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Module 4

Digital Filters - Implementation and Design
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Design and Implementation

Filter Design
Given some frequency response specification, determine the type, order 
and coefficients of a digital filter to best meet the specification.

Filter Implementation
Given some filter design, including the type, order and coefficients of the 
filter, determine a way of implementing the filtering operation using 
appropriate hardware or software.
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A filter can be specified by a difference equation

or by a system function

Such filters can be implemented in many different ways
equivalent in function for infinite precision computation

not equivalent for fixed point computation
• some may be more robust to rounding effects
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Signal Flow Graphs

Filters can be described in terms of 3 basic operations

block diagram                 signal flow

addition

delay

multiplication
by a constant
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Finite Impulse Response Filters 
(FIR)

System function

Difference equation

Output is weighted sum of current and previous M inputs

The filter has order M

The filter has M+1 taps, i.e. impulse response is of length M+1

H(z) is a polynomial in z-1 of order M

H(z) has M poles at z = 0 and M zeros at positions in the z-plane 
determined by the coefficients bk
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Direct Form FIR Filter

Also known as moving average (MA)  and non-recursive
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Infinite Impulse Response Filters 
(IIR)

System function

Difference equation

Output is weighted sum of current and previous M inputs and previous N
outputs

has N poles at positions determined by       and M zeros at 
positions in the z-plane determined by
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Direct Form 1 IIR Filter (for M=N)
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Direct Form 2 IIR Filter (for M=N)
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Canonical Form
Filter structures which have the minimum number of delay elements are 
said to be in canonical form

• i.e., minimum number of branches labelled 

Minimum number of delays given by maximum of (M, N)

Many other filter structures can be obtained by re-
formulating the difference equations

two forms will be studied in this course: transposed form and linear phase 
FIR

many other forms will not be studied, e.g., cascade form, parallel form etc.

z−1
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Transposed Forms
Transposing a signal flow graph

reverse the directions of all branches

swap input and output

transfer function is unchanged
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Transposed Direct Form 1 IIR Filter (for M=N)
Note: drawn “backwards” for easy comparison with non-transposed form. 
Normally redrawn with input on left.
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Linear Phase FIR Filters
For causal linear phase FIR filters, the coefficients are 
symmetric

Linear phase filters do not introduce any phase distortion
they only introduce delay

The delay introduced is                   samples 

Zeros occur in mirror image pairs
if      is a zero, then           is also a zero

Symmetry leads to efficient implementations
N/2 multiplications (N even) or (N+1)/2 multiplications (N odd) per output 
sample instead of N for the general case.
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The filter’s z transform can be written

and hence
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FIR / IIR Pros and Cons

FIR
Linear Phase

• constant group delay at any 
frequency

Good CAD support for design

Can’t be unstable
• good for adaptive filters

Robust to numerical errors
• eg: rounding in fixed point 

arithmetic

Large number of taps required for 
accurate frequency selectivity

• high computational load

IIR
based on “well-known” analogue 
concepts

Non-linear phase
• delay varies with frequency

Good CAD support for design

Can be unstable

Rounding errors can accumulate 
and cause serious inaccuracies

• limit cycles

Small number of taps required
• low computational load
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Finite Precision Effects

DSP algorithms are implemented in hardware that can 
represent numbers only to finite precision

e.g., 16 bit precision for Texas Instruments TMS320C5x

This results in 
rounding of arithmetic operations

rounding of filter coefficients
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Rounding of filter coefficients
effective position of poles and zeros moved

• frequency response errors introduced

• IIR filters may go unstable

analysis can show some structures are more robust than 
others

FIR filter implementations normally use
• direct form

• cascade of 2nd order sections

IIR filter implementations normally use
• cascade form

• parallel form

• NOT direct form
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Rounding of arithmetic operations
may cause limit cycles

Example
filter’s system function

input signal

ideal response

actual response for integer rounding of arithmetic

H z
z

( )
.

=
+ −

1

1 0 9 1

x n n( ) ( )= 10δ

y n x n y n( ) ( ) . ( )

{ , , , , , , , , , , }

= − −
= − − − − −

0 9 1

10 9 8 7 6 5 5 5 5 5   etc  

This is called a limit cycle.
The pole has effectively moved
from                 to               .
The result is oscillation at          . 

z = −0 9. z = −1
f s 2

nny )9.0(10)( −=

Digital Signal Processing. Slide 4.20

Ideal Digital Filters

Lowpass Highpass

BandstopBandpass

2π− 2π
ω

( )H e jω

− π π0 ωc
2π− 2π

ω

( )H e jω

− π

0 2π− 2π
ω

( )H e jω

0 2π− 2π
ω

( )H e jω



Digital Signal Processing. Slide 4.21

Filter Specification

Aim of filter design
Given some frequency response specification, determine the type, order 
and coefficients of a digital filter to best meet the specification.

stopband gain

transition bandwidth

passband gain

passband ripple

H e j( )Ω

cutoff frequency

Ω

Digital Signal Processing. Slide 4.22

FIR Filter Design

Order determination
order is

• proportional to stopband attenuation

• inversely proportional to transition bandwidth

• often determined by approximate rule

Coefficients of an FIR filter are also the impulse response

if we know the impulse response of the required filter then we can easily 
design the filter
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“Ideal” FIR filters
In general, an ideal (continuous) frequency response is related to an 
(infinite) impulse response by the Fourier Series

The coefficients of an “ideal” FIR filter can therefore be found from the 
Fourier Series coefficients of the desired frequency response.

Not practical because
• the impulse response cannot be infinite

• the impulse response must be causal

• maybe don’t need the frequency response to be specified for all (continuous) 
values of 
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Frequency Sampling
truncation of the impulse response introduces errors

• truncation of the impulse response is equivalent to sampling of the frequency 
response

the truncated impulse response can be obtained directly from the DFT of 
the desired frequency response

N-1 is the order of the FIR filter

The frequency response has been sampled at N points around the unit 
circle

• The frequency response of filter designed in this way will only be exactly 
correct only at these points
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Example
Lowpass filter 

Number of taps: 33
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For the ideal filter (from Fourier Series)

For the truncated filter (from IDFT)
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Note that this result is causal. 
It is obtained using a linear 
phase assumption for the filter 
such that the delay of the filter 
is given by                  such that( )N − 1 2
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Windowing

The truncation of the impulse response is equivalent to 
multiplication of the ideal (infinite) impulse response by a 
square window

Square window function
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Effect of multiplying impulse response by window
convolution of ideal frequency response with Fourier transform of 
window

Fourier transform of square window is sinc
• expect to see high side-lobes and ripples in the frequency response of the filter 

designed using square window
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Other window functions
Hamming window

Hanning window

(Several others)

Use of raised cosine-type windows (Hamming or Hanning) gives better 
stopband attenuation but wider transition band
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Filter magnitude responses for square, Hamming and 
Hanning windows
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IIR Filter Design

Normally done by transforming a continuous-time design 
to discrete-time

many “classical” continuous-time filters are known and coefficients 
tabulated

• Butterworth

• Chebyshev

• Elliptic, etc.

possible transformations are
• Impulse invariant transformation

• Bilinear transformation
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Butterworth Filters
maximally flat in both passband and stopband

• first                  derivatives of                  are zero at              and 

2N poles of                        equally spaced around a circle in the s-plane of 
radius        symmetrically located with respect to both real and imaginary 
axes

• poles of              selected to be the N poles on the left half plane of s

coefficients of a continuous-time filter for specific order and cutoff
frequency can be found

• from analysis of above expression

• from tables
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Transformation to discrete-time
wish to map         axis of the s-plane to the unit circle of the z-plane

wish to map poles and zeros on the left half plane of s-plane to the inside 
of unit circle in z

jω

jΩ

σ Re

Im
z = ∠1 ωs-plane z-plane

s j= Ω
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Impulse-Invariant 
Transformation

Not widely used

Impulse response of discrete-time filter is obtained by 
sampling the impulse response of continuous-time filter

impulse response is preserved by the mapping

frequency response is not preserved due to aliasing
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Bilinear Transformation

Widely used

Avoids aliasing problem of impulse-invariant 
transformation

Two elements
transformation

frequency warping
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From                   we can write

• right half plane of s maps to exterior of unit circle in z

• left half plane of s maps to interior of unit circle in z

• imaginary axis in s maps to unit circle in z

On the imaginary axis we have (using                 )

• this is the relationship between frequency in the continuous-time filter and 
frequency in the discrete-time filter

• it is a non-linear relationship which is close to linear for small frequencies
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Example
• Design a 2nd order Butterworth digital filter with cutoff frequency of 2 kHz 

and sampling frequency 20 kHz.

Pre-warp the discrete-time frequencies to obtain the equivalent 
continuous-time frequencies

Design a continuous-time Butterworth filter for cutoff at

• For cutoff at 1 rad/s

• For cutoff at 0.325 rad/s

Apply transformation
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