SPEECH PROCESSING
 Linear Predictive Coding (LPC)

Patrick A. Naylor
Spring Term 2008/9

Imperial College London

PART 1

- This lecture studies one of the most important concepts underpinning many applications of speech processing, namely LPC
- Concept of Linear Prediction
- Derivation of Linear Prediction Equations
- Autocorrelation method of LPC
- Interpretation of LPC filter as a spectral whitener

Concept of Linear Prediction

- $u(n)$ volume flow at the glottis
- $u_{l}(n)$ volume flow at the lips
- $s(n)$ pressure at the microphone
- $V(z)=\frac{G z^{-p / 2}}{1-\sum_{j=1}^{p} a_{j} z^{-j}}=\frac{G z^{-p / 2}}{A(z)}$ vocal tract transfer function
- $R(z)=1-z^{-1} \quad$ lip radiation model
- The aim of Linear Prediction Analysis (LPC) is to estimate $V(z)$ from the speech signal $s(n)$.

Imperial College London

Notes

- We will neglect the pure delay term $z^{-1 / 2 p}$ in the numerator of $V(z)$.
- 50% of the world puts a + sign in the denominator of $V(z)$ (this is almost essential when using MATLAB).

$$
V(z)=\frac{G z^{-p / 2}}{1-\sum_{j=1}^{p} a_{j} z^{-j}}
$$

Preview ... in straightforward terms

- Predict sample $s(n)$ from samples $s(n-1), s(n-2), \ldots, s(n-p)$
- Consider prediction of 4 samples from their previous 2

$$
\begin{aligned}
& s(2)=a_{1} s(1)+a_{2} s(0) \\
& s(3)=a_{1} s(2)+a_{2} s(1) \\
& s(4)=a_{1} s(3)+a_{2} s(2) \\
& s(5)=a_{1} s(4)+a_{2} s(3)
\end{aligned}
$$

- This is an overdetermined system of simultaneous equations
- If we try to predict only 2 samples then exact solution for the coefficients can be found
- Otherwise we consider a least squares solution
- Call the prediction $\hat{s}(n)$

Imperial College London

- Important points to consider in determining the least squares solution
- The frame $\{F\}$ of samples over which to solve
- Method of solution
- Formulate the linear algebra problem in the form $\mathrm{Xa}=\mathrm{b}$
- Solve by matrix inversion
- These issue are the main points to discuss in this talk
- What should p be to predict successfully:
- A sinusoid?
- Voiced speech?
- Unvoiced speech?
- The stock market?
- Think of LPC as capturing the harmonic content of a signal.
- Anything not harmonic is unpredictable and gives a prediction error.

Imperial College London

Linearity

- We can reverse the order of $V(z)$ and $R(z)$ since both are linear and $V(z)$ doesn't change substantially during the impulse response of $R(z)$ or viceversa:

Prediction Error

$$
s(n)=G u^{\prime}(n)+\sum_{j=1}^{p} a_{j} s(n-j)
$$

- If the vocal tract resonances have high gain, the second term will dominate:

$$
s(n) \approx \sum_{j=1}^{p} a_{j} s(n-j)
$$

- The right hand side of this expression is a prediction of $s(n)$ as a linear sum of past speech samples. Define the prediction error at sample n as

$$
e(n)=s(n)-\sum_{j=1}^{p} a_{j} s(n-j)=s(n)-a_{1} s(n-1)-a_{2} s(n-2)-\ldots-a_{p} s(n-p)
$$

- In terms of z-transforms

$$
E(z)=S(z) A(z)
$$

Imperial College London

Error Minimization

- Given a frame of speech $\{F\}$, we would like to find the values a_{i} that minimize

$$
\begin{equation*}
Q_{E}=\sum_{n \in\{F\}} e^{2}(n) \tag{1}
\end{equation*}
$$

- To do so, we differentiate w.r.t each a_{i}

$$
\frac{\partial Q_{E}}{\partial a_{i}}=\sum_{n \in\{F\}} \frac{\partial\left(e^{2}(n)\right)}{\partial a_{i}}=\sum_{n \in\{F\}} 2 e(n) \frac{\partial e(n)}{\partial a_{i}}=-\sum_{n \in\{F\}} 2 e(n) s(n-i)
$$

Imperial College London

- The optimum values of a_{i} must satisfy p equations:

$$
\begin{aligned}
& \sum_{n \in\{F\}} e(n) s(n-i)=0 \quad \text { for } \quad i=1, \ldots, p \\
\Rightarrow & \sum_{n \in\{F\}}\left(s(n) s(n-i)-\sum_{j=1}^{p} a_{j} s(n-j) s(n-i)\right)=0 \quad \text { for } \quad i=1, \ldots, p \\
\Rightarrow & \sum_{j=1}^{p} a_{j} \sum_{n \in\{F\}} s(n-j) s(n-i)=\sum_{n \in\{F\}} s(n) s(n-i) \\
\Rightarrow & \sum_{j=1}^{p} \phi_{i j} a_{j}=\phi_{i 0} \quad \text { where } \quad \phi_{i j}=\sum_{n \in\{F\}} s(n-i) s(n-j)
\end{aligned}
$$

- which can be written in matrix form

$$
\Phi \mathbf{a}=\mathbf{c} \Rightarrow \mathbf{a}=\Phi^{-1} \mathbf{c} \quad \text { providing } \Phi^{-1} \text { exists }
$$

- the matrix Φ is symmetric and positive semi-definite.

Matrices with Special Properties

- Symmetric:

$$
\phi_{j i}=\phi_{i j} \Leftrightarrow \Phi^{T}=\Phi
$$

- Positive Definite: for a real symmetric matrix Φ

$$
\sum_{i, j} x_{i} \phi_{i j} x_{j}>0 \Leftrightarrow \mathbf{x}^{T} \Phi \mathbf{x}>0 \quad \text { for any real vector } \mathbf{x} \neq 0
$$

- There exists a unique lower triangular matrix \mathbf{L} such that $\Phi=\mathbf{L} \mathbf{L}^{T}$
- Cholesky factorization
- Positive Semi-Definite: as above but with \geq

$$
\sum_{i, j} x_{i} \phi_{i j} x_{j} \geq 0 \Leftrightarrow \mathbf{x}^{T} \Phi \mathbf{x} \geq 0 \quad \text { for any real vector } \mathbf{x} \neq 0
$$

- Toeplitz: constant diagonals

$$
\phi_{i+1, j+1}=\phi_{i j}=f(i-j)
$$

Imperial College London

Inverting Matrices

- Any special properties possessed by a matrix can be used when inverting it in order to:
- reduce the computation time
- improve the accuracy

Matrix ($p \times p$)
Computation
General
Symmetric, +ve definite
Toeplitz, Symmetric, + ve definite
$\propto p^{3}$
$\alpha^{1 / 2} p^{3}$
αp^{2}

Frame-based Processing

- Consider frame-based processing of a speech signal
- Extract a set of frames of the speech signal employing a tapered window of duration $20-30 \mathrm{~ms}$ typically overlapping by 50%

Frame Number \qquad

Imperial College London

Autocorrelation LPC

- Take $\{F\}$ in equation [1] to be of infinite extent

$$
\phi_{i j}=\sum_{n=-\infty}^{+\infty} s(n-i) s(n-j)
$$

- Because of the symmetry and the infinite sum, we have

$$
\phi_{i j}=\phi_{|i-j|, 0}=R_{|i-j|}
$$

- where the sequence R_{k} is the autocorrelation of the windowed speech
- The matrix $\boldsymbol{\Phi}$ is now Toeplitz (constant diagonals) and the equations

$$
\Phi \mathbf{a}=\mathbf{c}
$$

are called the Yule-Walker equations.

- Inverting a symmetric, positive definite, Toeplitz $p \times p$ matrix takes $\mathrm{O}\left(p^{2}\right)$ operations instead of the normal $\mathrm{O}\left(p^{3}\right)$. Inversion procedure is known as the Levinson or Levinson-Durbin algorithm.

Imperial College London

Autocorrelation LPC example: /a/ from "father"

$s(n)$

$e(n)$

Imperial College London

Resulting Spectra and Poles

Spectral Flatness

- Autocorrelation LPC finds the filter of the form

$$
A(z)=1-a_{1} z^{-1}-\ldots-a_{p} z^{-p}
$$

that minimizes the energy of the prediction error.

- We will show that we can also interpret this in terms of flattening the spectrum of the error signal
- Define the normalized power spectrum of the prediction error signal e(n)

$$
P_{E}(\omega)=\frac{\left|E\left(e^{j \omega}\right)\right|^{2}}{Q_{E}} \quad Q_{E}=\sum e^{2}(n)=\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi}\left|E\left(e^{j \omega}\right)\right|^{2} d \omega
$$

- where $E(z)$ is the z-transform of the signal and Q_{E} is the signal energy. The average value of P_{E} is equal to 1 .
- We define the spectral roughness of the signal as:

$$
R_{E}=\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} P_{E}(\omega)-1-\log \left(P_{E}(\omega)\right) d \omega
$$

- R_{E} is similar to the variance of P_{E} since
- the integrand is similar to $1 / 2\left(P_{E}-1\right)^{2}$ where mean $\left(P_{E}\right)=1$.

Imperial College London

- We can find an alternative expression for R_{E}

$$
\begin{aligned}
R_{E} & =\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} P_{E}(\omega)-1-\log \left(P_{E}(\omega)\right) d \omega \\
& =\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi}-\log \left(P_{E}(\omega)\right) d \omega \text { since } \int P_{E}(\omega) d \omega=1 \\
& =\log \left(Q_{E}\right)-\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} \log \left(\left|E\left(e^{j \omega}\right)\right|^{2}\right) d \omega
\end{aligned}
$$

- Thus the spectral roughness of a signal equals the difference between its log energy and the average of its log energy spectrum.
- We know that $E(z)=S(z) \times A(z)$, hence

$$
\log \left(\left|E\left(e^{j \omega}\right)\right|^{2}\right)=\log \left(\left|S\left(e^{j \omega}\right)\right|^{2}\right)+\log \left(\left|A\left(e^{j \omega}\right)\right|^{2}\right)
$$

- Substituting this in the expression for R_{E} gives

$$
\begin{aligned}
R_{E} & =\log \left(Q_{E}\right)-\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} \log \left(\left|E\left(e^{j \omega}\right)\right|^{2}\right) d \omega \\
& =\log \left(Q_{E}\right)-\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} \log \left(\left|S\left(e^{j \omega}\right)\right|^{2}\right) d \omega-\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} \log \left(\left|A\left(e^{j \omega}\right)\right|^{2}\right) d \omega
\end{aligned}
$$

- We saw in the section on filter properties that the term involving A is zero since $a_{0}=1$ and all roots of A lie in the unit circle. Hence

$$
R_{E}=\log \left(Q_{E}\right)-\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} \log \left(\left|S\left(e^{j \omega}\right)\right|^{2}\right) d \omega
$$

- The term involving S is independent of A. It follows that if A is chosen to minimize Q_{E}, it will also minimize R_{E}, the spectral roughness of $e(n)$. The filter $A(z)$ is a whitening filter because it makes the spectrum flatter. Imperial College London

Example

- These two graphs show a windowed speech signal, /a/, and the error signal after filtering by $A(z)$

Imperial College London

- These graphs show the log energy spectrum of each signal
- The two horizontal lines on each graph are the mean value (same for both graphs) and the log of the total energy.
- The spectral roughness is the difference between the two

Imperial College London

PART 2

- In this lecture, we look at further elements under the general heading of Linear Prediction
- Covariance method of LPC
- Preemphasis
- Closed Phase Covariance LPC
- Alternative LPC parameter sets:
- Pole positions
- Reflection Coefficients
- Log Area Ratios

Imperial College London

Variants of LPC

We consider two variants of LPC analysis which differ only in their choice of speech frame, $\{F\}$

- Autocorrelation LPC Analysis
- Requires a windowed signal
- tradeoff between spectral resolution and time resolution
- Requires $>20 \mathrm{~ms}$ of data
- Has a fast algorithm because Φ is toeplitz
- Guarantees a stable filter $V(z)$
- Covariance LPC Analysis (Prony's method)
- No windowing required
- Gives infinite spectral resolution
- Requires $>2 \mathrm{~ms}$ of data
- Slower algorithm because Φ is not Toeplitz
- Sometimes gives an unstable filter $V(z)$

Imperial College London

Covariance LPC

- Already seen that $\sum_{j=1}^{p} \phi_{i j} a_{j}=\phi_{i 0} \quad$ where $\quad \phi_{i j}=\sum_{n \in\{F\}} s(n-i) s(n-j)$
- Now we chose $\{F\}$ to be a finite segment of speech:

$$
\{F\}=s(n) \text { for } 0 \leq n \leq(N-1)
$$

then we have:

$$
\phi_{i j}=\sum_{n=0}^{N-1} s(n-i) s(n-j)
$$

- The matrix Φ is still symmetric but is no longer Toeplitz
- Since the matrix is not Toeplitz, the computation involved in inverting Φ is $\propto p^{3}$ rather than p^{2} and so takes longer
- Covariance LPC generally gives better results than Autocorrelation LPC but is more sensitive to the precise position of the frame in relation to the vocal fold closures.

Imperial College London

Recursive Computation

- The entire matrix Φ can be calculated recursively from its first row or column.

$$
\begin{aligned}
\phi_{i j} & =\sum_{n=-1}^{N-2} s(n-i+1) s(n-j+1) \\
& =s(-i) s(-j)-s(N-i) s(N-j)+\sum_{n=0}^{N-1} s(n-i+1) s(n-j+1) \\
& =s(-i) s(-j)-s(N-i) s(N-j)+\phi_{i-1, j-1}
\end{aligned}
$$

Unstable Poles

- Covariance LPC does not necessarily give a stable filter $V(z)$
- (though it usually does).
- We can force stability by replacing an unstable pole at $z=p$ by a stable one at $z=1 / p^{*}$

Imperial College London

- As we have seen in the section on filter properties, reflecting a pole in the unit circle leaves the magnitude response unchanged except for multiplying by a constant (equal to the magnitude of the pole).
- spectral flattening property of LPC is unaltered by this pole reflection.
- Discovering which poles lie outside the unit circle is quite expensive
- this is a further computational disadvantage of covariance LPC.

Pre-emphasis

- The matrix Φ is always non-singular, but not necessarily by very much.
- A measure of how close a matrix is to being singular is given by its condition number
- for a symmetric + ve definite matrix, this is the ratio of its largest to its smallest eigenvalue.
- For large p, the condition number of Φ tends to the ratio $S_{\max }(\omega) / S_{\text {min }}(\omega)$.
- We can thus improve the numerical properties of the LPC analysis procedure by flattening the speech spectrum before calculating matrix Φ.
- For voiced speech, the input to $V(z)$ is $u_{g}{ }^{\prime}(n)$ whose spectrum falls off at high frequencies at around $-6 \mathrm{~dB} /$ octave
- This can be compensated with a 1 st-order high-pass filter with a zero near $z=1$

$$
P(z)=1-\alpha z^{-1}
$$

Imperial College London

- $P(z)$ is approximately a differentiator
- The normalised corner frequency of $P(z)$ is approximately $(1-\mathrm{a}) / 2 \pi$
- This is typically placed in the range 0 to 150 Hz .
- From a spectral flatness point of view, the optimum value of a is ϕ_{10} / ϕ_{00} (obtained from autocorrelation LPC with $p=1$).

Closed-phase Covariance LPC

- We have already seen that $s(n)=G u^{\prime}(n)+\sum_{i=1}^{p} a_{j} s(n-j)$
- We have neglected the term $G u^{\prime}(n)$ because we don't know what it is and it is assumed to be much smaller than the second term
- If we knew when the vocal folds were closed, we could restrict $\{F\}$ to those particular intervals. We can estimate the times of vocal fold closure in two ways
- Looking for spikes in the $e(n)$ signal
- Using a Laryngograph (or Electroglottograph or EGG): this instrument measures the radio-frequency conductance across the larynx.
- Conductance \propto Vocal fold contact area.
- Accurate but inconvenient.
- In Closed-Phase LPC, we choose our analysis interval $\{F\}$ to consist of one or more closed phase intervals
- (not necessarily contiguous).
- No preemphasis is necessary because the excitation now has a flat spectrum

Closed Phase Analysis of /i/ from 'bee'

$s(n)$

$e(n)=u_{g}{ }^{\prime}(n)$

$u_{g}(n)$

Imperial College London

Alternative Parameter Sets

- The vocal tract filter is defined by $p+1$ parameters:

$$
V(z)=\frac{G}{1-\sum_{k=1}^{p} a_{k} z^{-k}}
$$

- The LPC (or AR) coefficients a_{k} have some bad properties:
- The frequency response is very sensitive to small changes in a_{k}
- (such as quantizing errors in coding)
- There is no easy way to verify that the filter is stable
- Interpolating between the parameters that correspond to two different filters will not vary the frequency response smoothly from one to the other: stability is not even guaranteed.
- There are several alternative parameter sets that are equivalent to the a_{k}
- most require G to be specified as well

Imperial College London

Pole Positions

- We can factorize the denominator of $V(z)$ to give its poles:

$$
1-\sum_{k=1}^{p} a_{k} z^{-k}=\prod_{k=1}^{p}\left(1-x_{k} z^{-1}\right)
$$

- The polynomial roots x_{k} are either real or occur in complex conjugate pairs. $\left|x_{k}\right|$ must be <1 for stability
- Factorizing polynomials is computationally expensive
- The frequency response is sensitive to pole position errors near $|z|=1$.

Reflection Coefficients

- Any all-pole filter is equivalent to a tube with p sections: this is characterised by p reflection coefficients (assuming $r_{0}=1$)
- We can convert between the reflection coefficients and the polynomial coefficients by using the formulae given earlier in the course
- Properties:
- An all-pole filter is stable iff the corresponding reflection coefficients all lie between -1 and +1 .
- Interpolating between two of reflection coefficient sets will give a smoothly changing frequency response.
- High coefficient sensitivity near ± 1.
- The negative reflection coefficients are sometimes called the PARCOR coefficients (PARCOR = partial correlation)

Log Area Ratios

- Log area ratios are derived from the lossless tube model

$$
g_{i}=\log \left(\frac{A_{i+1}}{A_{i}}\right)=\log \left(\frac{1+r_{i}}{1-r_{i}}\right) \quad \Leftrightarrow \quad r_{i}=\frac{e^{g_{i}}-1}{e^{g_{i}}+1}=\tanh \left(g_{i}\right)
$$

- Stability is guaranteed for any values of g_{i}.

Imperial College London

PART 3

- In this lecture, we at more alternative sets of LPC coefficients and their applications
- Cepstral Coefficients
- Relation to pole positions
- Relation to LPC filter coefficients
- Line Spectrum Frequencies
- Relation to pole positions and to formant frequencies
- Summary of LPC parameter sets

Cepstral Coefficients

- Most speech recognisers describe the spectrum of speech sounds using cepstral coefficients
- good at discriminating between different phonemes
- fairly independent of each other
- have approximately Gaussian distributions for a particular phoneme.
- Cepstrum is defined as inverse fourier transform of log spectrum
- (periodic spectrum \Rightarrow discrete cepstrum)

$$
c_{n}=\frac{1}{2 \pi} \int_{\omega=-\pi}^{+\pi} \log \left(V\left(e^{j \omega}\right)\right) e^{j \omega n} d \omega
$$

- Can be computed either from roots of the prediction filter polynomial
- Can be computed alternatively from the coefficients of the prediction filter polynomial.

Computation from Roots x_{k}

- Define the cepstral coefficients c_{n} in terms of

$$
C(z)=\sum_{n=-\infty}^{+\infty} c_{n} z^{-n} \Rightarrow c_{n}=\frac{1}{2 \pi} \int_{\omega=-\pi}^{+\pi} C\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

- This is the standard inverse z-transform derived by taking the inverse Fourier transform of both sides of the first equation.
- By equating the Fourier transforms of the two expressions for c_{n}, we get

$$
\begin{aligned}
C(z) & =\log (V(z)) \\
& =\log \left(\frac{G}{A(z)}\right)=\log (G)-\log (A(z)) \\
& \text { where } \quad A(z)=1-\sum_{k=1}^{p} a_{k} z^{-k}=\prod_{k=1}^{p}\left(1-x_{k} z^{-1}\right)
\end{aligned}
$$

Imperial College London

- Next, using the Taylor series $\log (1-y)=-\sum_{n=1}^{\infty} \frac{y^{n}}{n}$ for $|y|<1$
- By collecting all the terms in z^{-n},
$C(z)=\log (G)-\log (A(z))$
$=\log (G)-\sum_{k=1}^{p} \log \left(1-x_{k} z^{-1}\right)$
$=\log (G)+\sum_{k=1}^{p} \sum_{n=1}^{\infty} \frac{x_{k}^{n}}{n} z^{-n}$ we obtain c_{n} in terms of x_{k} :
- Because $\left|x_{k}\right|<1$ the c_{n} decrease exponentially with n.

Computation from Coefficients a_{k}

- Differentiating $C(z)=\log (G)-\log (A(z))$ with respect to z :

$$
\begin{aligned}
C^{\prime}(z)=\frac{-A^{\prime}(z)}{A(z)} & \Rightarrow A(z) C^{\prime}(z)=-A^{\prime}(z) \\
& \Rightarrow A(z) z C^{\prime}(z)=-z A^{\prime}(z)
\end{aligned}
$$

- Gives

$$
\begin{aligned}
&\left(1-\sum_{k=1}^{p} a_{k} z^{-k}\right)\left(z \sum_{m=0}^{\infty}-m c_{m} z^{-(m+1)}\right)=-z \sum_{n=1}^{p}+n a_{n} z^{-(n+1)} \\
& \Rightarrow\left(1-\sum_{k=1}^{p} a_{k} z^{-k}\right)\left(\sum_{m=1}^{\infty} m c_{m} z^{-m}\right)=\sum_{n=1}^{p} n a_{n} z^{-n} \\
& \Rightarrow \quad \sum_{n=1}^{\infty} n c_{n} z^{-n}-\sum_{k=1}^{p} \sum_{m=1}^{\infty} m c_{m} a_{k} z^{-(m+k)}=\sum_{n=1}^{p} n a_{n} z^{-n}
\end{aligned}
$$

- Replacing m by $n-k$ (to make the z exponent uniform) gives:

$$
\Rightarrow \quad \sum_{n=1}^{\infty} n c_{n} z^{-n}=\sum_{n=1}^{p} n a_{n} z^{-n}+\sum_{k=1}^{p} \sum_{n=k+1}^{\infty}(n-k) c_{(n-k)} a_{k} z^{-n}
$$

Imperial College London

- Now take the coefficient of z^{-n} in the above equation noting that $n \geq k+1 \Rightarrow k \leq n-1$

$$
\begin{aligned}
& n c_{n}=n a_{n}+\sum_{k=1}^{\min (p, n-1)}(n-k) c_{(n-k)} a_{k} \\
& \Rightarrow \quad c_{n}=a_{n}+\frac{1}{n} \sum_{k=1}^{\min (p, n-1)}(n-k) c_{(n-k)} a_{k}
\end{aligned}
$$

- Thus we have a recurrence relation to calculate the c_{n} from the a_{k} coefficients

$$
c_{n}=a_{n}+\frac{1}{n} \sum_{k=1}^{\min (p, n-1)}(n-k) c_{(n-k)} a_{k}
$$

- From which

$$
\begin{aligned}
& c_{1}=a_{1} \\
& c_{2}=a_{2}+\frac{1}{2} c_{1} a_{1} \\
& c_{3}=a_{3}+\frac{1}{3}\left(2 c_{2} a_{1}+c_{1} a_{2}\right) \\
& c_{4}=a_{4}+\frac{1}{4}\left(3 c_{3} a_{1}+2 c_{2} a_{2}+c_{1} a_{3}\right) \\
& c_{5}=\cdots
\end{aligned}
$$

Imperial College London

- These coefficients are called the complex cepstrum coefficients
- even though they are real
- The cepstrum coefficients use $\log |V|$ instead of $\log (V)$
- half as big, except for c_{0}
- Note the cute names:
- spectrum \rightarrow cepstrum ; frequency \rightarrow quefrency ; filter \rightarrow lifter ; etc

Imperial College London

Line Spectrum Frequencies (LSF)

- Consider $A(z)=G \times V^{-1}(z)=1-\sum_{j=1}^{p} a_{j} z^{-j}=1-a_{1} z^{-1}-a_{2} z^{-2}-\ldots-a_{p} z^{-p}$
- We can form symmetric and antisymmetric polynomials:

$$
\begin{aligned}
P(z) & =A(z)+z^{-(p+1)} A^{*}\left(z^{*-1}\right) \\
& =1-\left(a_{1}+a_{p}\right) z^{-1}-\left(a_{2}+a_{p-1}\right) z^{-2}-\ldots-\left(a_{p}+a_{1}\right) z^{-p}+z^{-(p+1)} \\
Q(z) & =A(z)-z^{-(p+1)} A^{*}\left(z^{*-1}\right) \\
& =1-\left(a_{1}-a_{p}\right) z^{-1}-\left(a_{2}-a_{p-1}\right) z^{-2}-\ldots-\left(a_{p}-a_{1}\right) z^{-p}-z^{-(p+1)}
\end{aligned}
$$

- $\quad V(z)$ is stable if and only if the roots of $P(z)$ and $Q(z)$ all lie on the unit circle and they are interleaved.

Example
Poles:

LSFs:

- If the roots of $P(z)$ are at $\exp \left(2 \pi j f_{i}\right)$ for $i=1,3, \ldots$ and the roots of $Q(z)$ are at $\exp \left(2 \pi j f_{i}\right)$ for $i=0,2, \ldots$ with $f_{i+1}>f_{i} \geq 0$
- then the LSF frequencies are defined as $f_{1}, f_{2}, \ldots, f_{p}$.
- Note that it is always true that $f_{0}=+1$ and $f_{p+1}=-1$
E.g.

$$
\begin{aligned}
A(z) & =1-0.7 z^{-1}+0.5 z^{-2} & & P(z)=1-0.2 z^{-1}-0.2 z^{-2}+z^{-3} \\
z^{-3} A^{*}\left(z^{*-1}\right) & =0.5 z^{-1}-0.7 z^{-2}+z^{-3} & & Q(z)=1-1.2 z^{-1}+1.2 z^{-2}-z^{-3}
\end{aligned}
$$

Imperial College London

Proof that roots of $P(z)$ and $Q(z)$ lie on the unit circle

- Given $P(z)=0 \Leftrightarrow A(z)=-z^{-(p+1)} A^{*}\left(z^{*-1}\right) \Leftrightarrow H(z)=-1$
$Q(z)=0 \quad \Leftrightarrow \quad A(z)=+z^{-(p+1)} A^{*}\left(z^{*-1}\right) \quad \Leftrightarrow \quad H(z)=+1$
where $H(z)=\frac{A(z)}{z^{-(p+1)} A^{*}\left(z^{*-1}\right)}=z \prod_{i=1}^{p} \frac{\left(1-x_{i} z^{-1}\right)}{z^{-1}\left(1-x_{i}^{*} z\right)}=z \prod_{i=1}^{p} \frac{\left(z-x_{i}\right)}{\left(1-x_{i}^{*} z\right)}$
- here the x_{i} are the roots of $A(z)=V^{-1}(z)$.
- Providing all the x_{i} lie inside the unit circle, the absolute values of the terms making up $H(z)$ are either all >1 or else all < 1 .
- Taking | | of a typical term:

$$
\begin{aligned}
& \left|\frac{\left(z-x_{i}\right) \mid}{\left(1-x_{i}^{*} z\right) \mid}\right\rangle 1 \Leftrightarrow \quad\left|1-x_{i}^{*} z\right|<\left|z-x_{i}\right| \\
\Leftrightarrow & \left(1-x_{i}^{*} z\right)\left(1-x_{i}^{*} z\right)^{*}<\left(z-x_{i}\right)\left(z-x_{i}\right)^{*} \\
\Leftrightarrow & \left(1-x_{i}^{*} z\right)\left(1-x_{i} z^{*}\right)<\left(z-x_{i}\right)\left(z^{*}-x_{i}^{*}\right) \\
\Leftrightarrow & 1-x_{i}^{*} z-x_{i} z^{*}+x_{i} x_{i}^{*} z z^{*}<z z^{*}-x_{i}^{*} z-x_{i} z^{*}+x_{i} x_{i}^{*} \\
\Leftrightarrow & 1-x_{i} x_{i}^{*}-z z^{*}+x_{i} x_{i}^{*} z z^{*}<0 \\
\Leftrightarrow & \left(1-\left|x_{i}\right|^{2}\right)\left(1-|z|^{2}\right)<0 \quad \Leftrightarrow \quad|z|>1 \quad \text { since each }\left|x_{i}\right|<1
\end{aligned}
$$

- Thus each term is greater or less than 1 according to whether $|z|>1$ or $|z|<1$
- Hence $|H(z)|=1$ if and only if $|z|=1$ and so the roots of $P(z)$ and $Q(z)$ must lie on the unit circle.

Imperial College London

Proof that the roots of $P(z)$ and $Q(z)$ are interleaved

- We want to find the values of $z=e^{j \omega}$ that make $H(z)= \pm 1$ or equivalently that make $\arg (H(z))=$ a multiple of π.
- If $z=e^{j \omega}$ then

$$
\begin{aligned}
\arg \left(H\left(e^{j \omega}\right)\right) & =\arg \left(e^{j(1-p) \omega} \prod_{i=1}^{p} \frac{\left(e^{j \omega}-x_{i}\right)}{\left(e^{-j \omega}-x_{i}^{*}\right)}\right) \\
& =(1-p) \omega+\sum_{i=1}^{p}\left(\arg \left(e^{j \omega}-x_{i}\right)-\arg \left(e^{-j \omega}-x_{i}^{*}\right)\right) \\
& =(1-p) \omega+2 \sum_{i=1}^{p} \arg \left(e^{j \omega}-x_{i}\right)
\end{aligned}
$$

- As ω goes from 0 to 2π, $\arg (z-a)$ changes monotonically by $+2 \pi$ if $|a|<1$
- Therefore as ω goes from 0 to 2π, $\arg \left(H\left(e^{j \omega}\right)\right)$ increases by

$$
(1-p) \times 2 \pi+2 p \times 2 \pi=(1+p) \times 2 \pi
$$

- Since $H\left(\mathrm{e}^{j \omega}\right)$ goes round the unit circle $(1+p)$ times, it must pass through each of the points +1 and -1 alternately $(1+p)$ times

- $\arg (H(z))$ varies most rapidly when z is near one of the x_{i} so the LSF frequencies will cluster near the formants

Summary of LPC parameter sets

- Filter Coefficients: a_{i}
- Stability check difficult; Sensitive to errors; Cannot interpolate
- Pole Positions: x_{i}
+ Stability check easy; Can interpolate but unordered.
- Hard to calculate; Sensitive to errors near $\left|x_{i}\right|=1$
- Reflection Coefficients: r_{i}
+ Stability check easy; Can interpolate
- Sensitive to errors near ± 1
- Log Area Ratios: g_{i}
+ Stability guaranteed; Can interpolate
- Cepstral Coefficients : c_{i}
+ Good for speech recognition
- Stability check difficult
- Line Spectrum Frequencies: f_{i}
+ Stability check easy; Can interpolate; Vary smoothly in time; Strongly correlated \Rightarrow better coding; Related to spectral peaks (formants).
- Awkward to calculate

Imperial College London

