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PART 1

* This lecture studies one of the most important concepts underpinning
many applications of speech processing, namely LPC

Concept of Linear Prediction

Derivation of Linear Prediction Equations

Autocorrelation method of LPC

Interpretation of LPC filter as a spectral whitener
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Concept of Linear Prediction

u(m) | V) u(n) RQ) s(n)

* u(n) volume flow at the glottis

* u,(n)volume flow at the lips

* s(n) pressure at the microphone
GZ—p/Z GZ—p/Z

e V()= = vocal tract transfer function

P )
1-$ac AQ

Jj=1

« R()=1-7" |ip radiation model

* The aim of Linear Prediction Analysis (LPC) is to estimate V(z) from the
speech signal s(n).
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Notes

* We will neglect the pure delay term z ™7 in the numerator of ¥(z).

* 50% of the world puts a + sign in the denominator of V(z) (this is almost
essential when using MATLAB).

V()=
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Preview ... in straightforward terms

* Predict sample s(n) from samples s(n-1), s(n-2), ..., s(n-p)
* Consider prediction of 4 samples from their previous 2

5(2) = a;s(1) +a,s(0)
s(3)=a;5(2)+a,s(1)
s(4)=a,;5(3)+a,s(2)
s(5) =a,;5(4)+a,s(3)

* This is an overdetermined system of simultaneous equations

— If we try to predict only 2 samples then exact solution for the coefficients
can be found

— Otherwise we consider a least squares solution
* Callthe prediction §(n)
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* Important points to consider in determining the least squares solution
— The frame {F} of samples over which to solve

* Method of solution
— Formulate the linear algebra problem in the form Xa=b
— Solve by matrix inversion

* These issue are the main points to discuss in this talk

*  What should p be to predict successfully:
— Asinusoid?
— Voiced speech?
— Unvoiced speech?
— The stock market?
* Think of LPC as capturing the harmonic content of a signal.
— Anything not harmonic is unpredictable and gives a prediction error.
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Linearity

u(m) | V) u(n) RQ) s(n)

* We can reverse the order of V(z) and R(z) since both are linear and V(z)
doesn’t change substantially during the impulse response of R(z) or vice-

versa:
G

00y R(z) % V(z)/G=1/A(z) s .
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Prediction Error

s(n)=Gu'(n)+ iajs(n -

J=1

* If the vocal tract resonances have high gain, the second term will
dominate:

s(n) = iajs(n—j)
j=1

* The right hand side of this expression is a prediction of s(n) as a linear sum
of past speech samples. Define the prediction error at sample n as

e(n)=s(n)- gajs(n -D=sm)-a;s(n-)-a,s(n-2)-...-a,s(n- p)
J=l
* Interms of z-transforms

E(z)=S(2)A(z)
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Error Minimization

* Given a frame of speech {F}, we would like to find the values g, that
minimize
0z= 3 [1]

nE{F}

* Todo so, we differentiate w.r.t each ¢,

9 2
05 O S ™ srimnnn

9a;  pery  0G; ne{F} a; ne{F}
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+ The optimum values of a; must satisfy p equations:

Se(n)s(n-i)=0 for i=1,..,p

nE{F}

= 3 s(n)s(n—i)—ﬁajs(n—j)s(n—i) =0 for i=1,...,p

nE{F} Jj=1
P
= Ya; ys(n-js(n-i)= 3 sn)s(n-i)
j=l n&{F} nE{F}
14
= E(pijaj =¢, where ¢;= Ss(n—i)s(n- j)
Jj=l nE{F}

» which can be written in matrix form
Pa=c = a=®"'c providing &' exists

— the matrix @ is symmetric and positive semi-definite.
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Matrices with Special Properties

*  Symmetric:
¢ji = ¢ij <o =0

» Positive Definite: for a real symmetric matrix @
2Xp;x;>0< x"®x >0 for any real vector x = 0
ij

— There exists a unique lower triangular matrix L such that ® = LL'

* Cholesky factorization

* Positive Semi-Definite: as above but with >

Sx¢,;x;20<>x dx=0 for any real vector x = 0
ij

* Toeplitz: constant diagonals

¢i+1,j+1 = ¢ij = f(i - j)
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Inverting Matrices

* Any special properties possessed by a matrix can be used when inverting
it in order to:
— reduce the computation time
— improve the accuracy

Matrix (pxp) Computation
General op’
Symmetric, +ve definite o lop?
Toeplitz, Symmetric, op’
+ve definite
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Frame-based Processing

» Consider frame-based processing of a speech signal

— Extract a set of frames of the speech signal employing a tapered window
of duration 20 - 30 ms typically overlapping by 50%

L |
0 005 0.1 0.15 02 025

Frame = = = = =
Number 2 4 6 8 10 12 14 etc
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Autocorrelation LPC

» Take {F} in equation [1] to be of infinite extent ‘Jd“"
o e
¢;= 2s(n-i)s(n-j) ”|"')""

n=—0

* Because of the symmetry and the infinite sum, we have

95 = icsjo = R

— where the sequence R, is the autocorrelation of the windowed speech

* The matrix @ is now Toeplitz (constant diagonals) and the equations
Pa=c
are called the Yule-Walker equations.

* Inverting a symmetric, positive definite, Toeplitz pxp matrix takes O(p?)
operations instead of the normal O(p?). Inversion procedure is known as
the Levinson or Levinson-Durbin algorithm.
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Autocorrelation LPC example: /a/ from “father”

s(n)

e(n)
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Resulting Spectra and Poles

Spectrum of S(z) Spectrum of V(z) = I/A(z)
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Spectral Flatness

Autocorrelation LPC finds the filter of the form
A()=1-a;z" ——ar?
that minimizes the energy of the prediction error.

We will show that we can also interpret this in terms of flattening the
spectrum of the error signal

Define the normalized power spectrum of the prediction error signal e(n)
. 2
")
Pplw)="——"
E

0, = Se¥(n)= i:fo\E(efW) ‘zdw

where E(z) is the z-transform of the signal and Q. is the signal
energy. The average value of P is equal to 1.
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We define the spectral roughness of the signal as:

1 2r
R = 5 [P (w)-1- log(PE(w)) dw
I =0

R is similar to the variance of P, since

— the integrand is similar to /4(P,—1)> where mean(Py)=1.

v(P-1) /

\
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* We can find an alternative expression for R,;
1 27

Ry =—— [ Pp(w)-1-log(Pg(w))dw

2 w=0

= ZL 2f—log(PE(w)) dw since [Py(w)do=1

IT =0
=log(Qy)- i Zlog(‘E(efm) 2) dw

* Thus the spectral roughness of a signal equals the difference between its
log energy and the average of its log energy spectrum.
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*  We know that E(z) = S(z)xA(z), hence
3 2 . 2 1
log(‘E(e"”)‘ )= log(‘S(e’“’)‘ )+log(‘A(e’“’)
* Substituting this in the expression for R gives

Ry = log(Qy ) - i zfo log(‘ (o) ‘2) do

2) dow- ﬁ:folog(‘A(ej“’) ‘2) dw

)

=log(Qy)- i zfolog(‘S(ejm)

* We saw in the section on filter properties that the term involving A is
zero since a,=1 and all roots of A lie in the unit circle. Hence

R, = log(QE)‘leT ijolog(‘S(ej“’)‘z)dw

* The term involving S is independent of A. It follows that if A is chosen to
minimize Q, it will also minimize R, the spectral roughness of e(n). The
filter A(z) is a whitening filter because it makes the spectrum flatter.

Imperial College London
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Example

* These two graphs show a windowed speech signal, /a/, and the error
signal after filtering by A(z)
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» These graphs show the log energy spectrum of each signal

— The two horizontal lines on each graph are the mean value (same
for both graphs) and the log of the total energy.

— The spectral roughness is the difference between the two

Imperial College
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PART 2

* In this lecture, we look at further elements under the general heading of
Linear Prediction

Covariance method of LPC
Preemphasis

Closed Phase Covariance LPC
Alternative LPC parameter sets:
Pole positions

Reflection Coefficients

Log Area Ratios

Imperial College London

Variants of LPC

We consider two variants of LPC analysis which differ only in their choice
of speech frame, {F}

* Autocorrelation LPC Analysis

Requires a windowed signal

» tradeoff between spectral resolution and time resolution
Requires >20 ms of data
Has a fast algorithm because @ is toeplitz
Guarantees a stable filter V(z)

» Covariance LPC Analysis (Prony’s method)

No windowing required

Gives infinite spectral resolution

Requires >2 ms of data

Slower algorithm because @ is not Toeplitz
Sometimes gives an unstable filter V(z)

Imperial College London
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Covariance LPC

* Already seen that §1¢ty“./=¢f° where  ¢; = Fs(n-i)s(n-j)
e

ne{F}
* Now we chose {F} to be a finite segment of speech:
{F} =s(n)for0<n=<(N-1)
then we have: -
¢y = Y s(n=i)s(n-j)
n=0
*  The matrix @ is still symmetric but is no longer Toeplitz
— Since the matrix is not Toeplitz, the computation involved in inverting ®
is oc p3 rather than p? and so takes longer
» Covariance LPC generally gives better results than Autocorrelation LPC
but is more sensitive to the precise position of the frame in relation to
the vocal fold closures.
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Recursive Computation

* The entire matrix ® can be calculated recursively from its first row or
column.

N—2 . .
i = Ss(n—i+)s(n—j+1)

n=-1

= 5(=i)s(-j)—s(N -i)s(N - j)+N§s(n— i+1)s(n—j+1)
n=0

=s(=0)s(=)) = (N =D)s(N = j)+ ¢y ;_y

Imperial College London
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Unstable Poles

* Covariance LPC does not necessarily give a stable filter /(z)
— (though it usually does).

* We can force stability by replacing an unstable pole at z = p by a stable
oneatz=1/p*

Imaginary Part
o
o N
o°.
©
Imaginary Part
o
o N
o,
®

-04 -0.4
x x
-0.6 -0.6
-08 ~
. . 0.8 . .o
-1 x -1
-1 0.5 [ 05 1 = ~05 0.5 1

[
Real Part Real Part
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* Aswe have seen in the section on filter properties, reflecting a pole in
the unit circle leaves the magnitude response unchanged except for
multiplying by a constant (equal to the magnitude of the pole).

— spectral flattening property of LPC is unaltered by this pole reflection.

» Discovering which poles lie outside the unit circle is quite expensive

— this is a further computational disadvantage of covariance LPC.

Imperial College London
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Pre-emphasis

* The matrix @ is always non-singular, but not necessarily by very much.
* A measure of how close a matrix is to being singular is given by its
condition number

— for a symmetric +ve definite matrix, this is the ratio of its largest to its
smallest eigenvalue.

* Forlarge p, the condition number of ® tends to the ratio S, (®)/S,,;,(®).

* We can thus improve the numerical properties of the LPC analysis
procedure by flattening the speech spectrum before calculating matrix
D.

* For voiced speech, the input to V(z) is u,'(n) whose spectrum falls off at
high frequencies at around —6 dB/octave

— This can be compensated with a 1st-order high-pass filter with a zero

near z=1
P(z)=1-az"
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* P(z) is approximately a differentiator
* The normalised corner frequency of P(z) is approximately (1-a)/2m
* Thisis typically placed in the range 0 to 150 Hz.

» From a spectral flatness point of view, the optimum value of a is ¢,,/¢,
(obtained from autocorrelation LPC with p = 1).

u(n) u'(n) ' (n) s'(n) s(n)
R(2) P(z) V(z) Pl) [—

Imperial College London
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Closed-phase Covariance LPC

* We have already seen that s(n) = Gu'(n)+ ﬁa/.s(n— 7
* We have neglected the term Gu' (n) becalise we don’t know what it is
and it is assumed to be much smaller than the second term
* If we knew when the vocal folds were closed, we could restrict {F} to
those particular intervals. We can estimate the times of vocal fold closure
in two ways
— Looking for spikes in the e(n) signal
— Using a Laryngograph (or Electroglottograph or EGG): this instrument
measures the radio-frequency conductance across the larynx.
» Conductance « Vocal fold contact area.
* Accurate but inconvenient.
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* In Closed-Phase LPC, we choose our analysis interval {F} to consist of
one or more closed phase intervals

— (not necessarily contiguous).

* No preemphasis is necessary because the excitation now has a flat
spectrum

WWW\
Closed Phases: *,____ | —_ —

Imperial College London
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Closed Phase Analysis of /i/ from ‘bee’

s(n)

ezt (1) | e

20

W AT T J\

V(o™ 10
5 o

-10
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Alternative Parameter Sets

* The vocal tract filter is defined by p+1 parameters:

V(z)=

* The LPC (or AR) coefficients a, have some bad properties:
— The frequency response is very sensitive to small changes in a,
* (such as quantizing errors in coding)
— There is no easy way to verify that the filter is stable

— Interpolating between the parameters that correspond to two different
filters will not vary the frequency response smoothly from one to the
other: stability is not even guaranteed.

* There are several alternative parameter sets that are equivalent to the q,
— most require G to be specified as well

Imperial College London
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Pole Positions

* We can factorize the denominator of 7(z) to give its poles:

1- ﬁakz’k = l_p[(l—xkz’])
k=1

k=1

» The polynomial roots x, are either real or occur in complex conjugate
pairs. | x, | must be <1 for stability

* Factorizing polynomials is computationally expensive

» The frequency response is sensitive to pole position errors near |z|=1.

Imperial College London

Reflection Coefficients

* Any all-pole filter is equivalent to a tube with p sections: this is
characterised by p reflection coefficients (assuming r,=1)

* We can convert between the reflection coefficients and the polynomial
coefficients by using the formulae given earlier in the course

* Properties:

— An all-pole filter is stable iff the corresponding reflection coefficients all
lie between -1 and +1.

— Interpolating between two of reflection coefficient sets will give a
smoothly changing frequency response.

— High coefficient sensitivity near £1.

* The negative reflection coefficients are sometimes called the PARCOR
coefficients (PARCOR = partial correlation)

Imperial College London
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Log Area Ratios

Log area ratios are derived from the lossless tube model

A, 1+r, e -1
. =log| —*l | =10 i = r= =tanh(g,
& g( A ) g(l—r,.) toefi+l (&)

i

Stability is guaranteed for any values of g..

Imperial College London

PART 3

In this lecture, we at more alternative sets of LPC coefficients and their

applications
— Cepstral Coefficients
* Relation to pole positions
* Relation to LPC filter coefficients
— Line Spectrum Frequencies

* Relation to pole positions and
to formant frequencies

— Summary of LPC parameter sets

Imperial College London
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Cepstral Coefficients

* Most speech recognisers describe the spectrum of speech sounds using
cepstral coefficients

— good at discriminating between different phonemes

— fairly independent of each other

— have approximately Gaussian distributions for a particular phoneme.
* Cepstrum is defined as inverse fourier transform of log spectrum

— (periodic spectrum = discrete cepstrum)

C, - +fﬂ log(V(ejw))ej’””d(u

W==JT
— Can be computed either from roots of the prediction filter polynomial

— Can be computed alternatively from the coefficients of the prediction
filter polynomial.
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Computation from Roots x;

* Define the cepstral coefficients c, in terms of

GE) G =16, =2L +fﬂC(ejw)ej“’"da)
e T y=—n

* This is the standard inverse z-transform derived by taking the inverse
Fourier transform of both sides of the first equation.

* By equating the Fourier transforms of the two expressions for ¢,, we get
C(2)=log(V(2))
G
= log(ﬁ) =log(G) -log (A(z))

o 15 I
where A(z)=1- Ya,z7" = H(l—xkz )
k=1 k=1

Imperial College London
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* Next, using the Taylor series  log(1-y)=- iy— forlylk1

n=1

C(z) = log(G) - log(4(z))

= log(G) - glog (1-xz2")

P o n
- 10g(G)+kE Elikz
=1n=1"

0 forn<0

* By collecting all the terms in z7,
we obtain ¢, in terms of x;:

c, =1log(G) forn=20

P n
Y forns>0
* Because |x|<1 thec,decrease ) n
exponentially with n.
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Computation from Coefficients a,

+ Differentiating C(z) = log(G) - log(A(z)) with respect to z:

-A'(2)
A(2)

C'(z)= A(z)C'(z) =-A'(2)

= A(2)zC'(z) =-7A'(2)
*  Gives

[\ &S]

-

= (l - iakz’k )( imcmz’"’) = ﬁnanz‘”

k=1 m=1 n=1

o p
a7 )(Z E_mcmz-(mm) = —zS+na, 7™

m=0 n=1

1

M

=
= Snc,z"-

® 2
—-(m+k) _ -n
E’ncmakZ - Enanz
n=1 k=1 m=1

n=1

* Replacing m by n-k (to make the z exponent uniform) gives:

%

p p ®
= Ync,z " =3Yna, "+ In-k)c, paz"
n=1 n=1 k=1 n=k+1

Imperial College London
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* Now take the coefficient of z in the above equation noting that
nzk+l = k=n-1
min(p,n-1)
nc,=na,+ >(n- k)c(n_k)ak
k=1

1 min(p.n-1)
= c¢,=a,+— >(n- k)c(n_k)ak
no =l
* Thus we have a recurrence relation to calculate the ¢, from the a,
coefficients 1 min(psi-1)
C,=da,+— E(i’l— k)c(n—k)ak
n g

*  From which
o =q

G =a,+ica

3= a3 +5(2¢,a,+¢ja,)

¢4 = ay +1(3c3a) +2c,a, + ca3)
Cs=--
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* These coefficients are called the complex cepstrum coefficients
— even though they are real

» The cepstrum coefficients use log| V| instead of log(¥)
— half as big, except for ¢,

* Note the cute names:

— spectrum—>cepstrum ; frequency—quefrency ; filter—lifter ; etc

10 Vocal Tract Response Complex Cepstrum
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Line Spectrum Frequencies (LSF)

P ]
« Consider A()=GxV'()=1-Ya;z7 =l1-az"'-a,7"~...~a,z”"
Jj=1

*  We can form symmetric and antisymmetric polynomials:

P

P(2)= A(R)+ 7 PVA"(ZT)
Sl(a+a)T ~(a+a, )7 -~ (a, +a)s T+ 7
0(2) = A(2)- Z—(,M)A*(Z*_l)
=l-(q-a,)7" - (ay-a, )" -...~(a,~a)z" -7

* J(z)is stable if and only if the roots of P(z) and Q(z) all lie on the unit
circle and they are interleaved.

Imperial College London

+ Example Poles: | 'SEs /Q(GWZ) =0
_ P(™)=0

* Iftheroots of P(z) are at exp(2mjf;) for i=1,3, ... and
the roots of O(z) are at exp(27f;) fori=0,2, ... with f, ,>f;=0
— then the LSF frequencies are defined as f}, f5, R
* Note thatitis always true that f;=+1 and f,,,=1

Eg. A(z)=1-0.77"+0577 P(2)=1-027"'-0272+7
AT =05:120772 427 0(z)=1-12z"+1277 -2

Imperial College London
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Proof that roots of P(z) and QO(z) lie on the unit circle

« Given P(2)=0 < A@Q=-7"AET) < H@=-1
Dm0 s e T i CVA ) S H e e

-1
where H(z)= AR =z]£[ (-x7) _ Ah (Z_)i")
i=l(1—xiZ)

w1

T PAT T 7' (1-x;7)

* here the x; are the roots of A(z)=V"'(z).
* Providing all the x; lie inside the unit circle, the absolute values of the
terms making up H(z) are either all > 1 orelse all < 1.

Imperial College London

» Taking | | of a typical term:

(z-x;)

>1 = ‘1—x?z<‘z—xl-‘
(1-x;2)

= (1— x:z)(l— x;z)* < (z— xi)(z— x,-)*
= (1 - xi*z)(l - x,-z*) <(z- x,-)(z* - x,)

* * * % * * * *
= 1-X;2-X2 +X,X,22 <22 —X;2— X2 +X;X;

3 * £ *
< 1-xx -2z +xx22 <0
< (l—‘xi‘z)(l—‘z‘2)<0 < |g>1  since each |x|<1

* Thus each term is greater or less than 1 according to whether IzI>1
orlzl<1

* Hence |H(z)l=1 if and only if Izl=1 and so the roots of P(z) and Q(z) must
lie on the unit circle.

Imperial College London
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Proof that the roots of P(z) and Q(z) are interleaved

*  We want to find the values of z = & that make H(z) = #1 or equivalently
that make arg(H(z)) = a multiple of .
* Ifz=¢€ then
P (e./w _ xi)

zzejw jw i(1-p)w
arg(H(e'”)|=arg|e’"" - i
e{f1 ) manel "

A =(-pow+ é(arg(ej‘” -x;)- arg(e™’” - x,.*))

=(1- p)w+2§arg(ej’” -x;)
i=1
* As wgoes from 0 to 27, arg(z—a) changes monotonically by +2 if lal<1
» Therefore as w goes from 0 to 2, arg(H(e/”)) increases by

(1-p)x2m+2px2m =+ p)x2mw

Imperial College London

» Since H(e/*) goes round the unit circle (1+p) times, it must pass through
each of the points +1 and -1 alternately (1+p) times

4 H(z)

» arg(H(z)) varies most rapidly when z is near one of the x; so the LSF
frequencies will cluster near the formants

Imperial College London
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Summary of LPC parameter sets

* Filter Coefficients: g;
- Stability check difficult; Sensitive to errors; Cannot interpolate
* Pole Positions: x;
+ Stability check easy; Can interpolate but unordered.
- Hard to calculate; Sensitive to errors near |x,[=1
* Reflection Coefficients: r;
+ Stability check easy; Can interpolate
- Sensitive to errors near £1
* Log Area Ratios: g;
+ Stability guaranteed; Can interpolate
» Cepstral Coefficients : ¢;
+ Good for speech recognition
- Stability check difficult
* Line Spectrum Frequencies: f;

+ Stability check easy; Can interpolate; Vary smoothly in time; Strongly
correlated => better coding; Related to spectral peaks (formants).

- Awkward to calculate
Imperial College L
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