Module 4

Digital Filters - Implementation and Design
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< Signal Flow Graphs

 Basic filtering operations

< Digital Filter Structures
* Direct form FIR and IIR filters
* Filter transposition
 Linear phase FIR filter structures
* Finite precision effects

¢ FIR and IR Filter Design Techniques

e Windows
* Bilinear transformations

Reading:
Chapter 7, Proakis and Manolakis
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Design and Implementation

¢ Filter Design

= Given some frequency response specification, determine the type, order
and coefficients of a digital filter to best meet the specification.

¢ Filter Implementation

= Given some filter design, including the type, order and coefficients of the
filter, determine a way of implementing the filtering operation using
appropriate hardware or software.
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< A filter can be specified by a difference equation

N M
y(n) = X aky(n—k)+ > bex(n—k)

¢ or by a system function

bz
2 Y@ _ =
X(2) 1- %akz_k
k=1

< Such filters can be implemented in many different ways
= equivalent in function for infinite precision computation

= not equivalent for fixed point computation
* some may be more robust to rounding effects
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Signal Flow Graphs

¢ Filters can be described in terms of 3 basic operations

block diagram signal flow
X2 (n) x2(M)
<+ addition x1(n) % X (n) +X2(n) X1((n>) S X1%Xz(n)
¢ delay X(n) x(n—1) x(n) 27t x(n-1)
771 O O
¢ multiplication ) (1)
byaconstant XM % ax(m 3 ] o
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Finite Impulse Response Filters
(FIR)

M
& System function HZ) = Y bz
k=0

M
# Difference equation y(n) = > bx(n-k)
k=0

= Output is weighted sum of current and previous M inputs

= The filter has order M

= The filter has M+1 taps, i.e. impulse response is of length M+1
= H(z) is a polynomial in z'1 of order M

= H(z) has M poles at z =0 and M zeros at positions in the z-plane
determined by the coefficients by
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¢ Direct Form FIR Filter

x(n) z z z
O

A

b(0) b(1) b(2) |b(N-2) |b(N-1)

D)
D)

y(n)

O -7/ O O

= Also known as moving average (MA) and non-recursive
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Infinite Impulse Response Filters
(IIR)

M
Zbkz_k

¢ System function H(z) = —*=0

1- Zakz_k
k=1

N M
& Difference equation  Y(n)= 2 axy(n—k)+ > bex(n-k)
k=1 k=0

= Output is weighted sum of current and previous M inputs and previous N
outputs

= H(z) has N poles at positions determined by ax and M zeros at
positions in the z-plane determined by by
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¢ Direct Form 1 IIR Filter (for M=N)

Wy o PO L, o——0 Y()
771 771
b
x(n - 1) O (1) O ? a(l) O Y(n - 1)
-1 -1
b
x(n—2) Q 2 o Q a2 0 y(n-2)
= bM-1) &  +F N-1) =
x(n— M +1) ( ) (E ANy y(n—N+1)
-1 -1
x(h— M) b(M) i aN) %y(n N)
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¢ Direct Form 2 IIR Filter (for M=N)

XN 5~ o o 0 o o
-1
YA
b1
N C R < O
-1
a(2) b
? ? ?
T aN-)F  bM-1) T
T I [
i a(N) b(M) i
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¢ Canonical Form
= Filter structures which have the minimum number of delay elements are
said to be in canonical form
* i.e., minimum number of branches labelled z~
= Minimum number of delays given by maximum of (M, N)

1

¢ Many other filter structures can be obtained by re-
formulating the difference equations

= two forms will be studied in this course: transposed form and linear phase
FIR

= many other forms will not be studied, e.g., cascade form, parallel form etc.
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Transposed Forms

¢ Transposing a signal flow graph

= reverse the directions of all branches
= Swap input and output
= transfer function is unchanged
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¢ Transposed Direct Form 1 1IR Filter (for M=N)

= Note: drawn “backwards” for easy comparison with non-transposed form.
Normally redrawn with input on left.

b(0) x(n)
e o o o o o
-1 -1
Z VA
(D) a(1)
O O O O
-1 -1
z b(2) a(2) ’
o o

b(M—1)

1
? I b(M)

O—<—0-\O
=
z
NI
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Linear Phase FIR Filters

& For causal linear phase FIR filters, the coefficients are
symmetric h(n) = h(N —1—n)

¢ Linear phase filters do not introduce any phase distortion
= they only introduce delay
= The delay introduced is (N —1)/2 samples

& Zeros occur in mirror image pairs
= if Zgisazero, then 1/20 is also a zero

¢ Symmetry leads to efficient implementations

= N/2 multiplications (N even) or (N+1)/2 multiplications (N odd) per output
sample instead of N for the general case.
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& The filter’s z transform can be written

N -1
H(z)= > h(n)z™"
n=0

(N/2)-1
= Zh(n)[z_” + Z_(N_l_n)] , Neven
n=0
[(N-1)/2]-1
= Zh(n)[z_n + z_(N_l_”)]+ h(N —1/2)2_[('\'_1)/2] , Nodd
n=0

¢ and hence
. . (N/2)-1 N -1
H(eja)) _ g jol(N-D1)/2] Z 2h(n) COS{(O(H—T)} , Neven
n=0
_ B (N-3)/2 _
_ o~ Jol(N-1)/2] h(%} + >, 2h(n) cos{w(n—%ﬂ , Nodd
n=0
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FIR / IIR Pros and Cons

¢ FIR ¢ IlIR
v’ = Linear Phase v'n based on “well-known” analogue
« constant group delay at any concepts
frequency x = Non-linear phase
v/ = Good CAD support for design « delay varies with frequency
v = Can’t be unstable v'=  Good CAD support for design
» good for adaptive filters « = Can be unstable
v/ = Robust to numerical errors x = Rounding errors can accumulate
* eg: rounding in fixed point and cause serious inaccuracies
arithmetic  limit cycles
xm Large number of taps required for '« Small number of taps required

accurate frequency selectivity

. ;  low computational load
« high computational load
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Finite Precision Effects

¢ DSP algorithms are implemented in hardware that can
represent numbers only to finite precision
= €.0., 16 bit precision for Texas Instruments TMS320C5x

¢ This results in
= rounding of arithmetic operations
= rounding of filter coefficients
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¢ Rounding of filter coefficients

= effective position of poles and zeros moved
 frequency response errors introduced
 |IR filters may go unstable

# analysis can show some structures are more robust than
others
= FIR filter implementations normally use
* direct form
» cascade of 2nd order sections
= IR filter implementations normally use
* cascade form

* parallel form
e NOT direct form
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¢ Rounding of arithmetic operations

= Mmay cause limit cycles

¢ Example
= filter’s system function H(z) = 1
1+09z7¢
= input signal x(n) =105(n)
= ideal response y(n) =10(-0.9)"

= actual response for integer rounding of arithmetic
y(n) =x(n)-09y(n-1)
={10,-9,8,-7,6,-5,5,-5,5,-5, etc }

This is called a limit cycle. /

The pole has effectively moved

fromz=-09 to z=-1.
The result is oscillation at f5/2 .
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|deal Digital Filters

Lowpass ‘H(e iw)‘ Highpass ‘H(e jw)‘

1, [T, e, ] .m'm,v—-—-

Bandpass ‘H(e iw)

—III_III_II_III_II( """"" _lﬁ’_‘_‘ﬁr """

0 2 -2r 0 27
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Filter Specification

& Aim of filter design

= Given some frequency response specification, determine the type, order
and coefficients of a digital filter to best meet the specification.

HE™)
7 passband ripple
7778
passband gain  |————-
2
7
stopband gain T
| | Q
I I
cutoff frequency transition bandwidth
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FIR Filter Design

¢ Order determination

= orderis
 proportional to stopband attenuation
* inversely proportional to transition bandwidth
« often determined by approximate rule

¢ Coefficients of an FIR filter are also the impulse response
N-1
Z{{h(0),h(1),....nA(N —=D3}} = Y h(n)z™"

. . =0 . . .
= if we know the impulse response of the required filter then we can easily
design the filter
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¢ “ldeal” FIR filters

= Ingeneral, an ideal (continuous) frequency response is related to an
(infinite) impulse response by the Fourier Series

Hy(€%) = 3 hy(me ™

N=-—o0

hy () = %j_”” H, (e12)e"d 0

= The coefficients of an “ideal” FIR filter can therefore be found from the
Fourier Series coefficients of the desired frequency response.

= Not practical because
* the impulse response cannot be infinite
* the impulse response must be causal

* maybe don’t need the frequency response to be specified for all (continuous)
values of @
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¢ Frequency Sampling
= truncation of the impulse response introduces errors

e truncation of the impulse response is equivalent to sampling of the frequency
response

= the truncated impulse response can be obtained directly from the DFT of
the desired frequency response

2
H(K) = Hd(e“")‘ Zh(n)e N k=012, N -1
h(n) = —ZH(k) n=012,. ., N-1

= N-1is the order of the FIR filter
= The frequency response has been sampled at N points around the unit
circle

» The frequency response of filter designed in this way will only be exactly
correct only at these points
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¢ Example | ‘H(ej“’)‘— L |o|<x/2
= Lowpass filter 0, otherwise
= Number of taps: 33

11‘—"—"—"—*—*—"—"—*— desired responsej
/ |Hd (e’ )|
0.8¢ 1
frequency sampled
0.6f Tesponse
0.4r
0.2t
0 KKK —H—K—HK—HK—K
0 2 4 6 8 10 12 14 16
| | |
I I I
0 /2 z
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= For the ideal filter (from Fourier Series)

_ 1172 jhwy sin(nz/2) _
hd(n)_ZEJ—ﬁ/Ze d(o—%—nﬂ/z n=-o0,...,00

= For the truncated filter (from IDFT)

32 27

1 j——nk

h(n)= —=> H(k)e N, n=012,..,32
33,20

h(n) 05 - - - - - - Note that this result is causal.
It is obtained using a linear
phase assumption for the filter
such that the delay of the filter
is given by (N -1)/2 such that

H(eifU) _ ‘H(ejw)‘.e*j“’('\‘*l)/z

04}

03}

0.2t

0.1

0}

-0.1
0
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Windowing

¢ The truncation of the impulse response is equivalent to
multiplication of the ideal (infinite) impulse response by a
square window w(n)

h , 0<n<N-1
(= (M O=n= N
0, otherwise

= hy ()w(n)

= Square window function

1, 0<n<N-1
w(n) = i
0, otherwise
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¢ Effect of multiplying impulse response by window

= convolution of ideal frequency response with Fourier transform of
window
= Fourier transform of square window is sinc

 expect to see high side-lobes and ripples in the frequency response of the filter
designed using square window

Magnitude of frequency
10 T T
: : : 1| response for the 33 taps
o ! ! ! ! lowpass filter with cut-
U VR I
2
: off frequency of 7[/
1 1
@ 10p------- it "
© 1 1
o) 1 1
(%] 1 1
& 0f--mmmomqmooooes Qoo
o
3 1 1
@ 1 1
g “0pTooos ATttt v
k= 1 1
= !
> 40f------- R r
(o] 1 1
= 1 1
1 1
SO mmmmm e e Lo ot T (S [ B o ]
1 1 1 1
-60 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Normalized Frequenc!
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¢ Other window functions
= Hamming window

054 + 0.46cos[”—”j, _l<n<|
w(n) = |

0, otherwise

= Hanning window

05+ 0.5003(“—”), -1 <n<
w(n) = |
0, otherwise

= (Several others)

= Use of raised cosine-type windows (Hamming or Hanning) gives better
stopband attenuation but wider transition band
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< Filter magnitude responses for square, Hamming and
Hanning windows

20

Square
0 AN /
m -20 Y y
o
]
VAN
g -60 )@ (\ Avl Hamming
'% -80 \ AV
2 \J
-100 Hanning [ ] |
-120 |
0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency
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IR Filter Design

¢ Normally done by transforming a continuous-time design

to discrete-time
= many “classical” continuous-time filters are known and coefficients
tabulated

 Butterworth
* Chebyshev
 Elliptic, etc.

= possible transformations are
* Impulse invariant transformation
* Bilinear transformation
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¢ Butterworth Filters

= maximally flat in both passband and stopband
o first 2N —1 derivatives of |H(J'Q)|2 arezeroat Q=0and Q=00

HGO)P = ——
1+[Qj
QC
=1, forQ=0
=1/x/§, for Q=Q,

ocl/QN, for Q >> Q.

= 2N polesof H(s)H(-s) equally spaced around a circle in the s-plane of
radius Q. symmetrically located with respect to both real and imaginary
axes
« poles of H(S) selected to be the N poles on the left half plane of s
= coefficients of a continuous-time filter for specific order and cutoff
frequency can be found
 from analysis of above expression

o from tables
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¢ Transformation to discrete-time
= wishtomap jo axis of the s-plane to the unit circle of the z-plane

= Wish to map poles and zeros on the left half plane of s-plane to the inside
of unit circle in z

jQ
Im

-
|/

s-plane 1=1z0

s=jQ —] \/

z-plane

Re
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Impulse-Invariant
Transformation

¢ Not widely used

¢ Impulse response of discrete-time filter is obtained by
sampling the impulse response of continuous-time filter
= impulse response is preserved by the mapping
= frequency response is not preserved due to aliasing
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Bilinear Transformation

¢ Widely used

¢ Avoids aliasing problem of impulse-invariant
transformation

¢ Two elements
= transformation g=—-

= frequency warping Q= tan(w/2)
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z-1 l+S_1+G+]Q:reJ‘9

¢ From S=,7 wecanwritt ‘71571 ,_jo

c>0=r>1

* right half plane of s maps to exterior of unit circle in z
oc<0=r<l1

o left half plane of s maps to interior of unit circle in z
c=0=r=1

 imaginary axis in s maps to unit circle in z

= On the imaginary axis we have (using z = gl )

el _1 jsin(w/2)
el? 41 cos(w/2)

jQ = jtan(w/2)

« this is the relationship between frequency in the continuous-time filter and
frequency in the discrete-time filter

* itisanon-linear relationship which is close to linear for small frequencies
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¢ Example

and sampling frequency 20 kHz.

 Design a 2nd order Butterworth digital filter with cutoff frequency of 2 kHz

= Pre-warp the discrete-time frequencies to obtain the equivalent

continuous-time frequencies

Q¢ =tan(w/2) = tan(01x 27/2) = 0.325

Design a continuous-time Butterworth filter for cutoff at Q

e For cutoff at 1 rad/s

 F toff at 0.325 rad/ S—
or cutoff a rad/s 0325

= Apply transformation
z+1

S H(s) =

~H(2) =

1
H(s)=—5—F—=—
s? +4/25+1
0106

s2 +046s+0106

006822 + 01362 + 0.068
72 ~11427 + 0413

Digital Signal Processing. Slide 4.37




