Module 4

Digital Filters - Implementation and Design

Digital Signal Processing. Slide 4.1

Contents

Signal Flow Graphs

• Basic filtering operations

Digital Filter Structures

- Direct form FIR and IIR filters
- Filter transposition
- Linear phase FIR filter structures
- Finite precision effects

• FIR and IIR Filter Design Techniques

- Windows
- Bilinear transformations

Reading:

Chapter 7, Proakis and Manolakis

Design and Implementation

- Filter Design
 - Given some frequency response specification, determine the type, order and coefficients of a digital filter to best meet the specification.

Filter Implementation

• Given some filter design, including the type, order and coefficients of the filter, determine a way of implementing the filtering operation using appropriate hardware or software.

Digital Signal Processing. Slide 4.3

◆ A filter can be specified by a difference equation

$$y(n) = \sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

• or by a system function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

- Such filters can be implemented in many different ways
 - equivalent in function for infinite precision computation
 - not equivalent for fixed point computation
 - some may be more robust to rounding effects

Signal Flow Graphs

Digital Signal Processing. Slide 4.5

Finite Impulse Response Filters (FIR)

)

System function
$$H(z) = \sum_{k=0}^{M} b_k z^{-k}$$

Difference equation $y(n) = \sum_{k=0}^{M} b_k x(n-k)$

- Output is weighted sum of current and previous *M* inputs
- The filter has <u>order</u> M
- The filter has M+1 taps, i.e. impulse response is of length M+1
- H(z) is a polynomial in z^{-1} of order M
- *H*(*z*) has *M* poles at *z* = 0 and *M* zeros at positions in the z-plane determined by the coefficients *b_k*

• Also known as moving average (MA) and non-recursive

Digital Signal Processing. Slide 4.7

Infinite Impulse Response Filters (IIR)

System function

$$H(z) = \frac{\sum_{k=0}^{N} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

M

Difference equation

$$y(n) = \sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

- Output is weighted sum of current and previous *M* inputs and previous *N* outputs
- H(z) has N poles at positions determined by a_k and M zeros at positions in the z-plane determined by b_k

• Direct Form 1 IIR Filter (for *M*=*N*)

Digital Signal Processing. Slide 4.9

• Direct Form 2 IIR Filter (for *M*=*N*)

Canonical Form

- Filter structures which have the minimum number of delay elements are said to be in canonical form
 - i.e., minimum number of branches labelled z^{-1}
- Minimum number of delays given by maximum of (*M*, *N*)
- Many other filter structures can be obtained by reformulating the difference equations
 - two forms will be studied in this course: transposed form and linear phase FIR
 - many other forms will not be studied, e.g., cascade form, parallel form etc.

Digital Signal Processing. Slide 4.11

Transposed Forms

Transposing a signal flow graph

- reverse the directions of all branches
- swap input and output
- transfer function is unchanged

▶ Transposed Direct Form 1 IIR Filter (for *M*=*N*)

• Note: drawn "backwards" for easy comparison with non-transposed form. Normally redrawn with input on left.

Digital Signal Processing. Slide 4.13

Linear Phase FIR Filters

• For causal linear phase FIR filters, the coefficients are symmetric h(n) = h(N - 1 - n)

- Linear phase filters do not introduce any phase distortion
 - they only introduce delay
 - The delay introduced is (N-1)/2 samples
- Zeros occur in mirror image pairs
 - if z_0 is a zero, then $1/z_0$ is also a zero
- Symmetry leads to efficient implementations
 - N/2 multiplications (N even) or (N+1)/2 multiplications (N odd) per output sample instead of N for the general case.

• The filter's z transform can be written

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$

= $\sum_{n=0}^{(N/2)-1} h(n) [z^{-n} + z^{-(N-1-n)}]$, N even
= $\sum_{n=0}^{[(N-1)/2]-1} h(n) [z^{-n} + z^{-(N-1-n)}] + h(N-1/2) z^{-[(N-1)/2]}$, N odd

and hence

$$H(e^{j\omega}) = e^{-j\omega[(N-1)/2]} \left\{ \sum_{n=0}^{(N/2)-1} 2h(n) \cos\left[\omega\left(n - \frac{N-1}{2}\right)\right] \right\}, \text{ N even}$$
$$= e^{-j\omega[(N-1)/2]} \left\{ h\left(\frac{N-1}{2}\right) + \sum_{n=0}^{(N-3)/2} 2h(n) \cos\left[\omega\left(n - \frac{N-1}{2}\right)\right] \right\}, \text{ N odd}$$

Digital Signal Processing. Slide 4.15

FIR / IIR Pros and Cons

FIR

- ✓ Linear Phase
 - constant group delay at any frequency
- ✓ Good CAD support for design
- \checkmark Can't be unstable
 - good for adaptive filters
- ✓ Robust to numerical errors
 - eg: rounding in fixed point arithmetic
- ★ Large number of taps required for accurate frequency selectivity
 - high computational load

IIR IIR

- ✓ based on "well-known" analogue concepts
- **x** Non-linear phase
 - delay varies with frequency
- ✓ Good CAD support for design
- **x** Can be unstable
- **★** Rounding errors can accumulate and cause serious inaccuracies
 - limit cycles
- ✓ Small number of taps required
 - low computational load

Finite Precision Effects

- DSP algorithms are implemented in hardware that can represent numbers only to finite precision
 - e.g., 16 bit precision for Texas Instruments TMS320C5x
- This results in
 - rounding of arithmetic operations
 - rounding of filter coefficients

Digital Signal Processing. Slide 4.17

Rounding of filter coefficients

- effective position of poles and zeros moved
 - frequency response errors introduced
 - IIR filters may go unstable
- analysis can show some structures are more robust than others
 - FIR filter implementations normally use
 - direct form
 - cascade of 2nd order sections
 - IIR filter implementations normally use
 - cascade form
 - parallel form
 - <u>NOT</u> direct form

Rounding of arithmetic operations

- may cause <u>limit cycles</u>
- Example

Digital Signal Processing. Slide 4.19

Ideal Digital Filters

Filter Specification

Aim of filter design

• Given some frequency response specification, determine the type, order and coefficients of a digital filter to best meet the specification.

FIR Filter Design

• Order determination

- order is
 - proportional to stopband attenuation
 - inversely proportional to transition bandwidth
 - often determined by approximate rule
- Coefficients of an FIR filter are also the impulse response $Z\{\{h(0), h(1), \dots, h(N-1)\}\} = \sum_{n=0}^{N-1} h(n) z^{-n}$ if we know the impulse response of the required filter then we can easily
 - design the filter

"Ideal" FIR filters

 In general, an ideal (continuous) frequency response is related to an (infinite) impulse response by the Fourier Series

$$\begin{split} H_d(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} h_d(n) e^{-jn\omega} \\ h_d(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{jn\omega} d\omega \end{split}$$

- The coefficients of an "ideal" FIR filter can therefore be found from the Fourier Series coefficients of the desired frequency response.
- Not practical because
 - the impulse response cannot be infinite
 - the impulse response must be causal
 - maybe don't need the frequency response to be specified for all (continuous) values of ω

Digital Signal Processing. Slide 4.23

Frequency Sampling

- truncation of the impulse response introduces errors
 - truncation of the impulse response is equivalent to sampling of the frequency response
- the truncated impulse response can be obtained directly from the DFT of the desired frequency response

$$H(k) = H_d(e^{j\omega})\Big|_{\omega = \frac{2\pi}{N}k} = \sum_{n=0}^{N-1} h(n)e^{-j\frac{2\pi}{N}nk} \qquad k = 0, 1, 2, ..., N-1$$
$$h(n) = \frac{1}{N}\sum_{k=0}^{N-1} H(k)e^{j\frac{2\pi}{N}nk} \qquad n = 0, 1, 2, ..., N-1$$

- *N*-1 is the order of the FIR filter
- The frequency response has been sampled at *N* points around the unit circle
 - The frequency response of filter designed in this way will only be exactly correct only at these points

• Example

• Lowpass filter
$$|H(e^{j\omega})| = \begin{cases} 1, & |\omega| < \pi/2 \\ 0, & \text{otherwise} \end{cases}$$

• Number of taps: 33

Digital Signal Processing. Slide 4.25

• For the ideal filter (from Fourier Series)

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{jn\omega} d\omega = \frac{1}{2} \frac{\sin(n\pi/2)}{n\pi/2} \qquad n = -\infty, \dots, \infty$$

• For the truncated filter (from IDFT)

$$h(n) = \frac{1}{33} \sum_{k=0}^{32} H(k) e^{j\frac{2\pi}{N}nk}, n = 0, 1, 2, ..., 32$$

$$h(n) \overset{0.5}{\underset{0.4}{0.3}} \underbrace{\int_{0.4}^{0.4} \int_{0.4}^{0.4} \int_{0.4}^{0$$

Windowing

 The truncation of the impulse response is equivalent to multiplication of the ideal (infinite) impulse response by a square window w(n)

$$h(n) = \begin{cases} h_d(n), & 0 \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$$
$$= h_d(n)w(n)$$

Square window function

$$w(n) = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$$

Digital Signal Processing. Slide 4.27

• Effect of multiplying impulse response by window

- convolution of ideal frequency response with Fourier transform of window
- Fourier transform of square window is sinc
 - expect to see high side-lobes and ripples in the frequency response of the filter designed using square window

• Other window functions

Hamming window

$$w(n) = \begin{cases} 0.54 + 0.46 \cos\left(\frac{n\pi}{I}\right), & -I \le n \le I\\ 0, & \text{otherwise} \end{cases}$$

Hanning window

$$w(n) = \begin{cases} 0.5 + 0.5 \cos\left(\frac{n\pi}{I}\right), & -I \le n \le I\\ 0, & \text{otherwise} \end{cases}$$

- (Several others)
- Use of raised cosine-type windows (Hamming or Hanning) gives better stopband attenuation but wider transition band

Digital Signal Processing. Slide 4.29

 Filter magnitude responses for square, Hamming and Hanning windows

IIR Filter Design

 Normally done by transforming a continuous-time design to discrete-time

- many "classical" continuous-time filters are known and coefficients tabulated
 - Butterworth
 - Chebyshev
 - Elliptic, etc.
- possible transformations are
 - Impulse invariant transformation
 - Bilinear transformation

Digital Signal Processing. Slide 4.31

Butterworth Filters

- maximally flat in both passband and stopband
 - first 2N-1 derivatives of $|H(j\Omega)|^2$ are zero at $\Omega = 0$ and $\Omega = \infty$

$$|H(j\Omega)|^{2} = \frac{1}{1 + \left(\frac{\Omega}{\Omega_{c}}\right)^{2N}}$$
$$= 1, \quad \text{for } \Omega = 0$$
$$= 1/\sqrt{2}, \quad \text{for } \Omega = \Omega_{c}$$
$$\propto 1/\Omega^{N}, \quad \text{for } \Omega >> \Omega_{c}$$

- 2*N* poles of H(s)H(-s) equally spaced around a circle in the s-plane of radius Ω_c symmetrically located with respect to both real and imaginary axes
 - poles of H(s) selected to be the N poles on the left half plane of s
- coefficients of a continuous-time filter for specific order and cutoff frequency can be found
 - from analysis of above expression
 - from tables

Transformation to discrete-time

- wish to map $j\omega$ axis of the s-plane to the unit circle of the z-plane
- wish to map poles and zeros on the left half plane of s-plane to the inside of unit circle in z

Digital Signal Processing. Slide 4.33

Impulse-Invariant Transformation

- Not widely used
- Impulse response of discrete-time filter is obtained by sampling the impulse response of continuous-time filter
 - impulse response is preserved by the mapping
 - frequency response is not preserved due to aliasing

Bilinear Transformation

◆ Widely used

Avoids aliasing problem of impulse-invariant transformation

Two elements

- transformation $s = \frac{z-1}{z+1}$
- frequency warping $\Omega = \tan(\omega/2)$

Digital Signal Processing. Slide 4.35

• From
$$s = \frac{z-1}{z+1}$$
 we can write $z = \frac{1+s}{1-s} = \frac{1+\sigma+j\Omega}{1-\sigma-j\Omega} = re^{j\theta}$

 $\sigma > 0 \Longrightarrow r > 1$

- right half plane of s maps to exterior of unit circle in z
- $\sigma < 0 \Longrightarrow r < 1$
- left half plane of s maps to interior of unit circle in z
- $\sigma = 0 \Longrightarrow r = 1$
- imaginary axis in s maps to unit circle in z
- On the imaginary axis we have (using $z = e^{j\omega}$)

$$j\Omega = \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \frac{j\sin(\omega/2)}{\cos(\omega/2)} = j\tan(\omega/2)$$

- this is the relationship between frequency in the continuous-time filter and frequency in the discrete-time filter
- it is a non-linear relationship which is close to linear for small frequencies

Example

- Design a 2nd order Butterworth digital filter with cutoff frequency of 2 kHz and sampling frequency 20 kHz.
- Pre-warp the discrete-time frequencies to obtain the equivalent continuous-time frequencies

$$\Omega_c = \tan(\omega_c/2) = \tan(0.1 \times 2\pi/2) = 0.325$$

• Design a continuous-time Butterworth filter for cutoff at Ω_c

• For cutoff at 1 rad/s
$$H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

• For cutoff at 0.325 rad/s
$$s \to \frac{s}{0.325}$$
 \therefore $H(s) = \frac{0.106}{s^2 + 0.46s + 0.106}$

• Apply transformation
$$s = \frac{z-1}{z+1}$$
 \therefore $H(z) = \frac{0.068z^2 + 0.136z + 0.068}{z^2 - 1.142z + 0.413}$

Digital Signal Processing. Slide 4.37