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Information

� Lecturer: Dr. Darren Ward, Room 811C

� Email: d.ward@imperial.ac.uk, Phone: (759) 46230

� Reference books:

� B.P. Lathi, Modern Digital and Analog Communication Systems, 
Oxford University Press, 1998

� S. Haykin, Communication Systems, Wiley, 2001

� L.W. Couch II, Digital and Analog Communication Systems, 
Prentice-Hall, 2001

� Course material:

� http://www.ee.ic.ac.uk/dward/
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� Aims:
The aim of this part of the course is to give you an understanding of 

how communication systems perform in the presence of noise.

� Objectives:
By the end of the course you should be able to:

� Compare the performance of various communication systems

� Describe a suitable model for noise in communications

� Determine the SNR performance of analog communication systems

� Determine the probability of error for digital systems

� Understand information theory and its significance in determining 
system performance
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Lecture 1

1. What is the course about, and how does it fit together
2. Some definitions (signals, power, bandwidth, phasors)

See Chapter 1 of notes
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Definitions

� Signal: a single-valued function of time that conveys information
� Deterministic signal: completely specified function of time

� Random signal: cannot be completely specified as function of time
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Definitions

� Analog signal: continuous function of time with continuous amplitude

� Discrete-time signal: only defined at discrete points in time, amplitude 
continuous

� Digital signal: discrete in both time and amplitude (e.g., PCM signals,
see Chapter 4) 
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Definitions

� Instantaneous power:

� Average power:

For periodic signals, with period      (see Problem sheet 1):
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Definitions

� Bandwidth: extent of the significant spectral content of a 
signal for positive frequencies

Baseband signal, B/W = B Bandpass signal, B/W = 2B
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Bandwidth

3dB bandwidth

null-to-null bandwidth

Magnitude-square spectrum

noise equivalent bandwidth
0
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Phasors

� General sinusoid:

)2cos()( θπ += ftAtx
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Phasors

� Alternative representation:

)2cos()( θπ += ftAtx
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Phasors

� Anti-clockwise rotation (positive frequency):

� Clockwise rotation (negative frequency): )2exp( tfj π−

)2exp( tfj π
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Summary

1. The fundamental question: How do communications 
systems perform in the presence of noise?

2. Some definitions: 

� Signals

� Average power

� Bandwidth: significant spectral content for positive frequencies

� Phasors – complex conjugate representation (negative frequency)
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Lecture 2

1. Model for noise
2. Autocorrelation and Power spectral density

See Chapter 2 of notes, sections 2.1, 2.2, 2.3
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Sources of noise
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Sources of noise

1. External noise

� synthetic (e.g. other users)

� atmospheric (e.g. lightning)

� galactic (e.g. cosmic radiation)
2. Internal noise

� shot noise

� thermal noise

� Average power of thermal noise:

� Effective noise temperature:

kTBP =

kB
P

Te =
Temperature of fictitious thermal 
noise source at i/p, that would be 
required to produce same noise 
power at o/p
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Example

� Consider an amplifier with 20 dB power gain and a bandwidth of 
� Assume the average thermal noise at its output is 

1. What is the amplifier’s effective noise temperature?
2. What is the noise output if two of these amplifiers are cascaded?
3. How many stages can be used if the noise output must be less than     20 

mW?

MHz 20=B
 W102.2 11−×=oP
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Gaussian noise

� Gaussian noise: amplitude of noise signal has a Gaussian probability 
density function (p.d.f.)

� Central limit theorem : sum of n independent random variables 
approaches Gaussian distribution as n→∞
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Noise model

� Model for effect of noise is additive Gaussian noise channel:

� For n(t) a random signal, need more info:

� What happens to noise at receiver?

� Statistical tools
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Motivation

� How often is a decision error made?

1

0

Error for 0

Error for 1

Data

Data +
noise

Noise
only

1 0 11 0
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Random variable

� A random variable x is a rule that assigns a real number xi to the ith 
sample point in the sample space
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Probability density function

� Probability that the r.v. x is within a certain range is:

� Example, Gaussian pdf:
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Statistical averages

� Expectation of a r.v. is:

where           is the expectation operator

� In general, if 

then

� For example, the mean square amplitude of a signal is the mean of the 
square of the amplitude, ie, 
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Random process

Stationary

Ergodic
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Averages

� Time average:
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� DC component:

� Average power:
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pdf random variable
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Example

� Consider the signal:

where θ is a random variable, uniformly distributed over 0 to 2π

1. Calculate its average power using time averaging.
2. Calculate its average power (mean-square) using statistical averaging.

)()( θω += tj ceAtx
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Autocorrelation

� How can one represent the 
spectrum of a random process?

Autocorrelation:

� NOTE: Average power is
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Frequency content

H(f)

Original LPF 1kHzLPF 4kHz

Original
speech

Filtered speech
(smaller bandwidth)
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Power spectral density

� PSD measures distribution of power with frequency, units watts/Hz

� Hence, 

� Average power:

Wiener-Khinchine theorem:
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Power spectral density

� Thermal noise: df
kT

kTBP
B

B�−
==

2

� White noise:

PSD is same for all frequencies

2
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Summary

� Power spectral density:

� Additive Gaussian noise channel:

� Expectation operator:
{ } dxxpxgxgE �

∞
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pdf random
variable

� Autocorrelation:

� White noise:
2

)( oN
fS =

{ })()()(x ττ += txtxER

ττ τπ deRfS fj 2
xx )()( −∞

∞−�=



Lecture 3 1

Lecture 3

� Representation of band-limited noise

� Why band-limited noise?
(See Chapter 2, section 2.4)

� Noise in an analog baseband system
(See Chapter 3, sections 3.1, 3.2)
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Analog communication system
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Receiver

� Predetection filter: 

� removes out-of-band noise

� has a bandwidth matched to the transmission bandwidth

Predetection Filter Detector
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Bandlimited Noise

� For any bandpass (i.e., modulated) system, the predetection
noise will be bandlimited

� Bandpass noise signal can be expressed in terms of two 
baseband waveforms

)sin()()cos()()( ttnttntn cscc ωω −=

� PSD of n(t) is centred about fc (and – fc)

� PSDs of nc(t) and ns(t) are centred about 0 Hz

bandpass baseband carrier baseband carrier
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PSD of n(t)

� In slice shown (for ∆f small):

)2cos()( kkkk tfatn θπ +=

2W
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Example – frequency 

n(t)

nc(t)

ns(t)

W=1000 Hz
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Example – time 

n(t)

nc(t)

ns(t)

W=1000 Hz
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Example – histogram 

n(t)

nc(t)

ns(t)

W=1000 Hz
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Probability density functions

� +=
k
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� Each waveform is Gaussian distributed

� Central limit theorem

� Mean of each waveform is 0
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Average power

� Power in ak cos(ωt+θ) is E{ak
2}/2 (see Example 1.1, or study group sheet 2, Q1)

� +=
k

kkk tatn )cos()( θω

�=
k

k
n

aE
P

2
}{ 2

( )
( )�

�

+−=

+−=

k
kckks

k
kckkc

tatn

tatn

θωω

θωω

)(sin)(

)(cos)(
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� n(t) , nc(t) and ns(t) all have same average power!
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Average power

� From Lecture 2:

� What is the average power in n(t) ?
� Find using the power spectral density (PSD):
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� Average power in n(t) , nc(t) and ns(t) is: 2NoW

(one for positive freqs, 
one for negative)

2W
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Power spectral densities

PSD of n(t):

PSD of nc(t) and ns(t):

2W

W--W
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Example – power spectral densities 

n(t)

nc(t)

ns(t)

W=1000 Hz
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Example - zoomed

n(t)

nc(t)

ns(t)

W=1000 Hz
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Phasor representation
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Analog communication system

� Performance measure:

� Compare systems with same transmitted power

outputreceiver at power  noise average
outputreceiver at power  message average=oSNR
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Baseband system
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Baseband SNR

WNdf
N

P o

W

W

o
N == �− 2

� Transmitted (message) power is: PT

� Noise power is:

� SNR at receiver output:

WN
P

SNR
o

T=base
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Summary

	 Bandpass noise representation:

)sin()()cos()()( ttnttntn cscc ωω −=

	 All waveforms have same:


 Probability density function (zero-mean Gaussian)


 Average power

	 nc(t) and ns(t) have same power spectral density

	 Baseband SNR:

WN
P

SNR
o

T=base
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Lecture 4

� Noise (AWGN) in AM systems:

� DSB-SC

� AM, synchronous detection

� AM, envelope detection
(See Chapter 3, section 3.3)
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Analog communication system

� Performance measure:

outputreceiver at power  noise average
outputreceiver at power  message average=oSNR

� Compare systems with same transmitted power
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Amplitude modulation

� Modulated signal:

m(t) is message signal

� Modulation index:

mp is peak amplitude of message

[ ] ttmAts cc ωcos)()( AM +=

c

p

A

m
=µ
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Amplitude modulation
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DSB-SC

ttmAts cc ωcos)()( SC-DSB =
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Synchronous detection

� Signal after multiplier:

)2cos1)(()( ttmAty ccSCDSB ω+=−
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Noise in DSB-SC

� Transmitted signal:

� Predetection signal:

� Receiver output (after LPF):

ttmAts cc ωcos)()( SC-DSB =

ttnttnttmAtx cscccc ωωω sin)(cos)(cos)()( −+=

Transmitted signal Bandlimited noise

)()()( tntmAty cc +=
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SNR of DSB-SC

� Output signal power:

( ) PAtmAP ccs
22)( ==

� Output noise power:
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� Output SNR:
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SC-DSB =

power of message

PSD of nc(t)

PSD of bandpass noise n(t)

PSD of baseband noise nc(t)
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SNR of DSB-SC

� Transmitted power:

� Output SNR:

baseSC-DSB SNR
WN

P
SNR

o

T ==

� DSB-SC has no performance advantage over baseband

2
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2
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Noise in AM (synch. detector)

� Predetection signal:

Transmitted signal Bandlimited noise

� Receiver output:

� Output signal power:

� Output noise power:
WNP oN 2=

� Output SNR:

)()()( tntmAty cc ++=
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Noise in AM (synch. detector)

� Transmitted signal:

� Transmitted power:

� Output SNR:

� The performance of AM is always worse than baseband

[ ] ttmAts cc ωcos)()( AM +=
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� Predetection signal:

Transmitted signal Bandlimited noise

[ ] ttnttnttmAtx cscccc ωωω sin)(cos)(cos)()( −++=

Noise in AM, envelope detector
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� Receiver output:

Noise in AM, envelope detector

)()]()([
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� Small noise case:

� Large noise case:

� Envelope detector has a threshold effect

� Not really a problem in practice

detector ssynchronou ofoutput 
)()()(

=
++≈ tntmAty cc

)(cos)]([)()( ttmAtEty ncn θ++≈

Noise in AM, envelope detector

Lecture 4 16

Example

� An unmodulated carrier (of amplitude Ac and frequency fc) and 
bandlimited white noise are summed and then passed through an ideal 
envelope detector.

� Assume the noise spectral density to be of height No/2 and bandwidth 
2W, centred about the carrier frequency.

� Assume the input carrier-to-noise ratio is high.

1. Calculate the carrier-to-noise ratio at the output of the envelope detector, 
and compare it with the carrier-to-noise ratio at the detector input.

Lecture 4 17

Summary

� Envelope detector:

� threshold effect

� for small noise, performance is same as synchronous 
detector

baseSC-DSB SNRSNR =

� Synchronous detector:

base2 SNR
PA

P
SNR

c
AM +

=
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Lecture 5

� Noise in FM systems

� pre-emphasis and de-emphasis
(See section 3.4)

� Comparison of analog systems
(See section 3.5)
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Frequency modulation

� FM waveform:

)(cos

)(22cos)( FM

tA
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t
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θ
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� θ(t) is instantaneous phase

� Instantaneous frequency:

� Frequency is proportional to message signal
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FM waveforms

Message:

AM:

FM:
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FM frequency deviation

� Deviation ratio:

pf mkf =∆

W
f∆=β

where W is bandwidth of message signal

� Commercial FM uses: ∆f=75 kHz and W=15 kHz

� Frequency deviation (max. departure of carrier wave from fc):

� Instantaneous frequency varies between fc-kf mp and fc+kf mp, 
where mp is peak message amplitude
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Bandwidth considerations

� Carson’s rule:
( ) ( )WfWBT +∆=+≈ 212 β
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FM receiver

� Discriminator: output is proportional to deviation of instantaneous 
frequency away from carrier frequency
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Noise in FM versus AM

� AM:

� Amplitude of modulated 
signal carries message

� Noise adds directly to 
modulated signal

� Performance no better than 
baseband

� FM:

� Frequency of modulated 
signal carries message

� Zero crossings of modulated 
signal important

� Effect of noise should be less 
than in AM
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Noise in FM

� Predetection signal:

( )
� ∞−
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ττπφ
φ
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� If carrier power is much larger than noise power:
1. Noise does not affect signal power at output
2. Message does not affect noise power at output

Transmitted signal Bandlimited noise
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Assumptions

1. Noise does not affect signal power at output

� Signal component at receiver:

( ))(2cos)( ttπfAtx ccs φ+=

� Instantaneous frequency:

)(
)(

2
1

)( tmk
dt

td
tf fi == φ

π

� Output signal power:

PkP fS
2=

power of message signal
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Assumptions

2. Signal does not affect noise at output

� Message-free component at receiver:

� Instantaneous frequency:
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� We know the PSD of ns(t), but what about its derivative??
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)(tns dt
d
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� Fourier theory property:
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� Discriminator output:
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� PSD property:
� PSD of discriminator output:
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PSD of ns(t)

PSD of

PSD after LPF

dt
tdn

A
s )(

2
1

π
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� PSD of LPF noise term:
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� Increasing the carrier power has a noise quieting effect
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SNR of FM

� SNR at output:

3

22

o 2

3
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� Transmitted power:

� SNR at output:
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Threshold effect in FM

� SNRFM is valid when the predetection SNR > 10
� Predetection signal is:

� Predetection SNR is:

� Threshold point is:

� Cannot arbitrarily increase SNRFM by increasing ββββ
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Pre-emphasis and De-emphasis

� Can improve output SNR by about 13 dB
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Example

� The improvement in output SNR afforded by using pre-
emphasis and de-emphasis in FM is defined by:

� If Hde(f) is the transfer function of the de-emphasis filter, 
find an expression for the improvement, I.

emphasis-/de-pre power with noiseoutput  average
emphasis-/de-preout power with noiseoutput  average

emphasis-/de-pre without 
emphasis-/de-pre with 

=

=
SNR

SNR
I
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Analog system performance

� Parameters:

� Single-tone message

� Message bandwidth

� AM system

� FM system

� Performance:

)2cos()( tftm mπ=

mfW =
1=µ

5=β

baseFM

baseAM

baseSCDSB

SNRSNR
SNRSNR

SNRSNR

2
75
3
1

=
=
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WB
WB

WB

FM

AM

SCDSB

12
2

2

=
=

=−

� Bandwidth:
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Analog system performance
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Summary

� Noise in FM:

� Increasing carrier power reduces noise at receiver output

� Has threshold effect

� Pre-emphasis

� Comparison of analog modulation schemes:

� AM worse than baseband

� DSB/SSB same as baseband

� FM better than baseband
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Lecture 6

� Digital communication systems

� Digital vs Analog communications

� Pulse Code Modulation

(See sections 4.1, 4.2 and 4.3)
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Digital vs Analog

� Analog message: � Digital message:
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Digital vs Analog

� Analog:

� Recreate waveform 
accurately

� Performance criterion is 
SNR at receiver output

� Digital:

� Decide which symbol was 
sent

� Performance criterion is 
probability of receiver 
making a decision error

� Advantages of digital:
1. Digital signals are more immune to noise
2. Repeaters can re-transmit a noise-free signal
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Sampling: discrete in time

Nyquist Sampling Theorem:
A signal whose bandwidth is limited to W Hz can be reconstructed 
exactly from its samples taken uniformly at a rate of R>2W Hz. 
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Maximum information rate

� How many bits can be transferred over a channel of bandwidth B Hz 
(ignoring noise)?

� Signal with a bandwidth of B Hz is not distorted over this channel

� Signal with a bandwidth of B Hz requires samples taken at 2B Hz

� Can transmit:
2 bits of information per second per Hz

Channel
B Hz
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Pulse-code modulation

� Represent an analog waveform in digital form

Lecture 6 7

Quantization: discrete in amplitude

� Round amplitude of each sample to nearest one of a finite number of 
levels
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Encode

� Assign each quantization level a code
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Sampling vs Quantization

� Sampling:

� Non-destructive if fs>2W

� Can reconstruct analog waveform exactly by using a low-pass filter

� Quantization:

� Destructive

� Once signal has been rounded off it can never be reconstructed 
exactly

Lecture 6 10

Quantization noise

Sampled signal

Quantized signal
(step size of 0.1)

Quantization error
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Quantization noise

� Let ∆ be the separation between quantization levels

where L=2n is the no. of quantization levels
mp is peak allowed signal amplitude

� Round-off effect of quantizer ensures that |q|< ∆/2, where q is a 
random variable representing the quantization error

� Assume q is zero mean with uniform pdf, so mean square error is:

L

mp2
=∆

12

)(}{
22/

2/

12

22

∆==

=

�

�
∆

∆− ∆

∞

∞−

dqq

dqqpqqE
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Quantization noise

� Let message power be P
� Noise power is:

� Output SNR of quantizer:

or in dB:

( )
n

pL
m

N

m
qEP

p

2

2222

2

231212

mean) zero (since}{

×
==∆=

=

n

pN
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P
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P
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3

log1002.6 210
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Bandwidth of PCM


 Each message sample requires n bits


 If message has bandwidth W Hz, then PCM contains 2nW bits per 
second


 Bandwidth required is:


 SNR can be written:


 Small increase in bandwidth yields a large increase in SNR

nWBT =

WB

p
Q

T

m
P

SNR /2
2 2

3 ×=
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Nonuniform quantization


 For audio signals (e.g. speech), small signal amplitudes occur more 
often than large signal amplitudes


 Better to have closely spaced quantization levels at low signal 
amplitudes, widely spaced levels at large signal amplitudes


 Quantizer has better resolution at low amplitudes (where signal spends 
more time)

Uniform quantization Non-uniform quantization

Lecture 6 16

Nonuniform quantization


 Uniform quantizer is easier to implement that nonlinear


 Compress signal first, then use uniform quantizer, then expand signal 
(i.e., compand)

Lecture 6 17

Companding
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Summary

� Analog communications system:

� Receiver must recreate transmitted waveform

� Performance measure is signal-to-noise ratio

� Digital communications system:

� Receiver must decide which symbol was transmitted

� Performance measure is probability of error

� Pulse-code modulation:


 Scheme to represent analog signal in digital format


 Sample, quantize, encode


 Companding (nonuniform quantization)
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Lecture 7

� Performance of digital systems in noise:

� Baseband

� ASK

� PSK, FSK

� Compare all schemes

(See sections 4.4, 4.5)
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Digital receiver

���� ��� �	

���� ��� �	s(t)
Filter +
Demodulator
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Baseband digital system

�� �� ��� �	

�� �� ��� �	

s(t)
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Gaussian noise, probability

�=<<
b

a
dnnpbna )()(prob

t

Noise waveform, n(t) Probability density function, f(n)
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Normal distribution
mean, m
variance, σ2
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Gaussian noise, spectrum

White noise

LPF (use for baseband)

BPF (use for bandpass)

WNdf
N

P o

W

W

o == �− 2

WN

df
N

df
N

P

o

Wf

Wf

o
Wf

Wf

o c

c

c

c

2
22

=

+= ��
+−

−−

+

−

NOTE: For zero-mean noise, 
variance ≡ average power 
i.e., σ 2=P
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Baseband system – “0” transmitted

Transmitted signal
s0(t)

Noise signal
n(t)

Received signal
y0(t)= s0(t)+n(t)

2/)( ifError Atyo > �
∞

=
2/

2
0 ),0(

Ae dnP σN
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Baseband system – “1” transmitted

Transmitted signal
s1(t)

Noise signal
n(t)

Received signal
y1(t)= s1(t)+n(t)

2/)( ifError 1 Aty < � ∞−
=

2/ 2
1 ),(

A

e dnAP σN
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Baseband system – errors 

� Possible errors:
1. Symbol “0” transmitted, receiver decides “1”
2. Symbol “1” transmitted, receiver decides “0”

� Total probability of error:

110 eeoe PpPpP +=

Probability of 
“0” being sent

Probability of making an 
error if “0” was sent
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Baseband system – errors 

� For equally-probable symbols:

10 2
1

2
1

eee PPP +=

� Can show that Pe0 = Pe1

Pe0

Pe1

� Hence,  Pe = ½ Pe0+ ½ Pe0= Pe0

�
∞

=
2/

2),0(
Ae dnP σN
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How to calculate Pe?

1. Complementary error function (erfc in Matlab)
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2. Q-function (tail function)
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Baseband error probability

Lecture 7 12

Example

( Consider a digital system which uses a voltage level of 0 volts to 
represent a “ 0” , and a level of 0.22 volts to represent a “ 1” . The digital 
waveform has a bandwidth of 15 kHz.

( If this digital waveform is to be transmitted over a baseband channel 
having additive noise with flat power spectral density of No/2=3 x 10-8

W/Hz, what is the probability of error at the receiver output?
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Amplitude-shift keying

)cos()(
0)(

1

0

tAts
ts

cω=
=
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Synchronous detector

( Identical to analog synchronous detector
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ASK – “ 0”  transmitted

) Predetection signal:

)sin()()cos()(0)(0 ttnttntx cscc ωω −+=

ASK “ 0” Bandpass noise

) After multiplier:

) Receiver output:
)()(0 tnty c=

[ ] )2sin()()2cos(1)(
)cos()sin(2)()(cos2)(

)cos(2)()(
2

00

ttnttn
tttnttn

ttxtr

cscc

ccscc

c

ωω
ωωω

ω

−+=
−=

×=

Lecture 7 16

ASK – “ 1”  transmitted

) Predetection signal:

)sin()()cos()()cos()(1 ttnttntAtx csccc ωωω −+=

ASK “ 1” Bandpass noise

) After multiplier:

) Receiver output:
)()(1 tnAty c+=

[ ]
[ ][ ] )2sin()()2cos(1)(

)cos()sin(2)()(cos2)(
)cos(2)()(

2
11

ttnttnA
tttnttnA

ttxtr

cscc

ccscc

c

ωω
ωωω

ω

−++=
−+=

×=
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PDFs at receiver output

) ASK – “ 0”  transmitted: ) ASK – “ 1”  transmitted:

)()( of PDF 0 tnty c= )()( of PDF 1 tnAty c+=

) Same as baseband!

*
*�
+

,

-
-�
.

/

=
22

erfc2
1

ASK, σ
A

Pe
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Phase-shift keying

)cos()(
)cos()(

1

0

tAts
tAts

c

c

ω
ω

=
−=

FSK

PSK
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PSK demodulator

0 Band-pass filter bandwidth matched to modulated signal bandwidth

0 Carrier frequency is ωc

0 Low-pass filter leaves only baseband signals
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PSK – “ 0”  transmitted

1 Predetection signal:
)sin()()cos()()cos()(0 ttnttntAtx csccc ωωω −+−=

PSK “ 0” Bandpass noise

1 After multiplier:

1 Receiver output:
)()(0 tnAty c+−=

[ ]
[ ][ ] )2sin()()2cos(1)(

)cos()sin(2)()(cos2)(
)cos(2)()(

2
00

ttnttnA
tttnttnA

ttxtr

cscc

ccscc

c

ωω
ωωω

ω

−++−=
−+−=

×=
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PSK – “ 1”  transmitted

1 Predetection signal:
)sin()()cos()()cos()(1 ttnttntAtx csccc ωωω −+=

PSK “ 1” Bandpass noise

1 After multiplier:

1 Receiver output:
)()(1 tnAty c+=

[ ]
[ ][ ] )2sin()()2cos(1)(

)cos()sin(2)()(cos2)(
)cos(2)()(

2
11

ttnttnA
tttnttnA

ttxtr

cscc

ccscc

c

ωω
ωωω

ω

−++=
−+=

×=
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PSK – PDFs at receiver output

1 PSK – “ 0”  transmitted: 1 PSK – “ 1”  transmitted:

)()( of PDF 0 tnAty c+−= )()( of PDF 1 tnAty c+=

1 Set threshold at 0:

"1" decide  ,0  if
"0" decide  ,0  if

>
<

y
y
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PSK – probability of error
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F Probability of bit error:
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Frequency-shift keying

)cos()(
)cos()(

11

00

tAts
tAts

ω
ω

=
=FSK

PSK
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FSK detector

)cos()(
)cos()(

11

00

tAts
tAts

ω
ω

=
=
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FSK

F Receiver output:

F PDFs same as for PSK, but variance is doubled:

GI
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KI
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M

=
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erfc
2
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Pe

[ ]
[ ])()()(

)()()(

01
1

01
0

tntnAty

tntnAty

cc

cc

−+=

−+−=

Independent noise sources, 
variances add
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Digital performance comparison

Lecture 7 28

Summary

F Probability of error for PSK and FSK:
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F Comparison of digital systems:
PSK best, then FSK, ASK and baseband same
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Lecture 8

� Information theory

� Why?

� Information

� Entropy

� Source coding (a little)

(See sections 5.1 to 5.4.2)
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Why information theory?

� What is the performance of the “best” system?

“What would be the characteristics of an ideal system, [one that] is not 
limited by our engineering ingenuity and inventiveness but limited 
rather only by the fundamental nature of the physical universe”

Taub & Schilling
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Information

� The purpose of a communication system is to convey 
information from one point to another

� What is information?

� Definition:

bits      )(log
1

log)( 22 p
p

sI −=�
��
�

�

���
�

	

=

Information in
symbol s

Probability of
occurrence of
symbol s

Conventional unit
of information
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Properties of I(s)

1. If p=1, I(s)=0
(symbol that is certain to occur conveys no information)

2. 0<p<1, ∞<I(s)<0
3. If p=p1×p2, I(s)=I(s1)+I(s2)

bits      )(log)( 2 psI −=

p

I(s)
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Example

� Suppose we have two symbols:

� Each has probability of occurrence:

� Each symbol represents:

� In this example, one symbol = one information bit, 
but it is not always so!

1
0

1

0

=
=

s
s

2
1

10 == pp

( ) ninformatio ofbit   1log)( 2
1

2 =−=sI
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Sources and symbols

� Symbols:


 may be binary (“0” and “1”)


 can have more than 2 symbols, e.g. letters of the alphabet, etc.

� Sequence of symbols is random (otherwise no information is conveyed)

� Definition:
If successive symbols are statistically independent, the information 
source is a zero-memory source (or discrete memoryless source)

� How much information is conveyed by symbols?

Lecture 8 7

Entropy

� Definition:

( )�−=
k

kk ppSH
 all

2log)(

where { } alphabet  is  ,,, 21 KsssS �=

symbol

kk sp  symbol of occurence ofy probabilit is 

� Entropy: average information per symbol

collection of all possible symbols

� =
k

kp
 all

1  : thatNote We’re certain that the symbol
comes from the known alphabet
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Example – binary source 

� Alphabet:
� Probabilities:

{ } 10 , ssS =

10 1 pp −= 

� Entropy:

( )
( ) ( )121121

 all
2

log1log)1(

log)(

pppp

ppSH
k

kk

−−−−=

−= �

� How to represent (encode) each symbol?

1,0let 10 == ss  

this requires 1 bit/symbol to transmit
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Example – three symbol alphabet

� Alphabet:

� Probabilities:

{ } CBAS ,,=

� Entropy:

1.0,2.0,7.0 === CBA ppp 

( )
lbits/symbo  157.1

log)(
 all

2

=

−= �
k

kk ppSH

� How to represent (encode) each symbol?

10
01
00let

=
=
=

C
B
A  

this requires 2 bits/symbol to transmit
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Example – three symbol alphabet

Symbols generated at
rate of 1 symbol/sec

Bitstream generated at
rate of 2 bits/sec

System needs to
process 2 bits/sec

Code words

Lecture 8 11

Source coding

� Amount of information we need to transmit, is determined 
(amongst other things) by how many bits we need to 
transmit for each symbol


 In the binary case, only 1 bit required to transmit each symbol


 In the {A,B,C} case, 2 bits required to transmit each symbol

Lecture 8 12

Examples

� Telephone:
� Cell phone:

Speech waveform 8000 symbols/sec 64000 bits/sec
System needs to
process 64 kb/s

Speech waveform 8000 symbols/sec 13000 bits/sec
System needs to
process 13 kb/s
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Source vs channel coding


 Source coding: minimize the number of bits to be transmitted


 Channel coding: add extra bits to detect/correct errors
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Source coding

� All symbols do not need to be encoded with the same 
number of bits

� Example:

1.0,2.0,7.0 === CBA ppp 

11
10
0let

=
=
=

C
B
A  

6 symbols 8 bits
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Average codeword length

� Definition:

�=
k

kk lpL
 all

Probability of occurrence
of symbol sk

Number of bits used to
represent symbol sk

� Example: 1.0,2.0,7.0 === CBA ppp 

11,10,0let === CBA  

lbits/symbo3.1
21.022.017.0

=
×+×+×=L
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Source coding

� Use variable-length code words
� Symbol that occurs frequently (i.e., relatively high pk) 

should have short code word

� Symbol that occurs rarely should have long code word
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Summary

� Information content (of a particular symbol):

bits      )(log
1

log)( 22 p
p

sI −=�
��
�

�

���
�

�

=

� Entropy (for a complete alphabet, is the average 
information content per symbol):

( ) lbits/symbo   log)(
 all

2�−=
k

kk ppSH

� Source coding:
How many bits do we need to represent each symbol?
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Lecture 9

� Source coding theorem

� Huffman coding algorithm

(See sections 5.4.2, 5.4.3)
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Source coding

� All symbols do not need to be encoded with the same 
number of bits

� Example:
1.0,2.0,7.0 === CBA ppp 

11,10,0 === CBA

6 symbols 8 bits

lbits/symbo3.1
21.022.017.0

=
×+×+×=L

probabilities

code words

average codeword length
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Source coding

� How can we reduce the number of bits we need to transmit?

� What is the minimum number of bits we need for a 
particular symbol? 
(Source coding theorem)

� How can we encode symbols to achieve this minimum 
number of bits? 
(Huffman coding algorithm)
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Equal probability symbols

Alphabet:

Probabilities:

{ } BAS ,=
5.0,5.0 == BA pp 

Code words: 1,0 == BA 

Requires 1 bit for each symbol

� Example:
� In general, for n equally-likely symbols:

Probability of occurrence of each symbol is p=1/n
Number of bits to represent each symbol is

( )n
p

l 22 log
1

log =�
��
�

�

���
�

�

=
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Unequal probabilities?

Alphabet:

Probabilities:

{ } KsssS ,,, 21

�=

Kppp ,,, 21 	 

Any random sequence of N symbols (large N):
s1: N × p1 occurrences 
s2: N × p2 occurrences

Particular sequence of N symbols:

Probability of this particular sequence occurring:

{ } 
,,,,,,, 1233121 sssssssSN =

�

�

××=
×××××××=

21
21

1233121)(
NpNp

N

pp
pppppppSp  
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Unequal probabilities ? (cont.)

Probability of any sequence of N symbols occurring:

�××= 21
21)( NpNp

N ppSp  

Number of bits required to represent a sequence of N symbols:

( )

)()(log
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log
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1
log
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Average number of bits for one symbol is:

)(SH
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Source Coding Theorem:
For a general alphabet S, the minimum average codeword 

length is given by the entropy, H(S).

Minimum codeword length

� Significance:
For any practical source coding scheme, the average codeword length 

will always be greater than or equal to the source entropy, i.e.,

� How can we design an efficient coding scheme?

lbits/symbo)(SHL ≥
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Huffman coding algorithm

� Optimum coding scheme – yields the shortest average 
codeword length
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Example

� Consider a five-symbol alphabet having the probabilities 
indicated:

1. Calculate the entropy of the alphabet.
2. Using the Huffman algorithm, design a source coding 

scheme for this alphabet, and comment on the average 
codeword length achieved.

1.0,3.0,4.0,15.0,05.0:iesProbabilit
,,,,:Symbols

===== EDCBA ppppp
EDCBA  
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Huffman coding algorithm

� Uniquely decodable
i.e., only one way to break bit stream into valid code words

� Instantaneous
i.e., know immediately when a code word has ended
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Summary

� Source coding theorem:
For a general alphabet S, the minimum average codeword 

length is given by the entropy, H(S).

� Huffman coding algorithm:
Practical coding scheme that yields the shortest average 

codeword length
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Lecture 10

� How much information can be reliably transferred over a 
noisy channel?
(Channel capacity)

� What does information theory have to say about analog
communication systems?

(See sections 5.5, 5.6)
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Reliable transfer of information

� If channel is noisy, can information be transferred reliably?

� How much information?
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Information rate

� Definition:

� Intuition:

� R can be increased arbitrarily by increasing symbol rate r

� For noisy channel, errors are bound to occur

� Is there a value of R where probability of error is arbitrarily small?

bits/secHrR =

Avg no. of information
bits transferred per second

Avg. no. of symbols
per second

Avg. no. of information
bits per symbol
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Channel capacity

� Definition: 
Channel capacity, C, is maximum rate of information 

transfer over a noisy channel with arbitrarily small 
probability of error

Channel Capacity Theorem
If R≤C, then there exists a coding scheme such that 

symbols can be transmitted over a noisy channel with 
an arbitrarily small probability of error
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� Channel capacity theorem is a surprising result:

� Gaussian noise has PDF

� This is non-zero for all noise amplitudes

� Sometimes (however infrequent) noise must over-ride signal → bit 
error

� But, theorem says we can transfer information without error!!

� Basic limitation due to noise is on speed of 
communication, not on reliability

� So what is the channel capacity C ??

Channel capacity
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Channel capacity

Hartley-Shannon Theorem
For an additive white Gaussian noise channel, the 

channel capacity is:

�
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S

P
P

BC 1log2

Bandwidth of 
the channel

Average signal power
at the receiver

Average noise power
at the receiver
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Example

� Consider a baseband system

� Noise power is:

BNdf
N

P o

B

B

o
N �−

==
2

� Channel capacity:
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Example

� Consider a baseband channel with a bandwidth of B=4 kHz. Assume a 
message signal with an average power of Ps=10 W, is transmitted over 
this channel which has additive noise with a flat spectral density of 
height No/2 with No=10-6 W/Hz.

1. Calculate the channel capacity of this channel.
2. If the message signal is amplified by a factor of n before transmission, 

calculate the channel capacity when (a) n=2, and (b) n=10.
3. If the bandwidth of the channel is doubled to 8 kHz, what is the

channel capacity now?
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Example

Ps=10
No=10-6

B=4000
No=10-6
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Comments

� More signal power increases capacity, but increase is slow
Can increase capacity arbitrarily through PS

� More bandwidth allows more symbols per second, but also increases 
the noise

� Can show that:

Cannot increase capacity arbitrarily through B
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More comments

�
��
�

�

�
��
�

�

+=
N

S

P
P

BC 1log2

� This is capacity of an ideal “best” system

� How can we design something that comes close?

� Through channel coding, modulation/demodulation 
schemes

� But, no deterministic method exists to do it !
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Information theory and analog

� Optimum communication system achieves the largest SNR at the 
receiver output
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Optimum analog system

� Maximum rate that information can arrive at receiver:

( )inin SNRBC += 1log2

� Maximum rate that information can leave receiver:

( )outout SNRWC += 1log2

� Ideally, no information is lost:

inout CC =

� Equating gives:
( ) 11 / −+= WB

inout SNRSNR

� For any increase in bandwidth, output SNR increases 
exponentially
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Optimum analog system

� Assume that channel noise is AWGN, having PSD: No/2

� Average noise power at demodulator input is: BNP oN =

� SNR at receiver input:

WN
P

B
W

BN
P

SNR
o

T

o

T
in ==

Transmitted power Baseband SNR

� SNR at receiver output:

11
/

−
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+=
WB

baseout SNR
B
W

SNR

Bandwidth spreading ratio
transmission bw/message bw
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Analog performance

Ideal performance Actual performance
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Summary

" Information rate: R = r H bits/sec
" Channel Capacity Theorem: 

If R≤C, then there exists a coding scheme such that 
symbols can be transmitted over a noisy channel with an 
arbitrarily small probability of error

" Hartley-Shannon Theorem (Gaussian noise channel):

" Analog communication systems:
Information theory tells us the best SNR
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