼ 1; 2; . . . ; ~pp; of these poles are searched,
so as to select p (out of ~ppÞ poles for which J

ðiÞ
j is

minimum. The selected p poles are then used for
computing an estimate âai of the desired AR parameters,
ai: Note that, unlike conventional noise-compensation
techniques [7], the proposed method is inherently stable
for minimum phase systems.

4 Estimation of MA parameters

In this work, for MA parameter estimation we first fit a
higher-order ARMA ð~qq; ~qqÞ model to the observed noisy
process and estimate the ARMA parameters using the
stable NULF. The MAð~qqÞ; ~bbi; i ¼ 1; 2; . . . ; ~qq; parameters
thus obtained and the AR( p) parameters as estimated in
Section 3 are then used for estimating the desired MA(q)
parameters, bj; as follows. We note that ARð~qqÞ parameters
of the ARMA ð~qq; ~qqÞ model are not used in MA parameter
calculation. Moreover, the higher-order AR model par-
ameters obtained using the NULF in Section 3 are not
employed in the MA part estimation in this Section.

The MAð~qqÞ polynomial consisting of ~bbi; i ¼ 1; 2; . . . ; ~qq;
parameters is given by

~BBðzÞ ¼ 1þ ~bb1z
$1 þ ~bb2z

$2 þ ( ( ( þ ~bb~qqz
$~qq ð18Þ

The roots of ~BBðzÞ are denoted as ~rri: Suppose that in ~rri there
are ~ppc complex roots, denoted as ~rrkc that occur in complex
conjugate pairs, and ~ppr real roots, denoted as ~rrkr : Thus the
number of complex conjugate roots is ~ppcc ¼ ~ppc=2: Note that
q roots are required to be selected from ~qq roots, for which
we describe a rule below. The roots of the MA part can
be complex, real, or a mixture of complex and real roots.
For q being odd or even, and for any possible combinations
of real and complex roots, the MA polynomial can be
constructed as

BlðzÞ ¼
Yqrg

kr¼1

ð1$ ~rrkr z
$1Þ

Yqcg

kc¼1

ð1$ ~rrkc z
$1Þ

+ 1$ ~rrc
)

j z
$1

& '
ð19Þ

where qrg ¼ 2ðg$ 1Þ; g ¼ 1; 2; . . . ; ðqþ 2Þ=2 and
qcg ¼ ðq$ qrgÞ=2; for q even, and qrg ¼ 2g$ 1; g ¼ 1; 2;
. . . ; ðqþ 1Þ=2 and qcg ¼ ðq$ qrgÞ=2; for q odd. Note that g
gives the choices available to select different numbers of
real and complex roots to construct the polynomial BlðzÞ:
For each of the selected numbers of real ðqrgÞ and complex
ðqcgÞ roots, the polynomial BlðzÞ can be constructed in ~ppr

Cqrg +
~ppccCqcg different ways. Now, suppose that there are L

possible combinations of roots taking q roots from ~rri; i ¼
1; 2; . . . ; ~qq; at a time. Note that in such a combination if a
complex root is included then its complex conjugate part is
also included. Then L is given by

L ¼

Pðqþ2Þ=2

g¼1

~pprCqrg +
~ppccCqcg ; for q even

Pðqþ1Þ=2

g¼1

~pprCqrg +
~ppccCqcg ; for q odd

8
>>><

>>>:
ð20Þ

where nCr ¼ n!=r!ðn$ rÞ!; but it is assumed to be zero if
n< r: Therefore, there are a total of L different MA(q)
polynomials, BlðzÞ; l ¼ 1; 2; . . . ; L; from which the desired
MA polynomial is to be selected using a minimisation
technique described later in this Section.

In this work, the autocorrelation function of the noise-free
ARMA signal RxxðmÞ given in (7) for certain lags (m) is first
estimated to determine the MA part of the ARMA system
under consideration. A possible estimate of H(z) is obtained
as

~HH
lðzÞ ¼ BlðzÞ

ÂAðzÞ
¼

Xp

k¼1

~GGl
k

1$ ẑzkz
$1

; l ¼ 1; 2; . . . ; L ð21Þ

where ẑzk denotes the estimated kth pole of the ARMA
system as in Section 3 and ~GGl

k is the partial fraction
coefficient corresponding to the kth pole. Now, using (21) an
estimate of the partial fraction constant ~GGl

k can be obtained.
The estimated values of ~GGl

k; ẑzk and ŝs2u are used to find bk
using (8). Note that for complex conjugate pair of poles the
corresponding bk also comes in complex conjugate pair
form. The values of bk thus obtained are used to find Rl

xxðmÞ
where the superscript ‘l’ is used to indicate that it is
estimated using the model in (7) for a particular BlðzÞ: Now,
the objective is to choose a BlðzÞ such that the distance
between Rl

xxðmÞ and RyyðmÞ is minimum. An objective
function is then defined as

DðBlÞ ¼
XM0

m¼1

Rl
xxðmÞ $ RyyðmÞ

(( ((2 ð22Þ

where M0 denotes the number of lags to be used in the
minimisation process. An estimate of the desired MA(q)
polynomial ðB̂BðzÞÞ can be obtained as

B̂BðzÞ ¼ argðmin
Bl

ðDðBlÞÞÞ ð23Þ

5 Simulation results

In this Section, we evaluate the performance of the
proposed ARMA system identification method by
presenting several numerical examples. Data were gener-
ated according to (1) and (2). In all the simulations,
the excitation noise power s2u is assumed to be known,
and N ¼ 4000 samples of the noisy data were used.
As explained in Section 3, we calculate the desired AR
parameters of the ARMA system from the damped
sinusoidal model parameters and in all these simulations
we have used RyyðmÞ for m ¼ 1; 2; . . . ;M with M ¼ 100:
The MA parameters of the ARMA system were estimated
using the iterative method as explained in Section 4 with
M0 ¼ 100 (see (22)).

The following four ARMA systems were used in
the experiments. The systems were selected with poles
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Fig. 1 Parameter estimation results at SNR ¼ 20 dB for ARMA
System 1
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Fig. 2 Parameter estimation results at SNR ¼ 10 dB for ARMA
System 1
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Fig. 3 Parameter estimation results at SNR ¼ 0 dB for ARMA
System 1
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Fig. 4 Parameter estimation results at SNR ¼ 20 dB for ARMA
System 2
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Fig. 5 Parameter estimation results at SNR ¼ 10 dB for ARMA
System 2
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Fig. 6 Parameter estimation results at SNR ¼ 0 dB for ARMA
System 2
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Fig. 7 Parameter estimation results at SNR ¼ 30 dB for ARMA
System 3
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Fig. 8 Parameter estimation results at SNR ¼ 10 dB for ARMA
System 3
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and zeros distributed in different regions inside the unit
circle in the z-plane.

System 1:

xðnÞ $ 0:55xðn$ 1Þ þ 0:155xðn$ 2Þ
$ 0:5495xðn$ 3Þ þ 0:6241xðn$ 4Þ
¼ uðnÞ $ 0:5uðn$ 1Þ þ 0:785uðn$ 2Þ

ð24Þ

System 2:

xðnÞ $ 2:7607xðn$ 1Þ þ 3:8106xðn$ 2Þ
$ 2:6535xðn$ 3Þ þ 0:9238xðn$ 4Þ
¼ uðnÞ $ 1:8uðn$ 1Þ þ 0:97uðn$ 2Þ

ð25Þ

System 3:

xðnÞ $ 0:65xðn$ 1Þ $ 0:72ðn$ 2Þ þ 0:76xðn$ 3Þ
¼ uðnÞ $ 0:76uðn$ 1Þ þ 0:85uðn$ 2Þ

ð26Þ

System 4:

xðnÞ $ 2:2990xðn$ 1Þ þ 2:1262ðn$ 2Þ $ 0:7604xðn$ 3Þ
¼ uðnÞ þ 0:87uðn$ 1Þ þ 0:92uðn$ 2Þ

ð27Þ

The noisy signal y(n) was generated by adding Gaussian
distributed white noise to x(n), although the probability
density function (PDF) of the noise is not significant.
The variance of the random noise v(n) was adjusted so as
to give different levels of signal-to-noise ratio (SNR).
The results at different SNRs obtained using the proposed

method are compared in Figs. 1–12 to the prediction error
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method (PEM) for the estimation of an ARMAX model
[15], and the noise-compensated Yule-Walker equations
based method reported in [13]. It is evident from Figs. 1, 4, 7
and 10 that, at 20 dB or a higher SNR, all the methods
perform with good accuracy. However, it can be seen in
Figs. 2, 5, 8 and 11 that, when more noise is introduced to
give 10 dB SNR, the accuracy of the proposed method is
significantly better than that of the other methods. The
effectiveness of the proposed method is also tested at a low
SNR (e.g. 0 dB). From Figs. 3, 6, 9 and 12 it can be seen
that, for the proposed algorithm, the estimation accuracy for
the 0 dB case is comparable to the accuracy for the 10 and
20 dB cases. In contrast, for the other algorithms, accuracy
of the estimates is poor. From all the results presented it can
be inferred that the proposed method is a good candidate for
ARMA system identification from noisy observations.

6 Conclusions

In this paper, a novel method for the identification of
ARMA systems in noise using a damped sinusoidal model
of the autocorrelation function has been proposed. It has
been shown that the proposed method is able to estimate the
AR and MA parameters with good accuracy as compared to
other reported methods. The conventional correlation-based

techniques fail to estimate accurately the ARMA parameters
below a certain threshold SNR (e.g. 10 dB) owing to
inaccurate estimation of the autocorrelation function from a
finite set of noisy observations. These results have shown
that the calculation of the autocorrelation function based on
a damped sinusoidal model can overcome the problem of
identification of ARMA systems, even at low SNRs.
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Fig. 12 Parameter estimation results at SNR ¼ 0 dB for ARMA
System 4
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