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Chapter 1

Introduction

1.1 Background

Communication involves the transfer of information from one point to another. In general, a
communication system can be represented by the model shown in Fig. 1.1.

Figure 1.1: Block diagram of a communication system.[Proakis & Salehi, Fig. 1.1]

The information generated by the source (which might be text, voice, image, etc.) is converted
into an electrical signal. The transmitter then converts (through the process of modulation) this
signal into a form that is suitable for transmission. The communication channel is the physical
medium that is used to send the signal from transmitter to receiver. Finally, the function of the
receiver is to recover the message signal, and a transducer then converts it into a form that is
suitable for the user.

From the point of view of this course, the most important aspect is that in its transmission
from source to user, the message signal is corrupted by noise. Although we may know basically
how communication systems work, and understand different forms of modulation, we also need
to consider how these systems behave when subjected to noise. The basic question that motivates
most of the material in this course is:How do communication systems perform in the presence of
noise?

1



1.2 Some Definitions

1.2 Some Definitions

Signal

A signal is a single-valued function of time that conveys information. In other words, at every
point in time there is a unique value of the function. This value may either be a real number,
giving a real-valued signal, or a complex number, giving a complex-valued signal.

Deterministic and Random Signals

A deterministicsignal can be modelled as a completely specified function of time. In other words,
there is no uncertainty about its value at any time. For example, the sinusoid signalA cos(2πfct+
θ) is deterministic ifA, fc andθ are known constants.

A random(or stochastic) signal cannot be completely specified as a function of time and must
be modelled probabilistically. Random signals will be extremely important in this course, as we
will use them to model noise.

Analog and Digital Signals

An analogsignal is a continuous function of time, for which the amplitude is also continuous.
Analog signals arise whenever a physical waveform (e.g., a speech wave) is converted to an elec-
trical signal.

A digital signal is a discrete function of time, for which the amplitude can only have a finite
set of values. Sometimes a distinction is also made of discrete-time signals—these are signals that
are a discrete function of time, but the amplitude may take on a continuum of values. In this course
we will be primarily concerned with analog signals in Chapter 3 and digital signals in Chapter 4.

Power

The instantaneous powerof a voltage or current signal is given by

p =
|v(t)|2

R
or p = |i(t)|2R

whereR is the resistance. The convention is to normalize the power using a1Ω resistor, so

p = |g(t)|2 (1.1)

whereg(t) is either a voltage or current signal.
Theaverage poweris defined as

P = lim
T→∞

1
T

∫ T/2

−T/2
|g(t)|2 dt (1.2)

Example 1.1– Average power of a sinusoidal signal

Consider the deterministic signalx(t) = A cos(2πft + θ), whereA is the amplitude,
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f is the frequency, andθ is the phase. By definition, the average power is

P = lim
T→∞

1
T

∫ T/2

−T/2
A2 cos2(2πft + θ) dt

= lim
T→∞

1
T

∫ T/2

−T/2

A2

2
[1 + cos(4πft + 2θ)] dt

= lim
T→∞

(
A2T

2T
+

A2

8πfT

[
sin(4πft + 2θ)

]T/2

−T/2

)

=
A2

2
+ lim

T→∞

(
A2

8πfT

[
sin(4πft + 2θ)

]T/2

−T/2

)

=
A2

2

Note that we have used the identitycos2 x = 1
2(1 + cos 2x) in the second line above.

¤

Energy

The signal energy is defined as

E =
∫ ∞

−∞
|g(t)|2 dt. (1.3)

Bandwidth

Thebandwidthof a signal provides a measure of the extent of significant spectral content of the
signal for positivefrequencies. When the signal is strictly band limited the bandwidth is well
defined. However, the meaning of “significant” is mathematically imprecise when the signal is
not strictly band limited. Several engineering definitions of bandwidth are commonly in use,
including:

Null-to-null bandwidth: range of frequencies between zeros in the magnitude spectrum.

3-dB bandwidth: range of frequencies where the magnitude spectrum falls no lower than1/
√

2
of the maximum value of the magnitude spectrum.

Equivalent noise bandwidth: width of a fictitious rectangular spectrum such that the power in
the rectangular band is equal to the power associated with the actual spectrum over positive
frequencies.

Phasors and Spectra

To develop the notion of the frequency content of signals, we will consider a phasor representation.
Phasors are useful in circuit analysis for representing sinusoidal signals. For example, consider
the general sinusoid

x(t) = A cos(2πf0t + θ) (1.4)
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1.2 Some Definitions

Figure 1.2: Projection of a rotating phasor onto the real axis.[Ziemer & Tranter, Fig. 2.2]

Figure 1.3: Addition of two rotating phasors.[Ziemer & Tranter, Fig. 2.2]

You have probably already come across the phasor representation

x(t) = Re
{

Aejθ ej2πf0t
}

(1.5)

where the term in brackets is viewed as a rotating vector in the complex plane, as shown in Fig. 1.2.
The phasor has lengthA, rotates anti-clockwise at a rate off0 revolutions per second, and at time
t = 0 makes an angle ofθ with respect to the positive real axis. The waveformx(t) can then be
viewed as a projection of this vector onto the real axis.

In this course we will instead use a slightly different phasor representation. In particular, using
Euler’s relationa we can expressx(t) as

x(t) =
A

2
ejθ ej2πft +

A

2
e−jθ e−j2πft (1.6)

which is shown in Fig. 1.3. In this case there are now two phasors rotating in opposite directions.
Each phasor has the same lengthA/2 but opposite phase. At any timet, the signalx(t) is given
by the vector addition of these two rotating phasors. Notice that the sum always falls on the real
axis.

To describe this phasor in the frequency domain, notice that it consists only of components at
±f0, where+f0 represents the anti-clockwise rotating vector, and−f0 represents the clockwise
rotating vector. Thus, a plot of the magnitude and phase ofA/2e±jθ at ±f0 gives sufficient
information to characterizex(t). Such a plot is shown in Fig. 1.4. Note that negative frequency

acos(θ) = 1/2(ejθ + e−jθ)
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Figure 1.4: Frequency spectrum of the signalA cos(2πf0t + θ). [Ziemer & Tranter, Fig. 2.3]

is an artifice that exists purely because it is necessary to add complex conjugate phasor signals to
obtain the real signalx(t). Whenever we speak of real signals in this course, we will therefore
include both positive and negative frequencies in the spectrum.

References

• Lathi, chapter 1, sections 2.1, 2.2.

• Couch, sections 1-2, 1-3, 2-1, and 2-9.
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Chapter 2

Noise

2.1 Background

The performance of any communication system, such as that shown in Fig. 1.1, is ultimately lim-
ited by two factors: (i) the transmission bandwidth, and (ii) the noise. Bandwidth is a resource that
must be conserved as much as possible, since only a finite electromagnetic spectrum is allocated
for any transmission medium.a Whatever the physical medium of the channel, the transmitted sig-
nal is corrupted in a random manner by a variety of possible mechanisms as it propagates though
the system. The termnoiseis used to denote the unwanted waves that disturb the transmission
of signals, and over which we have incomplete control. As we will see throughout this course,
bandwidth and noise are intimately linked. In this chapter our aim is to develop a model for the
noise, with the ultimate goal of using this model in later chapters to assess the performance of
various modulation schemes when used in the presence of noise.

2.2 A Model of Noise

2.2.1 Sources of noise

In a practical communication system, there are many sources of noise. These source may be
external to the system (e.g., atmospheric,b galactic,c and synthetic noised) or internal to the system.
Internal noise arises due to spontaneous fluctuation of current or voltage in electrical circuits, and
consists of bothshot noiseandthermal noise.

Shot noise arises in electronic devices and is caused by the random arrival of electrons at
the output of semiconductor devices. Because the electrons are discrete and are not moving in a
continuous steady flow, the current is randomly fluctuating. The important characteristic of shot
noise is that it isGaussiandistributed with zero mean (i.e, it has the Gaussian probability density

aSpread-spectrum schemes, such as code-division multiple access (CDMA), actually use a transmission bandwidth
that is far greater than necessary (and is independent of the bandwidth of the message signal). However, this is done
primarily as a means of reducing the deleterious effect of noise, specifically noise caused by multipath propagation in
mobile communications.

bAtmospheric noise is naturally occurring electrical disturbances that originate within the Earth’s atmosphere,
caused by conditions such as lightning.

cGalactic noise originates from outside the Earth’s atmosphere, and includes solar noise and cosmic noise (back-
ground radiation in the universe).

dThe predominant sources of synthetic noise are spark-producing mechanisms, as well as RF interference.
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2.2 A Model of Noise

function shown in Fig. 2.2). This follows from thecentral limit theorem, which states that the sum
of n independent random variables approaches a Gaussian distribution asn → ∞. In practice,
engineers and statisticians usually accept that the theorem holds whenn & 6.

Thermal noise is associated with the rapid and random motion of electrons within a conductor
due to thermal agitation. It is also referred to as Johnson noise, since it was first studied experi-
mentally in 1928 by Johnson,e who showed that the average power in a conductor due to thermal
noise is

Pthermal= kTB (2.1)

wherek is Boltzman’s constant (1.38× 10−23), T is the absolute temperature in Kelvin, andB is
the bandwidth in hertz.f Again, because the number of electrons in a conductor is very large, and
their random motions are statistically independent, the central limit theorem indicates that thermal
noise is Gaussian distributed with zero mean.

The noise power from a source (not necessarily a thermal source) can be specified by a number
called theeffective noise temperature:

Te =
P

kB
(2.2)

Effective noise temperature can be interpreted as the temperature of a fictitious thermal noise
source at theinput, that would be required to produce the same noise power at theoutput. Note
that if the noise source is not thermal noise, thenTe may have nothing to do with the physical
temperature of the device.

The important thing to note from this section is thatnoise is inevitable.

2.2.2 The additive noise channel

The simplest model for the effect of noise in a communication system is the additive noise channel,
shown in Fig. 2.1. Using this model the transmitted signals(t) is corrupted by the addition of a

Figure 2.1: The additive noise channel.[Proakis & Salehi, Fig. 1.8]

random noise signaln(t). If this noise is introduced primarily by electronic components and
amplifiers at the receiver, then we have seen that it can be characterized statistically as a Gaussian
process. It turns out that the noise introduced in most physical channels is (at least approximately)
Gaussian, and thus, this simple model is the predominant one used in communication system
analysis and design.

eJ.B. Johnson, “Thermal agitation of electricity in conductors”,Physical Review, vol. 32, pp.97-109, July 1928.
fThis equation is actually an approximation, although it is valid for frequencies up to about100 GHz.
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2.3 A Statistical Description of Noise

2.3 A Statistical Description of Noise

As we have already hinted at, noise is completely random in nature. The noise signaln(t) is a
time-varying waveform, however, and just like any other signal it must be affected by the system
through which it passes. We therefore need a model for the noise that allows us to answer questions
such as: How does one quantitatively determine the effect of systems on noise? What happens
when noise is picked up at the receiver and passed through a demodulator? And what effect does
this have on the original message signal? Here we seek a representation that will enable us to
answer such questions in the following chapters.

2.3.1 Background on Probability

Before developing a mathematical model for the noise, we need to define a few terms.

Random Variable

Consider arandom experiment, that is, an experiment whose outcome cannot be predicted pre-
cisely. The collection of all possible separately identifiable outcomes of a random experiment is
called thesample space, S. A random variableis a rule or relationship (denoted byx) that assigns
a real numberxi to theith sample point in the sample space. In other words, the random variable
x can take on valuesxi ∈ S. Theprobability of the random variablex taking on the valuexi is
denotedPx(xi).

Cumulative and Probability Density Functions

Thecumulative density function(cdf) of a random variablex is

Fx(x) = Px(x ≤ x). (2.3)

Theprobability density function(pdf) of a random variablex is

px(x) =
d

dx
Fx(x). (2.4)

Note that we use upper caseP to denote probability, and lower casep to denote a pdf. We also
have that

P (x1 < x ≤ x2) =
∫ x2

x1

px(x) dx. (2.5)

One specific pdf that we will be particularly interested in is theGaussianpdf, defined as

px(x) =
1

σ
√

2π
e−(x−m)2/(2σ2), (2.6)

wherem is themeanof the distribution andσ2 is thevariance. This pdf is shown in Fig. 2.2.
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2.3 A Statistical Description of Noise

Figure 2.2: Gaussian probability density function.[Schwartz, Fig. 5-2]

Statistical Averages

One is often interested in calculating averages of a random variable. Denote theexpected value
(or mean value) of a random variablex asE{x}. If the random variablex has a pdfpx(x), then
the expected value is defined as

E{x} =
∫ ∞

−∞
xpx(x) dx, (2.7)

whereE{·} denotes theexpectation operator.
It is also often necessary to find the mean value of a function of a random variable, for example,

the mean square amplitude of a random signal. Suppose we want to findE{y}wherey is a random
variable given by

y = g(x),

wherex is a random variable with a known pdf, andg(·) is an arbitrary function. Then,

E{y} = E{g(x)} =
∫ ∞

−∞
g(x)px(x) dx. (2.8)

Thevarianceof a random variablex is defined as

σ2
x = E{(x−E{x})2}

= E{x2} − E2{x}. (2.9)

Note that for a zero-mean random variable, the variance is equal to the mean square.

2.3.2 Random Processes

A random time-varying function is called arandom process. Letn(t) be such a process. A sample
n of n(t) taken at any timet is a random variable with some probability density function. Here
we will only considerstationaryprocesses, where a stationary process is defined as one for which
a sample taken at timet is a random variable whose pdf is independent oft.

Recall that one can view a random variable as an outcome of a random experiment, where
the outcome of each trial is a number. Similarly, a random process can be viewed as a random
experiment where the outcome of each trial is a waveform that is a function of time. The collection
of all possible waveforms is theensembleof the random process.

Two averages exist for random processes. Consider the ensemble of noise processes shown in
Fig. 2.3. Each waveform in this figure represents a different outcome of a random experiment.
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2.3 A Statistical Description of Noise

Figure 2.3: Ensemble averages.[Schwartz, Fig. 5-12]

Time Average

For a specific waveform, one could find thetime average, defined as

〈n(t)〉 = lim
T→∞

1
T

∫ T/2

−T/2
n(t) dt (2.10)

where〈·〉 denotes the time average operator. Note that average power (1.2) is just the time average
of the magnitude-square of the waveform.

Ensemble Average

Alternatively, one could pick a specific time and average across all sample functions of the process
at that time.g This would give theensemble average

E{n(t)} =
∫ ∞

−∞
n pn(n) dn. (2.11)

Comments

Note that the mean valueE{n(t)} locates the center of gravity of the area under the pdf. Random
processes for which the time-average and the ensemble-average are identical are calledergodic
processes. All the random processes encountered in this course will be assumed to be ergodic.
The importance of this is that time averages can be easily measured, whereas ensemble averages
cannot.

We can now interpret some engineering measures of the noise in terms of statistical quantities:

DC component: E{n(t)} = 〈n(t)〉 (2.12)

Average power: E{n2(t)} = 〈n2(t)〉 (2.13)

Notice that for a zero-mean process, the variance is equivalent to the average power, i.e.,σ2 =
E{n2(t)}. This could be measured in the lab using a power metre.

gFor a stationary source, the actual time chosen does not matter.
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2.3 A Statistical Description of Noise

2.3.3 Autocorrelation and Power Spectral Density

To understand bandwidth issues relating to random signals, we must now find a reasonable spectral
representation ofn(t). In particular, we are interested in a frequency representation that reflects
an ensemble average of all possible random processes.

Autocorrelation

The frequency content of a process depends on how rapidly the amplitude changes as a func-
tion of time. This can be measured by correlating the amplitudes at timest1 andt2. Define the
autocorrelationof a real random process as

Rx(t1, t2) = E{x(t1)x(t2)} (2.14)

For a stationary process, the autocorrelation depends only on the time difference, so

Rx(τ) = E{x(t)x(t + τ)} (2.15)

Recall that the average power of a waveform is the mean square. Hence,

P = E{x2(t)}
= Rx(0) (2.16)

Power Spectral Density

Power spectral density (PSD) is a function that measures the distribution of power of a random
signal with frequency. To illustrate the idea, consider a power meter tuned to a frequencyf0 that
measures the power in a very narrow bandwidth aroundf0; the output of this metre would give a
good approximation to the PSD at the frequencyf0. PSD is only defined for stationary signals.h

Theorem 2.1 (Wiener-Khinchine Theorem)
The power spectral density of a random process is defined as the Fourier transform of the autocor-
relation:

Sx(f) =
∫ ∞

−∞
Rx(τ) e−j2πfτ dτ

Since the autocorrelation is thus given by the inverse Fourier transform of the PSD, it follows
from (2.16) that the average power of a random process can be found by integrating the PSD over
all frequencies:

P = Rx(0) =
∫ ∞

−∞
Sx(f) df (2.17)

One particular example of a PSD that plays an extremely important role in communications
and signal processing is one in which the PSD is constant over all frequencies, i.e.,

S(f) =
No

2
(2.18)

Noise having such a PSD is referred to aswhite noise, and is used in the same sense as white
light which contains equal amounts of all frequencies within the visible band of electromagnetic
radiation. Note that the factor1/2 is included to indicate that half the power is associated with
positive frequency and half with negative.

hIn fact, it is defined forwide-sensestationary processes. These are processes for which the mean and variance are
independent of time. For a strictly stationary process, all ensemble averages are time-invariant.
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2.4 Representation of Bandlimited Noise

Figure 2.4: Receiver model.[Haykin, Fig. 2.33]

2.4 Representation of Bandlimited Noise

2.4.1 Development

Any communication system that uses carrier modulation will typically have a bandpass filter at
the front-end of the receiver (see Fig. 2.4). This filter will have a bandwidth wide enough to
pass the modulated signal of interest, and is designed to restrict out-of-band noise from entering
the receiver. Any noise that does enter the receiver will therefore be bandpass in nature, i.e., its
spectral magnitude is non-zero only for some band concentrated around the carrier frequencyfc.

For example, if white noise have a PSD ofNo/2 is passed through such a filter, then the PSD
of the noise that enters the receiver is given by

S(f) =
{ No

2 , fc −W ≤ |f | ≤ fc + W

0, otherwise
(2.19)

and is shown in Fig. 2.5. We are now in a position to develop a representation specifically for such
bandpass noise. To achieve this, we will use a simple artifice, namely, to visualize the noise as
being composed of the sum of many closely spaced randomly-phased sine waves.

Consider the bandpass noise signaln(t), whose PSD is given by (2.19) and is shown in
Fig. 2.5. The average noise power in the frequency slices∆f at frequenciesfk and−fk, is

Figure 2.5: Power spectral density of the bandlimited white noise processn(t).

found from (2.17) to be

Pk = 2
No

2
∆f = No∆f (2.20)

where the factor of 2 is present because we are summing the slices at negative and positive fre-
quencies. For∆f small, the component associated with this frequency interval can be writteni

nk(t) = ak cos(2πfkt + θk) (2.21)

iRecall that thecos(2πf) wave contains frequency components at bothf and−f .
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2.4 Representation of Bandlimited Noise

whereθk is a random phase assumed independent and uniformly distributed in the range[0, 2π),
andak is a random amplitude. It can be shownj that the average power of the randomly-phased
sinusoid (2.21) is

Pk =
E{a2

k}
2

(2.22)

The complete bandpass noise waveformn(t) can be constructed by summing up such sinu-
soids over the entire band, i.e.,

n(t) =
∑

k

nk(t)

=
∑

k

ak cos(2πfkt + θk) (2.23)

where

fk = fc + k∆f. (2.24)

Now, letfk = (fk−fc)+fc, and using the identity for thecos(·) of a sumk we obtain the required
result.

2.4.2 Result

n(t) = nc(t) cos(2πfct)− ns(t) sin(2πfct) (2.25)

where

nc(t) =
∑

k

ak cos(2π(fk − fc)t + θk) (2.26)

and

ns(t) =
∑

k

ak sin(2π(fk − fc)t + θk) (2.27)

From (2.24) we see thatfk − fc = k∆f . Hence,nc(t) andns(t) arebasebandsignals. The
representation forn(t) given by (2.25) is the representation we seek, and is referred to as the
bandpass representation. Although we have derived it for the specific case of a bandlimited white
noise process, it is actually a very general representation that can be used foranybandpass signal.l

2.4.3 Average power and power spectral density

If this representation of bandpass noise is to be of use in our later analyses, we must find suitable
statistical descriptions. Hence, we will now derive the average power inn(t), together with the
average power and PSD for bothns(t) andnc(t).

jRefer to Problem Sheet 2, question 1
kcos(A + B) = cos A cos B − sin A sin B
lA more general derivation would be based on the Wiener-Khinchine relation, and would involve integrals rather

than summations. In this course, however, a bandlimited noise representation is all that is required. Details for general
bandpass signals can be found, for example, in Chapter 4 of Couch.
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2.4 Representation of Bandlimited Noise

Figure 2.6: Power spectral density of each of the baseband noise processesnc(t) andns(t).

The average power inn(t) is Pn = E{n2(t)}. Recall from Sec. 2.3.2 that for a zero-mean
Gaussian process the average power is equal to the varianceσ2. Substituting (2.23) yields

Pn = E{n2(t)} = E{
∑

k

ak cos(2πfkt + θk)
∑

l

al cos(2πflt + θl)}

=
∑

k

∑

l

E{akal cos(2πfkt + θk) cos(2πflt + θl)}

=
∑

k

∑

l

E{akal} E{cos(2πfkt + θk) cos(2πflt + θl)}. (2.28)

Since we have assumed the phase terms are independent, it follows thatm

E{cos(2πfkt + θk) cos(2πflt + θl)} = 0, for k 6= l, (2.29)

and

E{cos(2πfkt + θk) cos(2πflt + θl)} = E{cos2(2πfkt + θk)} =
1
2
, for k = l. (2.30)

Hence,

Pn = E{n(t)2} =
∑

k

E{a2
k}

2
= σ2 (2.31)

This is what you should intuitively expect to obtain, given (2.22). A similar derivation for each of
nc(t) andns(t) reveals that

Pc = E{nc(t)2} =
∑

k

E{a2
k}

2
= σ2 (2.32)

and

Ps = E{ns(t)2} =
∑

k

E{a2
k}

2
= σ2 (2.33)

Thus, the average power ineachof the baseband waveformsnc(t) andns(t) is identical to the
average power in the bandpass noise waveformn(t).

Now, considering the PSD ofnc(t) andns(t), we note from (2.26) and (2.27) that each of
these waveforms consists of a sum of closely spaced baseband sinusoids. Thus, each baseband
noise waveform will have the same PSD, which is shown in Fig. 2.6. Since the average power in
each of the baseband waveforms is the same as the average power in the bandpass waveform, it
follows that the area under the PSD in Fig. 2.6 must equal the area under the PSD in Fig. 2.5. The
PSD ofnc(t) andns(t) is therefore given by

Sc(f) = Ss(f) =
{

No, |f | ≤ W

0, otherwise
(2.34)

mIf the phase terms are independent, thenE{cos(·) cos(·)} = E{cos(·)}E{cos(·)}.
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2.4 Representation of Bandlimited Noise

2.4.4 A phasor interpretation

Finally, we will interpret the bandpass representation in another way. Notice that (2.25) can be
written

n(t) = Re
{

g(t)ej2πfct
}

(2.35)

where
g(t) = nc(t) + jns(t) (2.36)

andRe {·} denotes the real part. We can also writeg(t) in terms of magnitude and phase as

g(t) = r(t)ejφ(t) (2.37)

wherer(t) =
√

nc(t)2 + ns(t)2 is the envelope andφ(t) = tan−1[ns(t)/nc(t)] is the phase of
the noise. The phasor diagram representation is shown in Fig. 2.7. Because of this represen-

Figure 2.7: Phasor representation of bandlimited noise.[Taub & Schilling, Fig. 7.11-1]

tation, nc(t) is often referred to as thein-phasecomponent, andns(t) as thequadrature-phase
component. Substituting the magnitude-phase representation forg(t) into (2.35) gives

n(t) = r(t) cos[2πfct + φ(t)] (2.38)

This is an intuitively satisfying result. Since the bandpass noisen(t) is narrow band in the vicinity
of fc, one would expect it to be oscillating on the average atfc. It can be shown that ifnc(t) and
ns(t) are Gaussian-distributed, then the magnituder(t) has a Rayleigh distribution, and the phase
φ(t) is uniformly distributed.

References

• Lathi, sections 10.1, 10.2, 10.3, 11.1, 11.2, 11.4, 11.5

• Couch, sections 4-1, 6-1, 6-2

• Haykin, sections 1.2, 1.7, 1.9
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Chapter 3

Noise in Analog Communication
Systems

3.1 Background

You have previously studied ideal analog communication systems. Our aim here is to compare the
performance of different analog modulation schemes in the presence of noise. The performance
will be measured in terms of the signal-to-noise ratio (SNR) at the output of the receiver, defined
as

SNRo =
average power of message signal at the receiver output

average power of noise at the receiver output
(3.1)

Note that this measure is unambiguous if the message and noise are additive at the receiver output;
we will see that in some cases this is not so, and we need to resort to approximation methods to
obtain a result.

Figure 3.1: Model of an analog communication system.[Lathi, Fig. 12.1]

A model of a typical communication system is shown in Fig. 3.1, where we assume that a
modulated signal with powerPT is transmitted over a channel with additive noise. At the output
of the receiver the signal and noise powers arePS andPN respectively, and hence, the output
SNR is SNRo = PS/PN . This ratio can be increased as much as desired simply by increasing the
transmitted power. However, in practice the maximum value ofPT is limited by considerations
such as transmitter cost, channel capability, interference with other channels, etc. In order to make
a fair comparison between different modulation schemes, we will compare systems having the
same transmitted power.

Also,we need a common measurement criterion against which to compare the difference mod-
ulation schemes. For this, we will use thebasebandSNR. Recall that all modulation schemes are
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bandpass (i.e., the modulated signal is centered around a carrier frequency). A baseband communi-
cation system is one that does not use modulation. Such a scheme is suitable for transmission over
wires, say, but is not terribly practical. As we will see, however, it does allow a direct performance
comparison of different schemes.

3.2 Baseband Communication System

A baseband communication system is shown in Fig. 3.2(a), wherem(t) is the band-limited mes-
sage signal, andW is its bandwidth.

Figure 3.2: Baseband communication system: (a) model, (b) signal spectra at filter input, and (c)
signal spectra at filter output.[Ziemer & Tranter, Fig. 6.1]

An example signal PSD is shown in Fig. 3.2(b). The average signal power is given by the
area under the triangular curve marked “Signal”, and we will denote it byP . We assume that the
additive noise has a double-sided white PSD ofNo/2 over some bandwidthB > W , as shown in
Fig. 3.2(b). For a basic baseband system, the transmitted power is identical to the message power,
i.e.,PT = P .

The receiver consists of a low-pass filter with a bandwidthW , whose purpose is to enhance
the SNR by cutting out as much of the noise as possible. The PSD of the noise at the output of the
LPF is shown in Fig. 3.2(c), and the average noise power is given by

∫ W

−W

No

2
df = NoW (3.2)

Thus, the SNR at the receiver output is

SNRbaseband=
PT

NoW
(3.3)
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Notice that for a baseband system we can improve the SNR by: (a) increasing the transmitted
power, (b) restricting the message bandwidth, or (c) making the receiver less noisy.

3.3 Amplitude Modulation

3.3.1 Review

In amplitude modulation, theamplitudeof a sinusoidal carrier wave is varied linearly with the
message signal. The general form of an AM signal is

s(t)AM = [A + m(t)] cos(2πfct) (3.4)

whereA is the amplitude of the carrier,fc is the carrier frequency, andm(t) is the message signal.
Themodulation index, µ, is defined as

µ =
mp

A
, (3.5)

wheremp is the peak amplitude ofm(t), i.e.,mp = max |m(t)|. Recall that ifµ ≤ 1, (i.e.,A ≥
mp), then the envelope ofs(t) will have the same shape as the messagem(t), and thus, a simple
envelope detector can be used to demodulate the AM wave. The availability of a particularly
simple receiver is the major advantage of AM, since as we will see, its noise performance is not
great.

If an envelope detector cannot be used, another form of detection known assynchronous de-
tectioncan be used.a The block diagram of a synchronous detector is shown in Fig. 3.3. The

Figure 3.3: Synchronous demodulator.[Ziemer & Tranter, Fig. 6.2]

process involves multiplying the waveform at the receiver by a local carrier of the same frequency
(and phase) as the carrier used at the transmitter. This basically replaces thecos(·) term in (3.4)
by acos2(·) term. From the identity

2 cos2(x) = 1 + cos(2x) (3.6)

the result is a frequency translation of the message signal, down to baseband (i.e.,f = 0) and up
to twice the carrier frequency. The low-pass filter is then used to recover the baseband message
signal. As one might expect, the main disadvantage with this scheme is that it requires generation
of a local carrier signal that is perfectly synchronized with the transmitted carrier.

Notice in (3.4) that the AM signal consists of two components, the carrierA cos(2πfct) and
the sidebandsm(t) cos(2πfct). Since transmitting the carrier term is wasteful, another variation
of AM that is of interest is one in which the carrier is suppressed. This is referred to asdouble-
sideband suppressed carrier(DSB-SC), and is given by

s(t)DSB-SC= Am(t) cos(2πfct) (3.7)

aThis is also known as coherent detection, or a product demodulator.
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3.3 Amplitude Modulation

In this case the envelope of the signal looks nothing like the original message signal, and a syn-
chronous detector must be used for demodulation.

3.3.2 Noise in DSB-SC

Thepredetectionsignal (i.e., just before the multiplier in Fig. 3.3) is

x(t) = s(t) + n(t) (3.8)

The purpose of the predetection filter is to pass only the frequencies around the carrier frequency,
and thus reduce the effect of out-of-band noise. The noise signaln(t) after the predetection filter is
bandpass with a double-sided white PSD ofNo/2 over a bandwidth of2W (centered on the carrier
frequency), as shown in Fig. 2.5. Hence, using the bandpass representation (2.25) the predetection
signal is

x(t) = [Am(t) + nc(t)] cos(2πfct)− ns(t) sin(2πfct) (3.9)

After multiplying by2 cos(2πfct), this becomes

y(t) = 2 cos(2πfct)x(t)
= Am(t)[1 + cos(4πfct)] + nc(t)[1 + cos(4πfct)]

−ns(t) sin(4πfct) (3.10)

where we have used (3.6) and
2 cos x sinx = sin(2x) (3.11)

Low-pass filtering will remove all of the2fc frequency terms, leaving

ỹ(t) = Am(t) + nc(t) (3.12)

The signal power at the receiver output isb

PS = E{A2m2(t)} = A2E{m2(t)} = A2P (3.13)

where, recall,P is the power in the message signalm(t). The power in the noise signalnc(t) is

PN =
∫ W

−W
Nodf = 2NoW (3.14)

since from (2.34) the PSD ofnc(t) is No and the bandwidth of the LPF isW . Thus, for the
DSB-SC synchronous demodulator, the SNR at the receiver output is

SNRo =
A2P

2NoW
(3.15)

To make a fair comparison with a baseband system, we need to calculate the transmitted power

PT = E{Am(t) cos(2πfct)} =
A2P

2
(3.16)

bNote that the power inA cos(2πfct) is A2/2, but the power inA is A2.
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3.3 Amplitude Modulation

and substitution gives

SNRo =
PT

NoW
(3.17)

Comparison with (3.3) gives
SNRDSB-SC= SNRbaseband (3.18)

We conclude that a DSB-SC system provides no SNR performance gain over a baseband system.
It turns out that an SSB system also has the same SNR performance as a baseband system.

3.3.3 Noise in AM, Synchronous Detection

For an AM waveform, the predetection signal is

x(t) = [A + m(t) + nc(t)] cos(2πfct)− ns(t) sin(2πfct) (3.19)

After multiplication by2 cos(2πfct), this becomes

y(t) = A[1 + cos(4πfct)] + m(t)[1 + cos(4πfct)]
+nc(t)[1 + cos(4πfct)]− ns(t) sin(4πfct) (3.20)

After low-pass filtering this becomes

ỹ(t) = A + m(t) + nc(t) (3.21)

Note that the DC termA can be easily removed with a DC block (i.e., a capacitor), and most AM
demodulators are not DC-coupled.

The signal power at the receiver output is

PS = E{m2(t)} = P (3.22)

and the noise power is
PN = 2NoW (3.23)

The SNR at the receiver output is therefore

SNRo =
P

2NoW
(3.24)

The transmitted power for an AM waveform is

PT =
A2

2
+

P

2
(3.25)

and substituting this into the baseband SNR (3.3) we find that for a baseband system with the same
transmitted power

SNRbaseband=
A2 + P

2NoW
(3.26)

Thus, for an AM waveform using a synchronous demodulator we have

SNRAM =
P

A2 + P
SNRbaseband (3.27)

In other words, the performance of AM is always worse than that of a baseband system. This
is because of the wasted power which results from transmitting the carrier explicitly in the AM
waveform.
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3.3 Amplitude Modulation

Figure 3.4: Phasor diagram of the signals present at an AM receiver.[Lathi, Fig. 12.5]

3.3.4 Noise in AM, Envelope Detection

Recall that an envelope detector can only be used ifµ ≤ 1. An envelope detector works by
detecting theenvelopeof the received signal (3.19). To get an appreciation of the effect of this, we
will represent the received signal by phasors, as shown in Fig. 3.4. The receiver output, denoted
by “Ei(t)” in the figure, will be given by

y(t) = envelope ofx(t)
=

√
[A + m(t) + nc(t)]2 + ns(t)2 (3.28)

This expression is somewhat more complicated than the others we have looked at, and it is not
immediately obvious how we will find the SNR at the receiver output. What we would like is an
approximation toy(t) in which the message and the noise are additive.

(a) Small Noise Case

The receiver output can be simplified if we assume that for almost allt the noise power is small,
i.e.,n(t) ¿ [A + m(t)]. Hence

|A + m(t) + nc(t)| À |ns(t)| (3.29)

Then, most of the time,
y(t) ≈ A + m(t) + nc(t) (3.30)

which is identical to the post-detection signal in the case of synchronous detection. Thus, (ignoring
the DC termA again) the output SNR is

SNRo =
P

2NoW
(3.31)

which can be written in terms of baseband SNR as

SNRenv =
P

A2 + P
SNRbaseband (3.32)

Note that whereas SNRAM in (3.27) is valid always, the expression for SNRenv is only valid for
small noise power.

(b) Large Noise Case

Now consider the case where noise power is large, so that for almost allt we haven(t) À [A +
m(t)]. Rewrite (3.28) as

y2(t) = [A + m(t) + nc(t)]2 + ns(t)2

= A2 + m2(t) + n2
c(t) + 2Am(t) + 2Anc(t) + 2m(t)nc(t) + n2

s(t) (3.33)
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Fornc(t) À [A + m(t)], this reduces to

y2(t) ≈ n2
c(t) + n2

s(t) + 2[A + m(t)]nc(t)

= E2
n(t)

(
1 +

2[A + m(t)]nc(t)
E2

n(t)

)
(3.34)

whereEn(t) =
√

n2
c(t) + n2

s(t) is the envelope of the noise (as described in Section 2.4.4). But
from the phasor diagram in Fig. 3.4, we havenc(t) = En(t) cos θn(t), giving

y(t) ≈ En(t)

√
1 +

2[A + m(t)] cos θn(t)
En(t)

(3.35)

Further,
√

1 + x ≈ 1 + x/2 for x ¿ 1, so this reduces to

y(t) ≈ En(t)
(

1 +
[A + m(t)] cos θn(t)

En(t)

)

= En(t) + [A + m(t)] cos θn(t) (3.36)

The main thing to note about (3.36) is that the output of the envelope detector contains no term
that is proportional to the messagem(t). The termm(t) cos θn(t) is the message multiplied by
a noise termcos θn(t), and is no use in recoveringm(t). This multiplicative effect corrupts the
message to a far greater extent than the additive noise in our previous analysis; the result is that
there is a complete loss of information at the receiver. This produces athreshold effect, in that
below some carrier power level, the performance of the detector deteriorates very rapidly.

Despite this threshold effect, we find that in practice it does not matter terribly. This is because
the quality of a signal with an output SNR less than about 25 dB is so poor, that no-one would
really want to listen to it anyway. And for such a high output SNR, we are well past the threshold
level and we find that (3.27) holds. From a practical point of view, the threshold effect is seldom
of importance for envelope detectors.

3.4 Frequency Modulation

Having studied the effect of additive noise on amplitude modulation systems, we will now look
at the SNR performance on frequency modulation systems. There is a fundamental difference be-
tween these two. In AM, the message information is contained within the amplitude of the signal,
and since the noise is additive it adds directly to the modulated signal. For FM, however, it is the
frequency of the modulated signal that contains the message information. Since the frequency of
a signal can be described by its zero crossings, the effect of noise on an FM signal is determined
by the extent to which it changes the zero crossing of the modulated signal. This suggests that the
effect of noise on an FM signal will be less than that for an AM system, and we will see in this
section that this is in fact the case.

3.4.1 Review

Consider the following general representation of a carrier waveform

s(t) = A cos[θi(t)] (3.37)
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where θi(t) is the instantaneous phase angle. Comparing this with the generic waveform
A cos(2πft), wheref is the frequency, we can define theinstantaneous frequencyof (3.37) as

fi(t) =
1
2π

dθi(t)
dt

(3.38)

For an FM system, the instantaneous frequency of the carrier is varied linearly with the message,
i.e.,

fi(t) = fc + kf m(t) (3.39)

wherekf is thefrequency sensitivityof the modulator. Hence, the instantaneous phase is

θi(t) = 2π
∫ t

−∞
fi(τ) dτ

= 2πfct + 2πkf

∫ t

−∞
m(τ) dτ (3.40)

and the modulated signal is

s(t) = A cos
[
2πfct + 2πkf

∫ t

−∞
m(τ) dτ

]
(3.41)

There are two things to note about the FM signal: (a) the envelope is constant, and (b) the signal
s(t) is a non-linear function of the message signalm(t).

Bandwidth of FM

Let the peak message amplitude bemp = max |m(t)|, so that the instantaneous frequency will
vary betweenfc − kfmp andfc + kfmp. Denote the deviation of the instantaneous frequency
from the carrier frequency as thefrequency deviation

∆f = kfmp (3.42)

Define thedeviation ratio (also called the FM modulation index in the special case of tone-
modulated FM) as

β =
∆f

W
(3.43)

whereW is the message bandwidth.
Unlike AM, the bandwidth of FM is not dependent simply on the message bandwidth. For

smallβ, the FM bandwidth is approximately twice the message bandwidth (referred to as narrow-
band FM). But for largeβ (referred to as wide-band FM) the bandwidth can be much larger
than this. A useful rule-of-thumb for determining the transmission bandwidth of an FM signal is
Carson’s rule:

BT = 2W (β + 1) = 2(∆f + W ) (3.44)

Observe that forβ ¿ 1, BT ≈ 2W (as is the case in AM). At the other extreme, forβ À 1,
BT ≈ 2∆f , which is independent ofW .

24 EE2/ISE2 Communications II DBW Nov 2004



3.4 Frequency Modulation

Figure 3.5: Model of an FM receiver.[Haykin Fig. 2.40]

3.4.2 Noise in FM

The model of an FM receiver is shown in Fig. 3.5, wheres(t) is the FM signal (3.41), andw(t)
is white Gaussian noise with power spectral densityNo/2. The bandpass filter is used to remove
any signals outside the bandwidth offc±BT /2, and thus, the predetection noise at the receiver is
bandpass with a bandwidth ofBT . Since an FM signal has a constant envelope, the limiter is used
to remove any amplitude variations. The discriminator is a device whose output is proportional
to the deviation in the instantaneous frequency (i.e., it recovers the message signal), and the final
baseband low-pass filter has a bandwidth ofW and thus passes the message signal and removes
out-of-band noise.

The predetection signal is

x(t) = A cos
[
2πfct + 2πkf

∫ t

−∞
m(τ) dτ

]
+ nc(t) cos(2πfct)− ns(t) sin(2πfct) (3.45)

First, let us consider the signal power at the receiver output. When the predetection SNR is
high, it can be shown that the noise does not affect the power of the signal at the output.c Thus,
ignoring the noise, the instantaneous frequency of the input signal is

fi = fc + kfm(t) (3.46)

and the output of the discriminator (which is designed to simply return the deviation of the in-
stantaneous frequency away from the carrier frequency) iskfm(t). The output signal power is
therefore

PS = k2
fP (3.47)

whereP is the average power of the message signal.
Now, to calculate the noise power at the receiver output, it turns out that for high predetection

SNR the noise output is approximately independent of the message signal.d In this case, we only
have the carrier and noise signals present. Thus,

x̃(t) = A cos(2πfct) + nc(t) cos(2πfct)− ns(t) sin(2πfct) (3.48)

The phasor diagram of this is shown in Fig. 3.6. From this diagram, we see that the instantaneous
phase is

θi(t) = tan−1 ns(t)
A + nc(t)

(3.49)

cThe derivation of this can be found in D. Sakrison,Communication Theory, John Wiley & Sons, New York, 1968.
dAgain, the proof of this is not very exciting, so we shall take it as given.

DBW Nov 2004 EE2/ISE2 Communications II 25



3.4 Frequency Modulation

Figure 3.6: Phasor diagram of the FM carrier and noise signals.[Taub & Schilling, Fig. 9.2-1]

For large carrier power, then most of the time

θi(t) = tan−1 ns(t)
A

≈ ns(t)
A

(3.50)

where the last line follows fromtan ε ≈ ε for smallε. But, the discriminator output is the instan-
taneous frequency, given by

fi(t) =
1
2π

dθi(t)
dt

=
1

2πA

dns(t)
dt

(3.51)

We know the PSD ofns(t) shown in Fig. 3.7(a), but what is the PSD ofdns(t)/dt?
Fourier theory tells us that:

if x(t) ↔ X(f)

then
dx(t)

dt
↔ j2πfX(f)

In other words, differentiation with respect to time is the same as passing the signal through a
system having a transfer function ofH(f) = j2πf . It can be showne that if a signal with PSD
Si(f) is passed through a linear system with transfer functionH(f), then the PSD at the output of
the system isSo(f) = |H(f)|2Si(f).

If the PSD ofns(t) has a value ofNo within the band±BT /2 as shown in Fig. 3.7(a), then
dns(t)/dt has a PSD of|j2πf |2No. The PSD ofdns(t)/dt before and after the baseband LPF is
shown in Fig. 3.7(b) and (c) respectively.

Returning to (3.51), now that the PSD ofdns(t)/dt is known, we can calculate the average
noise power at the receiver output. It is given by

PN =
∫ W

−W
SD(f) df (3.52)

whereSD(f) is the PSD of the noise component at the discriminator output (i.e., the PSD offi(t)
in (3.51)); the limits of integration are taken between−W andW to reflect the fact that the output

eSee Lathi p.510, or Couch p. 420.
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Figure 3.7: Power spectral densities for FM noise analysis: (a)ns(t), (b) dns(t)/dt, and (c) noise
at the receiver output.[Haykin, Fig. 2.42]

signal is low-pass filtered. Thus,

PN =
∫ W

−W

(
1

2πA

)2

|j2πf |2No df

=
∫ W

−W

No

A2
f2 df

=
2NoW

3

3A2
(3.53)

This expression is quite important, since it shows that the average noise power at the output of
a FM receiver is inversely proportional to the carrier powerA2/2. Hence, increasing the carrier
power has anoise quietingeffect. This is one of the major advantages of FM systems.

Finally, we have that at the output the SNR is

SNRo =
3A2k2

fP

2NoW 3
(3.54)

Since the transmitted power of an FM waveform is

PT = A2/2 (3.55)

substitution into (3.3) gives

SNRFM =
3k2

fP

W 2
SNRbaseband= 3β2 P

m2
p

SNRbaseband (3.56)

The SNR expression (3.56) is based on the assumption that the carrier power is large compared
to the noise power. It is found that, like an AM envelope detector, the FM detector exhibits a
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Figure 3.8: Power spectral densities of: (a) noise at the output of FM receiver, and (b) a typical
message signal.[Haykin, Fig. 2.48]

threshold effect. As the carrier power decreases, the FM receiver breaks, as Haykin describes: “At
first, individual clicks are heard in the receiver output, and as the carrier-to-noise ratio decreases
still further, the clicks rapidly merge into a crackling or sputtering sound”.f Experimental studies
indicate that this noise mutilation is negligible in most cases if the predetection SNR (i.e., just
after the receiver bandpass filter) is above 10. In other words, the threshold point occurs around

A2

2NoBT
= 10 (3.57)

where, recall,BT = 2W (β+1). For predetection SNRs above this value, the output SNR is given
by (3.56).

One should note that whereas (3.56) suggests that output SNR for an FM system can be in-
creased arbitrarily by increasingβ while keeping the signal power fixed, inspection of (3.57) shows
this not to be strictly true. The reason is that ifβ increases too far, the condition (3.57) that we are
above threshold may no longer be true, meaning that (3.56) no longer provides an expression for
the true SNR.

3.4.3 Pre-emphasis and De-emphasis

There is another way in which the SNR of an FM system may be increased. We saw in the pre-
vious subsection that the PSD of the noise at the detector output has a square-law dependence on
frequency. On the other hand, the PSD of a typical message source is not uniform, and typically
rolls off at around 6 dB per decade (see Fig. 3.8). We note that at high frequencies the relative
message power is quite low, whereas the noise power is quite high (and is rapidly increasing). It is
possible that this situation could be improved by reducing the bandwidth of the transmitted mes-
sage (and the corresponding cutoff frequency of the baseband LPF in the receiver), thus rejecting a
large amount of the out-of-band noise. In practice, however, the distortion introduced by low-pass
filtering the message signal is unsatisfactory.

fA qualitative analysis of the FM threshold effect can be found in Haykin pp. 149–152, and Taub & Schilling devote
an entire chapter to the subject.

28 EE2/ISE2 Communications II DBW Nov 2004



3.4 Frequency Modulation

Figure 3.9: Pre-emphasis and de-emphasis in an FM system.[Haykin, Fig. 2.49]

Figure 3.10: Simple linear pre-emphasis and de-emphasis circuits.[Couch, Fig. 5-16]

A better solution is obtained by using thepre-emphasisand de-emphasisstages shown in
Fig. 3.9. The intention of this scheme is thatHpe(f) is used to artificially emphasize the high
frequency components of the message prior to modulation, and hence, before noise is introduced.
This serves to effectively equalize the low- and high-frequency portions of the message PSD such
that the message more fully utilizes the bandwidth available to it. At the receiver,Hde(f) performs
the inverse operation by de-emphasizing the high frequency components, thereby restoring the
original PSD of the message signal.

Simple circuits that perform pre- and de-emphasis are shown in Fig. 3.10, along with their
respective frequency responses. Haykin shows (see Example 2.6, p.156) that these circuits can
improve the output SNR by around 13 dB. In closing this section, we also note that Dolby noise
reduction uses an analogous pre-emphasis technique to reduce the effects of noise.g

gAn overview of the different Dolby noise reduction techniques can be found at
http://www.dolby.com/cassette/bcnsr/
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3.5 Comparison of Analog Communication Systems

To conclude this analysis of the effect of noise on various analog modulation schemes, we will
now compare the relative performance of the schemes. In making the comparison we assume the
following:

(i) single-tone modulation, i.e.,m(t) = Am cos(2πfmt),

(ii) the message bandwidthW = fm,

(iii) for the AM system,µ = 1,

(iv) for the FM system,β = 5 (which is what is used in commercial FM transmission, with
∆f = 75 kHz, andW = 15 kHz).

With these assumptions we find that the SNR expressions for the various modulation schemes
become:

SNRDSB-SC= SNRbaseband

SNRAM =
1
3

SNRbaseband

SNRFM =
3
2

β2SNRbaseband=
75
2

SNRbaseband

These are shown in Fig. 3.11. We make the following comments (which are based on the above
assumptions):

AM: The SNR performance is 4.8 dB worse than a baseband system, and the transmission band-
width isBT = 2W .

DSB: The SNR performance is identical to a baseband system, and the transmission bandwidth is
BT = 2W (for SSB, the SNR performance is again identical, but the transmission band-
width is onlyBT = W ).

FM: The SNR performance is 15.7 dB better than a baseband system, and the transmission band-
width is BT = 2(β + 1)W = 12W (with pre- and de-emphasis the SNR performance is
increased by about 13 dB with the same transmission bandwidth).
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Figure 3.11: Noise performance of analog communication systems.[Couch, Fig. 7-27]
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Chapter 4

Noise in Digital Communication
Systems

4.1 Background

In analog communication systems the primary goal is to reproduce the waveforms accurately. If
the received waveform matches the transmitted waveform closely, then the message signal will be
correctly interpreted at the receiver. Hence, the performance criterion we used in Chapter 3 was
the signal-to-noise ratio at the output of the receiver. In digital communication systems though, at
any given time the transmitter sends one of a finite number of symbols. The goal of the receiver
is not to reproduce the transmitted waveform accurately, since the possible waveforms are already
known exactly. Rather, the receiver aims to correctly identify which one of the finite number of
symbols was sent. The performance measure for a digital system will therefore be the probability
of the receiver making a decision error.

4.2 Sampling

Analog signals can be converted through sampling to discrete-time samples. Providing these sam-
ples are taken at asufficientrate, the analog signal can be reconstructed exactly from its discrete-
time samples. Thus, in order to transmit the information in an analog signal, it is only necessary
to transmit its samples.

4.2.1 Sampling Theorem

Nyquist’s sampling theorem tells us what this sufficient rate is [Lathi, p.251]:

A signal whose spectrum is band-limited toW Hz, can be reconstructed exactly from
its samples taken uniformly at a rate ofR > 2W Hz. In other words, the minimum
sampling frequency isfs = 2W Hz.

4.2.2 Maximum Information Rate

Suppose we have a channel of bandwidthB Hz, what is the maximum rate of information transfer
over that channel, in the absence of noise? Neglecting noise, a channel of bandwidthB Hz, will
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pass a signal of bandwidthB Hz without distortion. This signal can be exactly represented by its
Nyquist samples, which occur at a rate of2B Hz (according to Nyquist’s sampling theorem). So
the channel of bandwidthB Hz can transmit2B independent pieces of information. Thus, at most
we can transmit2 bits of information per second per hertz. This is one of the basic relationships
in communications.

4.3 Pulse-Code Modulation

4.3.1 Background

Pulse-code modulation (PCM) is a baseband scheme that can be used to representany analog
signal (e.g., voice, video, etc.) in digital form. There are three major advantages of using a
digital representation of analog signals: (i) digital signals are more immune to channel noise, (ii)
repeaters along the transmission path can detect a digital signal and retransmit a new noise-free
signal, and (iii) PCM signals derived from all types of analog sources can be represented using a
uniform format. PCM was first introduced into the American telephone network in 1962, and is
now used in every telephone network in the world (although as often happens, different standards
are used in America than elsewhere).

PCM is essentially a particular type of analog-to-digital conversion in which an analog signal
is sampled in time, and the amplitude of each sample is rounded off to the nearest one of a finite
set of allowable values. Thus, the analog signal is represented by samples that are discrete in both
time and amplitude.

Figure 4.1: PCM modulator[Ziemer & Tranter, Fig. 3.67]

Consider a message signalm(t) having a bandwidthW . The generation of a PCM signal is
a three-step process as shown in Fig. 4.1. First the message signal is sampled, and providing the
sampling frequency is above2W , then Nyquist’s sampling theorem tells us that perfect recon-
struction of the message is possible. Next the sampled signal isquantized, i.e., the amplitude of
each sample is rounded to the nearest discrete level. Finally, the discrete amplitudes are encoded
into a binary codeword. This process is illustrated in Fig. 4.2.

4.3.2 Quantization Noise

Notice that quantization is a destructive process—once a signal has been quantized it cannot be
perfectly reconstructed. The noise so introduced is calledquantization noise, and we will now
analyze its effect.

Consider a quantizer with uniform separation of∆ volts between quantizing levels. The quan-
tization error is a random variable bounded by−∆/2 ≤ q ≤ ∆/2. Assume that it is uniformly
distributed over the available range, with a probability density function

p(q) =
{ 1

∆ , −∆/2 ≤ q ≤ ∆/2
0, otherwise

(4.1)
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Figure 4.2: The PCM process.[Taub & Schilling, Fig. 5.9-1]

The mean square error is

PN = E{e2} =
∫ ∞

−∞
q2 p(q) dq

=
1
∆

∫ ∆/2

−∆/2
q2 dq =

∆2

12
(4.2)

Assume the encoded symbol hasn bits, so that the maximum number of quantizing levels is
L = 2n. The maximum peak-to-peakdynamic rangeof the quantizer is therefore2n∆. Let the
power of the message signal beP , and denote the maximum absolute value of the message signal
by mp = max |m(t)|. Assume that the message signal fully loads loads the quantizer, such that

mp =
1
2
2n∆ = 2n−1∆ (4.3)

This gives a SNR at the quantizer output of

SNRo =
PS

PN
=

P

∆2/12
(4.4)

But, from (4.3) we have

∆2 =
m2

p

(2n−1)2
=

4m2
p

22n
(4.5)

Substitution gives the SNR as

SNRo =
3P

m2
p

22n (4.6)
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or, expressing this ratio in decibels

SNRo(dB) = 10 log10

(
22n

)
+ 10 log10

(
3P

m2
p

)

= 6.02n + 10 log10

(
3P

m2
p

)
dB (4.7)

Hence, each extra bit in the encoder adds 6 dB to the output SNR of the quantizer.

Example 4.1– Sinusoidal message signal

Consider a full-load sinusoidal signal of amplitudeAm, i.e.,m(t) = Am cos(2πfmt).
The average signal power is

P =
A2

m

2
and the maximum signal value ismp = Am. Substitution into (4.6) gives

SNRo =
3A2

m

2A2
m

22n

Expressing this in decibels gives

SNRo(dB) = 6.02n + 1.76 dB.

¤

In practice, the quantization noise can generally be made so small that it is negligible to the
end user of the message. For example, audio CDs use 16-bit PCM to achieve a quantization SNR
of greater than 90 dB.

4.3.3 Bandwidth Requirements

For ann-bit quantizer withL = 2n quantization levels, each sample of an input signal is repre-
sented usingn bits. If the signal is bandlimited toW Hz, then its PCM representation contains
2nW bits per second. Recall from Section 4.2.2 that, in the absence of channel noise, we can
transmit 2 bits per second per hertz. Therefore, PCM requires a minimum transmission bandwidth
of

BT = nW (4.8)

Recall from (4.6) that the output SNR due to quantization is

SNRo =
3P

m2
p

22n

But from (4.8),n = BT /W . Substitution gives

SNRo =
3P

m2
p

22BT /W (4.9)

Hence, in a PCM system, SNR increasesexponentiallywith the transmission bandwidthBT , i.e.,
a small increase in bandwidth yields a large increase in SNR.
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4.3.4 Companding

There is a final component that is generally part of a PCM system, especially one used for voice
signals. It is found that typically small signal amplitudes occur more often than large signal am-
plitudes. This means that often the signal does not use the entire range of quantization levels
available. Notice that the amount of quantization noise added to a given sample (4.2) is indepen-
dent of the signal amplitude. Small signal amplitudes will therefore suffer more from quantization
effects than large amplitude signals.

To counteract this effect it is better to have more closely-spaced quantization levels at low
signal amplitudes and more widely-spaced levels at high signal amplitude. In practice, a uniform
quantizer is easier to implement, so to achieve non-uniform quantization, the input signal is first
compressed, then quantized and transmitted, and then expanded at the receiver. This process
of compressing and then expandingthe signal is referred to ascompanding. The exact SNR gain
obtained with companding naturally depends on the exact form of the compression used. However,
each extra bit in the encoder still adds an extra 6 dB to the quantization SNR.

The concept of predistorting a message signal in order to achieve better performance in the
presence of noise, and then removing the distortion at the receiver, should be familiar—that is
precisely what was done in Chapter 3 with pre-emphasis and de-emphasis circuits in FM systems.

4.4 Baseband Data Transmission

The effect of additive noise on digital transmission is that at the receiver, a symbol 1 is sometimes
mistaken for a symbol 0, and vice versa. This leads tobit errors. Here we wish to derive an
expression for the probability of error, i.e., the probability that the symbol at the receiver output
differs from the transmitted symbol.

Figure 4.3: Model of a binary baseband data communication system.[Haykin, Fig. 4.4]

Consider the binary data communication system shown in Fig. 4.3. In this system, the symbol
“0” is represented by0 volts, and the symbol “1” is represented byA volts. This is aunipolar
system.a We assume that the binary symbols occur with equal probability, and that the channel
noise is additive white Gaussian noise, with a PSD ofN0/2. The received signal is first low-pass
filtered to the signal bandwidthW (to remove out-of-band noise) whereW is chosen large enough
to pass the digital waveform essentially unchanged. It is then sampled, and the sampled value is
compared with some predetermined threshold.b

aNote that the development in Haykin section 4.3 usesbipolar symbols, i.e., “1” isA and “0” is−A.
bBy convention, the decision is made at the mid-point of the bit interval—this requires synchronization between the

transmitter bit period and the receiver bit period. Such synchronization can be achieved by extracting a suitable clock
period from the received signal.
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Figure 4.4: Probability density functions for binary data transmission in noise: (a) symbol 0
transmitted, and (b) symbol 1 transmitted.[Schwartz Fig5-4]

After the LPF, the predetection signal is

y(t) = s(t) + n(t) (4.10)

wheres(t) is the binary-valued function (either0 or A volts), andn(t) is additive white Gaussian
noise with zero mean and variance

σ2 =
∫ W

−W
N0/2 df = N0W. (4.11)

Recall that a sample valueN of n(t) is a Gaussian random variable whose probability density
function is

pN (n) =
1

σ
√

2π
exp

(
− n2

2σ2

)
. (4.12)

This PDF is also known as anormaldistribution, and often denoted asN (0, σ2) (i.e., a mean of
zero, and variance ofσ2).

Let Y denote a sample value ofy(t). If a symbol 0 was transmitted, theny(t) = n(t) andY
will have a PDF ofN (0, σ2) as shown in Fig. 4.4(a). If, however, a symbol 1 was transmitted,
theny(t) = A + n(t) andY will have a PDF ofN (A, σ2) as shown in Fig. 4.4(b). Since these
symbols occur with equal probability, it is reasonable to set the threshold level atA/2 (in fact, it
can be shown this that is the optimum level in the sense of minimizing the probability of error).
We then make receiver decisions as:c

if Y < A/2, choose symbol0
if Y > A/2, choose symbol1

This detector is referred to as amaximum likelihood detector. If the transmission probabilities are
unequal (i.e., symbol 1 occurs more frequently than symbol 0, or vice versa), the threshold level
is changed accordingly.

There are two cases of decision error:

(i) a symbol 0 was transmitted, but a symbol 1 was chosen

(ii) a symbol 1 was transmitted, but a symbol 0 was chosen

cIf Y = A/2 then we randomly choose either symbol. This doesn’t effect the average probability of error.
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These errors correspond to the shaded regions in Fig. 4.4. LetPe0 be the conditional probability
of error, given that the symbol 0 was transmitted. This is defined as

Pe0 =
∫ ∞

A/2

1
σ
√

2π
exp

(
− n2

2σ2

)
dn (4.13)

The probability of error event (i) occurring is equal to the probability of an error, given a symbol
0 has been transmitted, multiplied by the probability of a symbol 0 being transmitted, i.e.,

p(i) = p0Pe0

wherep0 is thea priori probability of transmitting a symbol 0.
Similarly, the conditional probability of error, given that the symbol 1 was transmitted is

Pe1 =
∫ A/2

−∞

1
σ
√

2π
exp

(
−(n−A)2

2σ2

)
dn (4.14)

and the probability of error event (ii) occurring is

p(ii) = p1Pe1

wherep1 is thea priori probability of transmitting a symbol 1.
Note that since we have equally probable symbols and the threshold is set mid-way between

0 andA, these conditional probabilities are identical, i.e.,Pe0 = Pe1. This can readily be shown
mathematically by using a change of variablez = (n−A) in Pe1.

The probability of error,Pe, is now the sum of the probabilities of the two conditional events,
i.e.,

Pe = p(i) + p(ii)

= p0Pe0 + p1Pe1

= Pe0 = Pe1 (4.15)

where the last line follows fromp0 = p1 = 1/2, andPe0 = Pe1.
Now, how does one calculatePe? Fortunately, there is a standard mathematical function called

the complementary error functionwhich is a available in most packages, e.g., MATLAB. It is
defined by

erfc(u) =
2√
π

∫ ∞

u
exp(−z2) dz (4.16)

Let z = n/(σ
√

2), sodz = dn/(σ
√

2). Substitution into (4.16) gives

erfc(u) =
2

σ
√

2π

∫ ∞

uσ
√

2
exp

(
− n2

2σ2

)
dn (4.17)

Comparison with (4.13) now gives

Pe =
1
2

erfc

(
A

σ2
√

2

)
(4.18)
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Figure 4.5: Probability of bit error for binary detection in Gaussian noise.[Schwartz, Fig. 5-5]

Another standard mathematical function that one might also use to calculatePe0 (e.g., in
Couch) is theQ-function, defined as the area under the tail of a normalized Gaussian random
variable,N (0, 1). It is defined by

Q(u) =
1√
2π

∫ ∞

u
exp(−n2/2) dn.

Thus, in terms of theQ-function,

Pe = Q

(
A

2σ

)

Comments

Note that the probability of error (4.18) depends solely onA/σ, the ratio of the signal amplitude
to the noise standard deviation (i.e., RMS noise). Thus, the ratioA/σ is thepeak signal-to-noise
ratio.d The probability of error versus the peak signal-to-noise ratio is shown in Fig. 4.5. Note
that forA/σ = 7.4 (i.e., 17.4 dB),Pe = 10−4. So, if the transmission rate is105 bits/sec, then
on average there will be an error every 0.1 seconds. However, ifA/σ = 11.2 (i.e., 21 dB), an
increase of just 3.5 dB,Pe decreases to10−8. And for a transmission rate of105 bits/sec, this
means that on average there will be an error only about every 15 minutes. (In practise designers
often usePe = 10−5 as a design goal for binary communication systems.)

It should also be noted that thePe curve exhibits athreshold effect. In other words, above
some threshold (approximately 18–20 dB) the probability of error decreases very rapidly with
small changes in signal strength. Below this threshold, errors occur quite frequently.

dIf we express this ratio in decibels, we must take20 log10(A/σ), since it is a voltage ratio (not a power ratio).
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4.5 Bandpass Data Transmission

4.5.1 Background

Analogously to analog modulation schemes, digital modulation schemes use a step change in the
amplitude, phase, or frequency of a sinusoidal carrier to distinguish a symbol 0 from a symbol
1. More complicated forms of digital modulation use a combination of these, e.g., 16-QAM is
a hybrid amplitude/phase modulation scheme which can represent symbols from a 16-symbol
alphabet. The basic binary transmission modulation schemes are shown in Fig. 4.6

Figure 4.6: Transmitted waveforms for common digital modulation schemes: (a) amplitude-shift
keying, (b) frequency-shift keying, and (c) phase-shift keying[Haykin, Fig. 6.1]

For digital modulation schemes, there are essentially two common methods of demodulation,
synchronous detectionor envelope detection. We will only consider synchronous detection here.
In digital systems, synchronous detection consists of multiplying the incoming waveform by a
locally generated carrier frequency, and then low-pass filtering the resultant multiplied signal.e

4.5.2 ASK

In amplitude-shift keying (ASK), the signals used to represent the binary symbols are:

s0(t) = 0 (4.19)

s1(t) = A cos(2πfct) (4.20)

eNotice that this is identical to an analog synchronous detector.
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Since there is no signal when the symbol 0 is transmitted, the scheme is also referred to as on-off
keying (OOK). More generally, we can write the transmitted signal as

s(t) = A(t) cos(2πfct), A(t) ∈ {0, A} (4.21)

Consider the synchronous detector shown in Fig. 4.7. The predetection filter is used to restrict

Figure 4.7: Model of a synchronous detector.[Schwartz, Fig. 5-37]

out-of-band noise, and the predetection signal (i.e., before the multiplier) is

x(t) = s(t) + n(t) (4.22)

= [A(t) + nc(t)] cos(2πfct)− ns(t) sin(2πfct) (4.23)

where the noise signaln(t) has a double-sided white PSD ofNo/2 over the bandwidth2W . Since
it is bandpass noise, we have used the bandpass representation (2.25) developed in Chapter 2.

After multiplication by the local oscillator,2 cos(2πfct), the received signal is:

y(t) = [A(t) + nc(t)] 2 cos2(2πfct)− ns(t)2 sin(2πfct) cos(2πfct) (4.24)

= [A(t) + nc(t)] (1 + cos(4πfct))− ns(t) sin(4πfct) (4.25)

where the last line follows from the trigonometric identities2 cos2 x = 1 + cos 2x, and
2 sin x cosx = sin 2x.

After low-pass filtering, this becomes

ỹ(t) = A(t) + nc(t) (4.26)

Since the in-phase noise componentnc(t) has the same variance as the original bandpass noise
n(t), it follows that the received signal (4.26) is identical to the received signal (4.10) for baseband
digital transmission considered in the previous section. Thus, the sample values ofỹ(t) will have
PDFs that are identical to those shown in Fig. 4.4. As in the baseband transmission case, the
decision threshold will be set atA/2. Thus, we conclude that at the receiver, the statistics of the
receiver signal are identical to those of a baseband system, and thus, the probability of error for
ASK is the same as (4.18), i.e.,

Pe,ASK =
1
2

erfc

(
A

σ2
√

2

)
(4.27)
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4.5.3 PSK

For a PSK system, we can write the transmitted signal as

s(t) = A(t) cos(2πfct), A(t) ∈ {−A,A} (4.28)

The detector is again shown in Fig. 4.7, and after multiplication by the local carrier and low-pass
filtering, the signal at the receiver output is

ỹ(t) = A(t) + nc(t) (4.29)

where againnc(t) has the same variance as the input bandpass noisen(t). In this case, however,
the PDFs for sample values ofỹ(t) are as shown in Fig. 4.8. The threshold level would be set at 0

Figure 4.8: Probability density functions for PSK in noise: (a) symbol 0 transmitted, and (b)
symbol 1 transmitted.[Schwartz, Fig. 5-6]

volts in this case, and the conditional error probabilities are

Pe0 =
∫ ∞

0

1
σ
√

2π
exp

(
−(n + A)2

2σ2

)
dn (4.30)

Pe1 =
∫ 0

−∞

1
σ
√

2π
exp

(
−(n−A)2

2σ2

)
dn (4.31)

Because of symmetry, we havePe0 = Pe1. We also note that each of these is equivalent to

Pe,PSK =
∫ ∞

A

1
σ
√

2π
exp

(
− n2

2σ2

)
dn (4.32)

With the change of variablez = n/(σ
√

2), we find that

Pe,PSK =
1
2

erfc

(
A

σ
√

2

)
(4.33)

4.5.4 FSK

In a FSK system, the binary symbols are represented by

s0(t) = A cos(2πf0t), if symbol 0 is transmitted (4.34)

s1(t) = A cos(2πf1t), if symbol 1 is transmitted (4.35)

This requires two sets of synchronous detectors as shown in Fig. 4.9, one operating at a frequency
f0 and the other atf1. Each branch of this detector is basically an ASK detector, and the output of
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Figure 4.9: Synchronous detector for FSK.[Schwartz, Fig. 5-38]

the LPF on each branch isA plus noise if the symbol is present, and noise only if it is not. Denote
the noise output of the top branch asn0(t), and that of the bottom branch asn1(t), where each of
these noise terms has identical statistics ton(t). If a symbol 1 was transmitted, the output of the
summation is

y1(t) = A + [n1(t)− n0(t)] (4.36)

whereas, if a symbol 0 was transmitted, the output of the summation is

y0(t) = −A + [n1(t)− n0(t)] (4.37)

As in PSK, the threshold level would be set at 0 volts. The difference from PSK, however, is that
the noise term is nown1(t)− n0(t). If the noises in the two channels are independent (true if the
system input noise is white and the bandpass filtersH0(ω) andH1(ω) do not overlap), then the
variances add (as shown in the example below). Hence, the noise has effectively doubled. The
probability of error for FSK can be easily found by replacingσ2 in (4.33) by2σ2, giving

Pe,FSK =
1
2

erfc

(
A

2σ

)
(4.38)

Example 4.2– Noise variance for FSK

Let x1 andx2 be zero-mean independent random variables with variancesσ2
1 andσ2

2,
respectively. Considery = x1 − x2. By definition, the variance ofy is

σ2
y = E{y2} − E2{y}

= E{(x1 − x2)2}
= E{x2

1 − 2x1x2 + x2
2}

For independent variables,E{x1x2} = E{x1}E{x2} = 0 for zero-mean random
variables. So

σ2
y = E{x2

1}+ E{x2
2}

= σ2
1 + σ2

2.

¤
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4.5.5 Discussion

A comparison of the error probabilities for the various digital systems is shown in Fig. 4.10. This
reveals that for the same error probability, the signal amplitude in PSK can be reduced by 6 dB
(i.e., a factor of 2 reduction in amplitude) compared with a baseband or ASK system, and the
signal amplitude in FSK can be reduced by 3 dB (i.e., a factor of

√
2 reduction in amplitude).

Figure 4.10: Noise performance of digital communication systems in Gaussian noise.
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Chapter 5

Information Theory

5.1 Background

In 1948, Claude E. Shannon laid the foundation for a whole new discipline with the publication
of his seminal paper “A Mathematical Theory of Communication”.a This paper, and its compan-
ion paper the following year, “Communication in the Presence of Noise”,b created the field of
Information Theory.

In the previous chapters we have seen that the performance of communication systems is
limited by the available signal power, the inevitable background noise, and the limited bandwidth
available for transmission. We found that some systems perform better than others. This naturally
leads to a fundamental question: Is there a system that performs the best? This question is perhaps
stated best by Taub & Schilling, who ask “what would be the characteristics of anideal system,
[one that] is not limited by our engineering ingenuity and inventiveness but limited rather only by
the fundamental nature of the physical universe”. This is the kind of question that drove Shannon
to establish the results of information theory. In this chapter we will look at some of these results,
and then compare the performance of real communication systems with that of the yet-to-be-
defined ideal system.

You will find that most of the definitions in this chapter are in terms of digital sources. The
definitions for continuous sources, although covered in Shannon’s original paper, are not presented
here because the mathematics becomes complicated and the physical meanings are more difficult
to interpret. One does not need to be too concerned about the continuous case, however, since
through PCM any analog source can be approximated by a digital source with as much accuracy
as required. If all this sounds like a side-step of the issue, in the final section of this chapter we
will look at what information theory has to say about analog modulation and compare the results
with those obtained in Chapter 3.

5.2 Concept of Information

The function of any communication system is to convey information. There is an information
source that produces the information, and the communication system is designed to transmit the
output of the source from transmitter to receiver. In radio broadcasting, for example, the source

aBell Syst. Tech. J., vol. 27, pp. 379–423, 623–656, July and Oct. 1948
bProc. IRE, vol. 37, pp. 10–21, Jan. 1949
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Figure 5.1: Shannon’s model of a communication system.[Shannon(1948) Fig. 1]

might be a music or speech signal, in TV it is a video signal, etc. In order to perform an analysis
of communication systems, we need a quantitative measure of the information that is output by an
information source.

An intuitive notion of information refers to any new knowledge about something. Messages
containing knowledge of a high probability of occurrence (i.e., those conveying little uncertainty
in outcome) convey relatively little information. In contrast, messages containing knowledge with
low probability of occurrence convey relatively large amounts of information. Thus, a reason-
able measure of the information that is output by an information source should be a decreasing
function of the probability of that particular output. Also, a small change in the probability of a
certain output should not change the information delivered by that output by a large amount. Such
considerations lead Hartleyc to define theamount of informationin a particular symbols as

I(s) = log
1
p

(5.1)

wherep is the probability of occurrence of the symbols.
This definition has a number of important properties. Whenp = 1, I(s) = 0, i.e., a symbol

that is certain to occur contains no information. For0 ≤ p ≤ 1, 0 ≤ I(s) ≤ ∞, i.e., the
information measure is monotonic and real-valued. Finally, ifp = p1× p2, I(s) = I(p1)+ I(p2),
i.e., information is additive for statistically independent events.

In its original form, Hartley’s definition of information used a base-10 logarithm. However,
in communications it has become standard to uselog2, and to give information the units ofbits
(even though it is strictly dimensionless). Thus, if we have 2 symbols with equal probability
p1 = p2 = 1/2, each symbol representsI(s) = log2(1/0.5) = 1 bit of information.

We will therefore use

I(s) = log2

1
p

(5.2)

as the definition of information content of a particular symbols having probability of occurrence
p.

Note thatlog2 can be easily calculated as

log2 x =
log10 x

log10 2
= 3.32 log10 x (5.3)

cR.V.L. Hartley, “Transmission of information”,Bell Syst. Tech. J., vol. 7, pp. 535-563, 1928.
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5.3 Source Entropy

In general, the average information associated with the output of an information source is of in-
terest, rather than the information associated with a particular single output. This is especially
important since the output of the information source occurs at random. Here we define a suitable
measure for this average information.

Suppose we have an information source emitting a sequence of symbols from a finite alphabet

S = {s1, s2, . . . , sK} (5.4)

If we assume that successive symbols are statistically independent, then this is referred to as a
zero-memory sourceor a discrete memoryless source. Further assume that each symbol has a
probability of occurrence

pk, k = 1, . . . , K, such that
K∑

k=1

pk = 1. (5.5)

If we are told that the particular symbolsk has occurred, then, by definition, we have received

I(sk) = log2

1
pk

= − log2 pk (5.6)

bits of information. Butsk occurs at random, so the expected (or mean) value ofI(sk) over the
source alphabet is

E{I(sk)} =
K∑

k=1

pkI(sk) = −
K∑

k=1

pk log2 pk.

Let us define thesource entropyas the average amount of information per source symbol:

H(S) = −
K∑

k=1

pk log2 pk (5.7)

and give it the units of bits / symbol. The significance of entropy is that, although one cannot
say which symbol the source will produce next, on the average we expect to getH(S) bits of
information per symbol. Note that entropy in thermodynamics is a measure of disorder and ran-
domness, and this agrees somewhat with the information theory concept of entropy as a measure
of uncertainty.

Example 5.1– Entropy of a Binary Source

Consider a binary source for which symbols1 occurs with probabilityp1, and symbol
s0 occurs with probabilityp0 = 1− p1. From (5.7) the entropy is

H(S) = −p0 log2 p0 − p1 log2 p1

= −(1− p1) log2(1− p1)− p1 log2 p1.

This is shown in Fig. 5.2 as a function ofp1. Notice that the entropy is zero if either
p1 = 0 (and hence,p0 = 1) or p1 = 1. This is intuitively correct, since if either
symbol is certain to occur then its transmission conveys zero information. Also notice
that the maximum entropy occurs whenp1 = p0 = 1/2. This is when either symbol
is equally likely to occur, and thus, there is the maximum uncertainty.

¤
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Figure 5.2: Entropy function of a binary source.[Proakis & Salehi, Fig 4.3]

Example 5.2– A three-symbol alphabet

Consider a source that produces one of three possible symbols,A,B, or C, with
respective probabilities 0.7, 0.2, and 0.1. The entropy (5.7) is

H(S) = −0.7 log2(0.7)− 0.2 log2(0.2)− 0.1 log2(0.1)
= 0.7× 0.515 + 0.2× 2.322 + 0.1× 3.322
= 1.157 bits/symbol

For a binary system, the most straightforward way to encode these symbols is

A = 00
B = 01
C = 10

or permutations thereof. This would require 2 bits/symbol. However, the entropy
calculation predicts that the average amount of information is only 1.157 bits per
symbol.

¤

In the second example above, a naive coding scheme resulted in a requirement to transmit 2
bits for every symbol, whereas the average information content of these symbols was just over 1
bit per symbol. The number of bits that one needs to transmit for each symbol clearly limits the
total number of symbols (and thus, the amount of information) that can be transmitted in a given
time. Thus, one would like to reduce the number of bits to be transmitted as much as possible.
This raises some important questions. First, what is the minimum number of bits that are required
to transmit a particular symbol? And second, how can we encode symbols such that we achieve
(or at least come arbitrarily close to) this limit? These questions are addressed in the following
section.

5.4 Source Coding

5.4.1 Background

A model of a communication system is shown in Fig. 5.3. We have already established that
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Figure 5.3: A coding model of a communication system.[Ziemer & Peterson, Fig. 6-1]

the function of this system is to transmit information reliably from the source to the destination
(denoted “user” in this figure). The information source generates a sequence of symbols which
are to convey a specific message to the user. These source symbols are then taken by the source
encoder which assigns codewords to the source symbols in order to reduce the number of symbols
that are actually transmitted to the user. The channel encoder then performs further encoding by
using mechanisms that allow the receiver to correct errors caused by channel noise. The outputs
of the channel encoder are then modulated and transmitted to the receiver, where the reverse of
these operations are performed to recover the original information message.

In this course we will not look at channel encoding. It is important, however, to be clear about
the difference between source encoding and channel encoding. Source encoding is concerned with
minimizing the actual number of source bits that are transmitted to the user. Channel encoding
is concerned with introducing redundant bits to enable the receiver to detect and possibly correct
errors that are introduced by the channel. A simple example of channel coding is a parity check
bit, which is added to a group of data bits so that the number of 1’s within the group is either
even or odd—this permits the detection of a single error within the group at the receiver. This is
one example of a block code, in whichk symbols are mapped ton > k symbols by the channel
encoder, with the purpose of providing the receiver with the ability to detect and possibly correct
errors. Other block codes that you may come across are Reed-Solomon, Hamming, and Golay
codes, just to name a few. Another class of channel codes are convolutional codes, which are
generated by shift registers and exclusive-OR logic gates. These codes are detected by a device
known as a Viterbi decoder. As one can imagine, the topic of channel coding is enormous. The
aim here has been simply to identify that it is an important component of a communication system,
and to alert you to some of the concepts that you may come across in the future.

5.4.2 Average Codeword Length

Returning to the problem of source coding, recall that this topic arose from a desire to reduce
to the minimum possible the average number of data bits per unit time that must be transmitted
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over the channel. A basic premise of source coding is that if symbols are not equally probably,
coding efficiency can be increased by using variable-length code words. Morse code (dating back
to the 1800’s and used for telegraphy), is an example of this idea. Letters that occur frequently are
assigned short code words, and letters that occur infrequently are assigned long code words (e.g.,
’e’ is assigned dot, and ’z’ is assigned dash-dash-dot-dot).

Let `k be the number of bits used to code thekth symbol in a source alphabet withK symbols.
Further, let the probability of occurrence of this symbol bepk. Define theaverage codeword length
as

L̄ =
K∑

k=1

pk`k (5.8)

This represents the average number of bits per symbol in the source alphabet.
The first question to be addressed is:What is the minimum codeword length for a particular

alphabet of source symbols?
First, let us consider a system with two symbols that are equally likely. One cannot do better

than to encode them with one bit, i.e., 0 or 1. For four equally-likely symbols, one needs two bits;
for 8 symbols one needs 3 bits, etc. In general, if there aren equally-likely symbols, each with
probability of occurrence ofp = 1/n, then one needsL = log2(1/p) = log2 n bits to represent
the symbols.

Now consider an alphabetS = {s1, . . . , sK} with respective probabilitiespk, k = 1, . . . ,K.
During a long period of transmission in whichN symbols have been generated (whereN is very
large), there will beNp1 occurrences ofs1, Np2 occurrences of symbols2, etc. If these symbols
are produced by a discrete memoryless source (so that all symbols are independent), the probability
of occurrence of a typical sequenceSN , will be

p(SN ) = p1
Np1 × p2

Np2 × . . .× pK
NpK

Since any particular sequence ofN symbols is equally likely, the number of bits required to
represent a typical sequenceSN is

LN = log2

1
p(SN )

= − log2(p1
Np1 × . . .× pK

NpK )

= −Np1 log2 p1 −Np2 log2 p2 − . . .−NpK log2 pK

= −N
K∑

k=1

pk log2 pk = NH(S).

This is the number of symbols required to encode a sequence ofN symbols, so the average length
for one symbol is

L̄ =
LN

N
= H(S) bits/symbol.

This result leads us to the first important theorem of information theory.

Theorem 5.1 (Source Coding Theorem)
Given a discrete memoryless source of entropyH(S), the average codeword length̄L for any
source coding scheme is bounded as

L̄ ≥ H(S).
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This theorem has answered our first question by providing a lower bound on the number of
bits required to represent a particular source alphabet. A second question immediately arises as to
how one can design an efficient source coding algorithm.

5.4.3 Huffman Coding

Here we will look at one particular method of source coding, known as Huffman coding.d This
technique is important, since the Huffman coding procedure yields the shortest average codeword
length.

The idea in Huffman coding is to choose codeword lengths such that more-probable sequences
have shorter codewords. A flowchart of the algorithm is given in Fig. 5.4, and is best illustrated
with an example.e

Figure 5.4: Huffman coding procedure.[Proakis & Salehi, Fig. 4.5]

Example 5.3– Huffman coding for a three-symbol alphabet

Consider a source that produces one of three possible symbols,A,B, or C, with
respective probabilities 0.7, 0.2, and 0.1. This is the same alphabet considered in
Example 5.2. The Huffman procedure is illustrated in Fig. 5.5, and results in the

dD.A. Huffman, “A method for the construction of minimum redundancy codes”,Proc. IRE, vol. 40, pp. 1098-1101,
Sept. 1962

eSee Haykin pp.578–579 for a different example.
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Figure 5.5: Example of the Huffman source coding procedure.[Ziemer & Peterson, Fig. 6-2]

following codewords:

A = 0
B = 10
C = 11

The average codeword length is calculated from (5.8) to be

L̄ = (1× 0.7) + (2× 0.2) + (2× 0.1) = 1.3

This is considerably better than the naive coding of Example 5.2 which resulted in
2 bits per symbol. However, it is still short of the entropyH(S) = 1.157 bits per
symbol.

¤

To reduce the average codeword length further, symbols can be Huffman coded in pairs (or
triples, quadruples, etc.) rather than one at a time. Grouping the source symbols in pairs, and
treating each group as a new source symbol is referred to as the second extension of the source.
Using groups of three is the third extension, and so on. For the example source alphabet, coding
the second extension results in an average codeword length ofL̄ = 1.165 bits per symbol, which
is now appreciably closer to the lower boundH(S). Continuing with the third extension would
bring us still closer to the lower bound, and it is in this sense that Huffman coding is said to be
optimal.

There is, however, one major problem with Huffman codes: the procedure relies strongly
on the source statistics which must be known in advance. Before closing this section on source
coding, we will have a brief look at oneuniversal source coding algorithm. Such algorithms are a
class of coding procedures that do not requirea priori knowledge of the source symbol statistics.

5.4.4 Lempel-Ziv Algorithm

This algorithm is named after its inventorsf and is widely used in computer file compression such
as the Unixgzip andcompress functions. It is a variable- to fixed-length coding scheme, in

fJ. Ziv and A.Lempel, “A universal algorithm for sequential data compression”,IEEE Trans. Infor. Theory, vol. 23,
pp.337-343, May 1977
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that any sequence of source symbols is uniquely parsed into phrases of varying length, and each
phrase is then coded using equal length codewords. It basically works by identifying phrases of
the smallest length that have not appeared so far, and maintaining these phrases in a dictionary.
When a new phrase is identified it is encoded as the concatenation of the previous phrase and the
new source output. It is not necessary to understand this procedure in detail,g rather the intention
is to provide a flavour of the type of algorithms that are used in practice for source coding.

5.5 Channel Capacity

Consider a source that generates symbols at a rate ofr symbols per second. We have already
shown that the average number of bits of information per symbol is the entropy (5.7). Defining
the information rate, R, as the average number of bits of information per second, we find

R = rH (5.9)

According to this definition, one should be able to transmit information at an arbitrarily high
rate, simply by increasing the source symbol rater. If the symbols are transmitted over a noisy
channel, however, one will obtain bit errors at the receiver (as we saw in Chapter 4).

Define thechannel capacity, C, as the maximum rate ofreliable information transmission over
a noisychannel. In other words, it is the maximum rate of information transfer with an arbitrarily
small probability of error. Shannon proved the following fundamental theory of communications
regarding channel capacity.

Theorem 5.2 (Channel Capacity Theorem)
If R ≤ C, then there exists a coding scheme such that the output of the source can be transmitted
over a noisy channel with an arbitrarily small probability of error. Conversely, it is not possible to
transmit messages without error ifR > C.

You should appreciate that this is a surprising result. In Chapter 4 we saw that the probability
density of Gaussian noise extends to infinity. Thus, we would expect that there will be some
times, however infrequent they may be, when the noise must override the signal and produce
an error. However, Theorem 5.2 says that this need not cause errors, and that it is possible to
receive messages without error even over noisy channels. What this theorem says is that the basic
limitation due to noise in a communication channel is not on thereliability of communication, but
rather, on thespeedof communication.

The following complementary theorem tells us what this maximum rate of reliable information
transfer is for a Gaussian noise channel.

Theorem 5.3 (Hartley-Shannon Theorem)
For an additive white Gaussian noise channel, the channel capacity is

C = B log2

(
1 +

S

N

)

whereB is the bandwidth of the channel,S is the average signal power at the receiver, andN is
the average noise power at the receiver.

gFor the interested reader, an example is given in Proakis and Salehi pp.236–237, or Haykin pp.580–581.
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Although it is strictly applicable only to additive white Gaussian noise channels, Theorem 5.3
is of fundamental importance.h One finds that in general, most physical channels are at least
approximately Gaussian. Also, it turns out that the results obtained for a Gaussian channel often
provide a lower bound on the performance of a system operating over a non-Gaussian channel.

According to this theorem, theoretically we can communicate error free up toC bits per sec-
ond. Although telling us the upper theoretical limit of error-free communication, Theorems 5.2
and 5.3 tell us nothing about how to achieve this rate. To paraphrase Lathi, “[This is one of the
problems] which has persisted to mock information theorists since Shannon’s original paper in
1948. Despite an enormous amount of effort spent since that time in quest of this Holy Grail of
information theory, adeterministicmethod of generating the codes promised by Shannon is still
to be found.”i

5.6 Performance of an Optimum Communications System

The goal of analog communications systems is to reproduce signals reasonably faithfully, with a
minimum of noise and distortion. This is not quite the same thing as reliable information transfer
in information theory. Information theory does, however, have something to say about analog
transmission. Specifically, it (a) tells us the best SNR that can be obtained with given channel
parameters, (b) tells us the minimum power required to achieved a specific SNR as a function of
bandwidth, and (c) indicates the optimum possible exchange of bandwidth for power.

In analog systems one might define the optimum communication system as that which achieves
the largest signal-to-noise ratio at the receiver output, subject to certain design constraints (such as
channel bandwidth and transmitted power). Is it possible to design a system with infinite signal-
to-noise ratio at the output when transmission is over a noisy channel? As one might expect,
the answer is no. However, Theorem 5.3 does allow us to derive the noise performance of the
theoretical optimum analog system.

The general model of a communication system is shown in Fig. 5.6. A baseband message

Figure 5.6: General model of a modulated communication system.[Ziemer & Tranter, Fig. 10.29]

hFor the interested reader, an overview of the derivation of this theorem (involving the volumes ofn-dimensional
hyperspheres) can be found in Proakis & Salehi, pp.733-736.

iRecently, certain error-correction channel coding schemes (C. Berrouet al, “Near Shannon limit error-correction
coding and decoding: turbo codes”,Proc. ICC, Geneva, May 1993) have been developed that allow a system to come
extremely close (within a fraction of a dB) to the Shannon limit.

56 EE2/ISE2 Communications II DBW Nov 2004



5.6 Performance of an Optimum Communications System

m(t) of bandwidthW , is modulated to form a bandpass signals(t) having bandwidthB, and
transmitted over a channel with additive white Gaussian noise. The received signalx(t) = s(t) +
n(t) is filtered to a bandwidth ofB, the transmission bandwidth. According to Theorem 5.3, the
maximum rate at which information may arrive at the receiver is

Cin = B log2(1 + SNRin) (5.10)

where SNRin is the predetection signal-to-noise ratio at the input to the demodulator.
After demodulation, the signal is low-pass filtered toW the message bandwidth. The maxi-

mum rate at which information can leave the receiver is

Co = W log2(1 + SNRo) (5.11)

where SNRo is the SNR at the output of the postdetection filter.
Notice that we have not specified a particular modulation or demodulation scheme. We assume

that the scheme is optimum in some respect. Specifically, an ideal modulation scheme will be
defined as one that does not lose information in the detection process, so that

Co = Cin (5.12)

Substitution yields
SNRo = [1 + SNRin]B/W − 1 (5.13)

which shows that the optimum exchange of SNR for bandwidth is exponential.
We can gain further insight by looking more closely at the predetection SNR at the demod-

ulator input. Specifically, if the channel noise has a double-sided white PSD ofNo/2, then the
average noise power at the demodulator will beNoB. If the transmitted power isP , then we have

SNRin =
P

NoB
=

W

B

P

NoW
(5.14)

Recognize thatP/(NoW ) is just the baseband SNR (3.3) from Chapter 3. Hence, the output SNR
of an ideal communication system is

SNRo =
(

1 +
W

B
SNRbaseband

)B/W

− 1 (5.15)

and is shown in Fig. 5.7 as a function of baseband SNR for variousB/W ratios.
In Chapter 3 we derived the noise performance of various analog modulation schemes in terms

of baseband SNR. Since we now also have the performance of the ideal receiver in terms of
baseband SNR, we can relate it to the performance curves from Chapter 3.

Specifically, a bandwidth spreading ratio ofB/W = 1 corresponds to both SSB and base-
band. A bandwidth spreading ratio ofB/W = 2 corresponds to DSB and AM, andB/W = 12
corresponds to commercial FM broadcasting. Comparing these curves with Fig. 3.11 we find that
SSB and baseband systems provide noise performance identical to the ideal, whereas DSB has a
worse performance because of its additional bandwidth requirements. Finally, FM systems, while
providing far greater noise immunity than amplitude modulation systems, only come close to the
ideal system near threshold.
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Figure 5.7: Noise performance of an ideal communication system.
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