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SPEECH PROCESSING  
Linear Predictive Coding (LPC) 

Patrick A. Naylor 
Spring Term 2008/9 

PART 1 

•  This lecture studies one of the most important concepts underpinning 
many applications of speech processing, namely LPC 
–  Concept of Linear Prediction 
–  Derivation of Linear Prediction Equations 
–  Autocorrelation method of LPC 
–  Interpretation of LPC filter as a spectral whitener 
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Concept of Linear Prediction 

•  u(n) volume flow at the glottis 
•  ul(n) volume flow at the lips 
•  s(n) pressure at the microphone 

•                                                   vocal tract transfer function  

•                             lip radiation model 

•  The aim of Linear Prediction Analysis (LPC) is to estimate V(z) from the 
speech signal s(n). 
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•  We will neglect the pure delay term z–½p in the numerator of V(z). 

•  50% of the world puts a + sign in the denominator of V(z) (this is almost 
essen@al when using MATLAB). 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Preview … in straightforward terms 

•  Predict sample s(n) from samples s(n-1), s(n-2), …, s(n-p)
•  Consider prediction of 4 samples from their previous 2 

•  This is an overdetermined system of simultaneous equations 
–  If we try to predict only 2 samples then exact solution for the coefficients 

can be found 
–  Otherwise we consider a least squares solution 

•  Call the prediction  
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€ 

ˆ s (n)

€ 

s(2) = a1s(1)+a2s(0)
s(3) = a1s(2)+a2s(1)
s(4) = a1s(3)+a2s(2)
s(5) = a1s(4)+a2s(3)

•  Important points to consider in determining the least squares solution 
–  The frame {F} of samples over which to solve 

•  Method of solution 
–  Formulate the linear algebra problem in the form Xa=b 
–  Solve by matrix inversion 

•  These issue are the main points to discuss in this talk 

•  What should p be to predict successfully:  
–  A sinusoid? 
–  Voiced speech? 
–  Unvoiced speech? 
–  The stock market? 

•  Think of LPC as capturing the harmonic content of a signal.  
–  Anything not harmonic is unpredictable and gives a prediction error. 
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Linearity 

•  We can reverse the order of V(z) and R(z) since both are linear and V(z) 
doesn’t change substantially during the impulse response of R(z) or vice-
versa: 
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V(z) R(z)
u(n) ul(n) s(n)

Prediction Error 

•  If the vocal tract resonances have high gain, the second term will 
dominate:  

•  The right hand side of this expression is a prediction of s(n) as a linear sum 
of past speech samples. Define the prediction error at sample n as 

•  In terms of z-transforms 
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e(n) = s(n)− a js(n− j)
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p
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E(z) = S(z)A(z)



5 

Error Minimization 

•  Given a frame of speech {F}, we would like to find the values ai that 
minimize 

•  To do so, we differentiate w.r.t each ai 
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•  The optimum values of ai must satisfy p equations: 

•  which can be written in matrix form 

–  the matrix Φ is symmetric and positive semi-definite. 
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Matrices with Special Properties 

•  Symmetric: 

•  Positive Definite: for a real symmetric matrix  

–  There exists a unique lower triangular matrix      such that 
•  Cholesky factorization 

•  Positive Semi-Definite: as above but with ≥ 

•  Toeplitz: constant diagonals  
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Inverting Matrices 

•  Any special properties possessed by a matrix can be used when inverting 
it in order to: 
–  reduce the computation time 
–  improve the accuracy 

12 



7 

Frame-based Processing 

•  Consider frame-based processing of a speech signal 
–  Extract a set of frames of the speech signal employing a tapered window 

of duration 20 – 30 ms typically overlapping by 50% 
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Autocorrelation LPC 

•  Take {F} in equation [1] to be of infinite extent 

•  Because of the symmetry and the infinite sum, we have 

–  where the sequence Rk is the autocorrelation of the windowed speech 

•  The matrix Φ is now Toeplitz (constant diagonals) and the equations 

 are called the Yule-Walker equations. 

•  Inverting a symmetric, positive definite, Toeplitz p×p matrix takes O(p2) 
operations instead of the normal O(p3). Inversion procedure is known as 
the Levinson or Levinson-Durbin algorithm. 
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Matrices with Special Properties

– Symmetric:

– Positive Definite: 

– Positive Semi-Definite: as above but with ! .
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Inverting Matrices

Any special properties possessed by a matrix can be used 

when inverting it to:
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– improve the accuracy

" "ji ij
T= # =$$$$ $$$$

x xi ij j

i j

T"
,

! > # > %0 0 0x x x$$$$ for any

( )" "i j ij f i j+ + = = &1 1,

Matrix (p!p) Computation

General 'p3

Symmetric, +ve definite '!p3

Toeplitz, Symmetric,
+ve definite

'p2

LPC.PPT 5.6

Autocorrelation LPC

We start with a frame of windowed speech (typ 20-30 ms):

We take {F} to be infinite in extent

Because of the symmetry and the infinite sum, we have

where the sequence Rk is the autocorrelation of the 

windowed speech.

The matrix $$$$ is now Toeplitz (has constant diagonals) and 

the equations

are called the Yule-Walker equations.

Inverting a symmetric, positive definite, Toeplitz p(p matrix 

takes O(p2) operations instead of the normal O(p3). 

Inversion procedure is known as the Levinson or Levinson-

Durbin algorithm.
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Autocorrelation LPC example: /ɑ/ from “father” 
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e(n)

s(n)

Resulting Spectra and Poles 
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Spectral Flatness 

•  Autocorrelation LPC finds the filter of the form 

 that minimizes the energy of the prediction error.  
•  We will show that we can also interpret this in terms of flattening the 

spectrum of the error signal 
•  Define the normalized power spectrum of the prediction error signal e(n) 

•  where E(z) is the z-transform of the signal and QE is the signal 
energy. The average value of PE is equal to 1. 
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•  We define the spectral roughness of the signal as: 

•  RE is similar to the variance of PE since  

–  the integrand is similar to ½(PE–1)2 where mean(PE)=1.
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•  We can find an alternative expression for RE

•  Thus the spectral roughness of a signal equals the difference between its 
log energy and the average of its log energy spectrum. 
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•  We know that E(z) = S(z)×A(z), hence 

•  Substituting this in the expression for RE gives 

•  We saw in the section on filter properties that the term involving A is 
zero since a0=1 and all roots of A lie in the unit circle. Hence 

•  The term involving S is independent of A. It follows that if A is chosen to 
minimize QE, it will also minimize RE, the spectral roughness of e(n). The 
filter A(z) is a whitening filter because it makes the spectrum flatter. 
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Example 

•  These two graphs show a windowed speech signal, /ɑ/, and the error 
signal after filtering by A(z)
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•  These graphs show the log energy spectrum of each signal 

–  The two horizontal lines on each graph are the mean value (same 
for both graphs) and the log of the total energy.  

–  The spectral roughness is the difference between the two 
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PART 2 

•  In this lecture, we look at further elements under the general heading of 
Linear Prediction 
–  Covariance method of LPC 
–  Preemphasis 
–  Closed Phase Covariance LPC 
–  Alternative LPC parameter sets: 
–  Pole positions 
–  Reflection Coefficients 
–  Log Area Ratios 
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Variants of LPC 

We consider two variants of LPC analysis which differ only in their choice 
of speech frame, {F}

•  Autocorrelation LPC Analysis 
–  Requires a windowed signal 

•   tradeoff between spectral resolution and time resolution 

–  Requires >20 ms of data 
–  Has a fast algorithm because Φ is toeplitz 
–  Guarantees a stable filter V(z)

•  Covariance LPC Analysis (Prony’s method) 
–  No windowing required 
–  Gives infinite spectral resolution 
–  Requires >2 ms of data 
–  Slower algorithm because Φ is not Toeplitz 
–  Sometimes gives an unstable filter V(z)

24 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Covariance LPC 

•  Already seen that 

•  Now we chose {F} to be a finite segment of speech: 
 {F} = s(n) for 0 ≤ n ≤ (N-1)  

 then we have: 

•  The matrix Φ is still symmetric but is no longer Toeplitz 
–  Since the matrix is not Toeplitz, the computation involved in inverting Φ 

is ∝ p3 rather than p2 and so takes longer 
•  Covariance LPC generally gives better results than Autocorrelation LPC 

but is more sensitive to the precise position of the frame in relation to 
the vocal fold closures. 
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φija j = φi0 where φij = s(n− i)s(n− j)
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∑
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p
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φij = s(n− i)s(n− j)
n=0
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Recursive Computation 

•  The entire matrix Φ can be calculated recursively from its first row or 
column. 
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φij = s(n− i +1)s(n− j +1)
n=−1

N−2
∑

= s(−i)s(− j)− s(N − i)s(N − j)+ s(n− i +1)s(n− j +1)
n=0

N−1
∑

= s(−i)s(− j)− s(N − i)s(N − j)+φi−1, j−1
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Unstable Poles 

•  Covariance LPC does not necessarily give a stable filter V(z)  
–  (though it usually does). 

•  We can force stability by replacing an unstable pole at z = p by a stable 
one at z = 1/p* 
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•  As we have seen in the section on filter properties, reflecting a pole in 
the unit circle leaves the magnitude response unchanged except for 
multiplying by a constant (equal to the magnitude of the pole). 
–  spectral flattening property of LPC is unaltered by this pole reflection. 

•  Discovering which poles lie outside the unit circle is quite expensive 
–  this is a further computational disadvantage of covariance LPC. 
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Pre-emphasis 

•  The matrix Φ is always non-singular, but not necessarily by very much.  
•  A measure of how close a matrix is to being singular is given by its 

condition number 
–  for a symmetric +ve definite matrix, this is the ratio of its largest to its 

smallest eigenvalue. 
•  For large p, the condition number of Φ tends to the ratio Smax(ω)/Smin(ω).  
•  We can thus improve the numerical properties of the LPC analysis 

procedure by flattening the speech spectrum before calculating matrix 
Φ . 

•  For voiced speech, the input to V(z) is ug′(n) whose spectrum falls off at 
high frequencies at around –6 dB/octave 
–  This can be compensated with a 1st-order high-pass filter with a zero 

near z=1 

29 
€ 

P(z) =1−αz−1

•  P(z) is approximately a differentiator 
•  The normalised corner frequency of P(z) is approximately (1–a)/2π  
•  This is typically placed in the range 0 to 150 Hz.  
•  From a spectral flatness point of view, the optimum value of a is φ10/φ00  

(obtained from autocorrelation LPC with p = 1).  
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V(z)R(z)
u(n) u′(n) s(n)

P(z) P-1(z)
u′′(n) s′(n)
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Closed-phase Covariance LPC 

•  We have already seen that 
•  We have neglected the term Gu′ (n) because we don’t know what it is 

and it is assumed to be much smaller than the second term 
•  If we knew when the vocal folds were closed, we could restrict {F} to 

those particular intervals. We can estimate the times of vocal fold closure 
in two ways 
–  Looking for spikes in the e(n) signal 
–  Using a Laryngograph (or Electroglottograph or EGG): this instrument 

measures the radio-frequency conductance across the larynx. 
•  Conductance ∝ Vocal fold contact area. 
•  Accurate but inconvenient. 
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s(n) = G ′ u (n)+ a js(n− j)
j=1

p
∑

•  In Closed-Phase LPC, we choose our analysis interval {F} to consist of 
one or more closed phase intervals  
–  (not necessarily contiguous).  

•  No preemphasis is necessary because the excitation now has a flat 
spectrum 

32 

Closed Phases:
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Closed Phase Analysis of /i/ from ‘bee’ 

33 

s(n)

e(n)=ug′ (n)

ug(n)

V(ejωT)

Alternative Parameter Sets 

•  The vocal tract filter is defined by p+1 parameters: 

•  The LPC (or AR) coefficients ak have some bad properties: 
–  The frequency response is very sensitive to small changes in ak  

•  (such as quantizing errors in coding) 

–  There is no easy way to verify that the filter is stable 
–  Interpolating between the parameters that correspond to two different 

filters will not vary the frequency response smoothly from one to the 
other: stability is not even guaranteed. 

•  There are several alternative parameter sets that are equivalent to the ak 
–  most require G to be specified as well 
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Pole Positions 

•  We can factorize the denominator of V(z) to give its poles: 

•  The polynomial roots  xk are either real or occur in complex conjugate 
pairs. | xk | must be <1 for stability 

•  Factorizing polynomials is computationally expensive 

•  The frequency response is sensitive to pole position errors near |z|=1. 
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1− akz
−k

k=1

p
∑ = 1− xkz

−1( )
k=1

p
∏

Reflection Coefficients 

•  Any all-pole filter is equivalent to a tube with p sections: this is 
characterised by p reflection coefficients (assuming r0=1)  

•  We can convert between the reflection coefficients and the polynomial 
coefficients by using the formulae given earlier in the course 

•  Properties: 
–  An all-pole filter is stable iff the corresponding reflection coefficients all 

lie between -1 and +1. 
–  Interpolating between two of reflection coefficient sets will give a 

smoothly changing frequency response. 
–  High coefficient sensitivity near ±1. 

•  The negative reflection coefficients are sometimes called the PARCOR 
coefficients (PARCOR = partial correlation) 
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Log Area Ratios 

•  Log area ratios are derived from the lossless tube model 

•  Stability is guaranteed for any values of gi.  
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PART 3 

•  In this lecture, we at more alternative sets of LPC coefficients and their 
applications 
–  Cepstral Coefficients 

•  Relation to pole positions 
•  Relation to LPC filter coefficients 

–  Line Spectrum Frequencies 
•  Relation to pole positions and 

to formant frequencies 

–  Summary of LPC parameter sets 
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Cepstral Coefficients 

•  Most speech recognisers describe the spectrum of speech sounds using 
cepstral coefficients 
–  good at discriminating between different phonemes 
–  fairly independent of each other 
–  have approximately Gaussian distributions for a particular phoneme. 

•  Cepstrum  is defined as inverse fourier transform of log spectrum 
–  (periodic spectrum ⇒ discrete cepstrum) 

–  Can be computed either from roots of the prediction filter polynomial 
–  Can be computed alternatively from the coefficients of the prediction 

filter polynomial. 
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cn =
1
2π

log V (e jω )( )e jωndω
ω=−π

+π
∫

Computation from Roots xk

•  Define the cepstral coefficients cn in terms of 

•  This is the standard inverse z-transform derived by taking the inverse 
Fourier transform of both sides of the first equation. 

•  By equating the Fourier transforms of the two expressions for cn, we get 
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•  Next, using the Taylor series 

•  By collecting all the terms in z–n, 
we obtain cn in terms of xk: 

•  Because                the cn decrease 
exponentially with n. 
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log(1− y) = −
yn

nn=1

∞
∑ for | y |<1
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xk <1

Computation from Coefficients ak 

•  Differentiating C(z) = log(G) - log(A(z)) with respect to z: 

•  Gives 

•  Replacing m by n-k (to make the z exponent uniform) gives: 
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•  Now take the coefficient of z–n in the above equation noting that 

•  Thus we have a recurrence relation to calculate the cn from the ak 
coefficients 

•  From which 
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n ≥ k +1 ⇒ k ≤ n−1
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ncn = nan + (n− k)c(n−k)ak
k=1

min( p,n−1)
∑

⇒ cn = an +
1
n

(n− k)c(n−k)ak
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∑
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cn = an +
1
n

(n− k)c(n−k)ak
k=1
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c1 = a1
c2 = a2 + 1

2 c1a1
c3 = a3 + 1

3 2c2a1 + c1a2( )
c4 = a4 + 1

4 3c3a1 +2c2a2 + c1a3( )
c5 =

•  These coefficients are called the complex cepstrum coefficients 
–  even though they are real 

•  The  cepstrum coefficients use log|V| instead of log(V)  
–  half as big, except for c0 

•  Note the cute names:  

–  spectrum→cepstrum ; frequency→quefrency ; filter→lifter ; etc 
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Line Spectrum Frequencies (LSF) 

•  Consider 

•  We can form symmetric and antisymmetric polynomials: 

•  V(z) is stable if and only if the roots of P(z) and Q(z) all lie on the unit 
circle and they are interleaved. 
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A(z) =G ×V −1(z) =1− a jz
− j

j=1

p
∑ =1− a1z

−1 − a2z
−2 −…− apz

−p
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P(z) = A(z)+ z−( p+1)A*(z*
−1
)

=1− (a1 +ap )z
−1 − (a2 +ap−1)z

−2 −…− (ap +a1)z
−p + z−( p+1)

Q(z) = A(z)− z−( p+1)A*(z*
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=1− (a1 − ap )z
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•  Example 

•  If the roots of P(z) are at exp(2πjfi)  for  i=1, 3, … and  
 the roots of Q(z) are at exp(2πjfi)  for i=0, 2, …  with   fi+1>fi ≥ 0  

–  then the LSF frequencies are defined as f1, f2, …, fp. 

•  Note that it is always true that f0=+1 and fp+1=–1 
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Poles: LSFs: 

Q(1)=0

€ 

P(z) =1− 0.2z−1 − 0.2z−2 + z−3

Q(z) =1−1.2z−1 +1.2z−2 − z−3

€ 

E.g. A(z) =1− 0.7z−1 +0.5z−2

z−3A*(z*
−1
) = 0.5z−1 − 0.7z−2 + z−3
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Proof that roots of P(z) and Q(z) lie on the unit circle 

•  Given 

•  here the xi are the roots of A(z)=V–1(z). 
•  Providing all the xi lie inside the unit circle, the absolute values of the 

terms making up H(z) are either all > 1 or else all < 1.  
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€ 

P(z) = 0 ⇔ A(z) = −z−( p+1)A*(z*
−1
) ⇔ H (z) = −1

Q(z) = 0 ⇔ A(z) = +z−( p+1)A*(z*
−1
) ⇔ H (z) = +1

where H (z) =
A(z)

z−( p+1)A*(z*
−1
)

= z (1− xiz
−1)

z−1(1− xi
*z)i=1

p
∏ = z (z− xi )

(1− xi
*z)i=1

p
∏

•  Taking | | of a typical term: 

•  Thus each term is greater or less than 1 according to whether  |z|>1  
or |z|<1  

•  Hence |H(z)|=1 if and only if |z|=1 and so the roots of P(z) and Q(z) must 
lie on the unit circle. 
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€ 

(z− xi )
(1− xi

*z)
>1 ⇔ 1− xi

*z < z− xi

⇔ 1− xi
*z( ) 1− xi*z( )

*
< z− xi( ) z− xi( )*

⇔ 1− xi
*z( ) 1− xiz*( ) < z− xi( ) z* − xi*( )

⇔ 1− xi
*z− xiz

* + xixi
*zz* < zz* − xi

*z− xiz
* + xixi

*

⇔ 1− xixi
* − zz* + xixi

*zz* < 0

⇔ 1− xi
2( ) 1− z 2( ) < 0 ⇔ z >1 since each xi <1
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Proof that the roots of P(z) and Q(z) are interleaved 

•  We want to find the values of z = ejω that make H(z) = ±1 or equivalently 
that make arg(H(z)) = a multiple of π. 

•  If z = ejω  then  

•  As ω goes from 0 to 2π, arg(z–a) changes monotonically by +2π  if |a|<1 
•  Therefore as ω goes from 0 to 2π, arg(H(ejω)) increases by  
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€ 

arg H (e jω )( ) = arg e j(1−p)ω (e jω − xi )
(e− jω − xi

*)i=1

p
∏

 

 
 

 

 
 

= (1− p)ω + arg(e jω − xi )− arg(e
− jω − xi

*)( )
i=1

p
∑

= (1− p)ω +2 arg(e jω − xi )
i=1

p
∑

€ 

(1− p)×2π +2p×2π = (1+ p)×2π

arg(z-a)

z = e
j!

a

•  Since H(ejω ) goes round the unit circle (1+p) times, it must pass through 
each of the points +1 and –1 alternately (1+p) times 

•  arg(H(z)) varies most rapidly when z is near one of the xi so the LSF 
frequencies will cluster near the formants 
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arg(z-a)

z = e
j!

a

H(z)z
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Summary of LPC parameter sets 

•  Filter Coefficients: ai 
–  Stability check difficult; Sensitive to errors; Cannot interpolate 

•  Pole Positions: xi 
+  Stability check easy; Can interpolate but unordered. 
–  Hard to calculate; Sensitive to errors near |xi|=1 

•  Reflection Coefficients: ri 
+  Stability check easy; Can interpolate 
–  Sensitive to errors near ±1 

•  Log Area Ratios: gi 
+  Stability guaranteed; Can interpolate 

•  Cepstral Coefficients : ci 
+  Good for speech recognition 
–  Stability check difficult 

•  Line Spectrum Frequencies: fi 
+  Stability check easy; Can interpolate; Vary smoothly in time; Strongly 

correlated ⇒ better coding; Related to spectral peaks (formants).  
–  Awkward to calculate 
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