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Lecture 1

¢ Aims:

The aim of this part of the course is to give you an understanding of
how communication systems perform in the presence of noise.

¢ Objectives:
By the end of the course you should be able to:
= Compare the performance of various communication systems
= Describe a suitable model for noise in communications
= Determine the SNR performance of analog communication systems
= Determine the probability of error for digital systems

= Understand information theory and its significance in determining
system performance
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Lecture 1

1. What is the course about, and how does it fit together
2. Some definitions (signals, power, bandwidth, phasors)

See Chapter 1 of notes

Definitions

Lecture 1

4 Signal: a single-valued function of time that conveys information
4 Deterministic signal: completely specified function of time
¢ Random signal: cannot be completely specified as function of time
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Definitions

¢ Analog signal: continuous function of time with continuous amplitude

& Discrete-time signal: only defined at discrete points in time, amplitude
continuous

¢ Digital signal: discrete in both time and amplitude (e.g., PCM signals,
see Chapter 4)
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Definitions

¢ Instantaneous power: 2
‘V(f)‘ 2 2
p=L0jf R =gt

¢ Average power:
.1 gnr 2
P=limo |, le@l d

For periodic signals, with period TU (see Problem sheet 1):

pot [ s ar

T, +1.72
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Definitions

¢ Bandwidth: extent of the significant spectral content of a
signal for positive frequencies

i |

B 0 & ! e ] A !
4——23“1

Baseband signal, B/W = B Bandpass signal, B/W = 2B
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Bandwidth

Magnitude-square spectrum

Ideal low-pass
< filter

3dB bandwidth

Arbitrary
low-pass filter
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B

noise equivalent bandwidth
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Phasors

& General sinusoid:

x(t) = Acos(2rft +0)
x(t) = %{Ae’ﬂeﬂ”ﬂ}

Phasors

Lecture 1
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4 Alternative representation:

x(t) = Acos(27ft +0)
x(t) = éejgejz”f’ +ée_j‘9e_j2”
2 2
Lecture 1 32

Phasors

A, A,
x(t):EeJBeJZEf[_l_Ee /Be j2mft

¢ Anti-clockwise rotation (positive frequency): exp(j27 f't)

¢ Clockwise rotation (negative frequency): exp(—j27 f't)

Amplitude Phase

Summary

Lecture 1
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1. The fundamental question: How do communications
systems perform in the presence of noise?

2. Some definitions:
= Signals

Average power

.1 g
p=tim [, of

= Bandwidth: significant spectral content for positive frequencies
= Phasors — complex conjugate representation (negative frequency)

A o A,
x(t)=E€J9812”ft+_e Jﬁe j2mft
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Lecture 2 Sources of noise
1. Model for noise Infonnatio;
. . Source an =1 T itt
2. Autocorrelation and Power spectral density input transducer ransrtter
See Chapter 2 of notes, sections 2.1, 2.2, 2.3 Y
Channel
Output Output
—~— -+t H -

signal transducer Receiver

Lecture 2 1 Lecture 2

Sources of noise Example

1. External noise

= synthetic (e.g. other users)

= atmospheric (e.g. lightning)

= galactic (e.g. cosmic radiation)
2. Internal noise

= shot noise

= thermal noise
& Average power of thermal noise: P =kTB

& Effective noise temperature:

Temperature of fictitious thermal
T, =— noise source at i/p, that would be
- kB required to produce same noise

power at o/p

Lecture 2 3

4 Consider an amplifier with 20 dB power gain and a bandwidth of
B=20MHz

. . . 11
& Assume the average thermal noise at its output is £, =2.2X107" W

1. What is the amplifier’s effective noise temperature?
2. What is the noise output if two of these amplifiers are cascaded?

3. How many stages can be used if the noise output must be less than 20
mW?
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Gaussian noise

4 Gaussian noise: amplitude of noise signal has a Gaussian probability

density function (p.d.f.)

3

2

L

2

3

o 300 %0 1000

- nﬁraﬁdnmh ,%0’8)

[

il (
S

“INXI = hist(n [-4:0.5:4]); bar(X,(N/1000/0.5);

& Central limit theorem : sum of n independent random variables
approaches Gaussian distribution as n—eo
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Noise model

& Model for effect of noise is additive Gaussian noise channel:

Information
source and Transmitter
input transducer

Channel

Output Output
signal transducer

Receiver

—

& For n(t) a random signal, need more info:

s(1)

Channel

 X() =s(1) + n(t)

& What happens to noise at receiver?

& Statistical tools

2a®,

=
A~

~
=
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Motivation

Data : \

o ]
Data+
noise -
ol 1

& How often is a decision error made?

Noise
only 0 J‘WMNM/\[\/VW"VM}W“’W

Error for 1

Lecture 2
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Random variable

¢ A random variable x is a rule that assigns a real number x; to the ith

sample point in the sample space

X(s)

X X

Xk
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Probability density function

4 Probability that the r.v. x is within a certain range is:

P(x, <x<x,)= f p,(x)dx

& Example, Gaussian pdf:

ef(xfm)2/26 2

(x):#
Px O'\/ﬂ

P, (%)

Statistical averages

Lecture 2

& Expectation of ar.v. is:

E{x}= [; xp, (x)dx

where E{X} is the expectation operator

& Ingeneral,if y=g(Xx)

then  E{y}=E{e(x)}= [ g(x) p,(x) dx

@ For example, the mean square amplitude of a signal is the mean of the

square of the amplitude, ie,

Ef*)
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Random process

\
]
Xie 6 x. Axl Xy~ szi

D:M/\

X(r & x \
=y |

=F A A AGA

\
Xit &) ]‘

X —Ax,
R A /(\ ~ “ﬂ
Gen. M

‘\/ \/\/ \,\/\/ v

~

Stationary

Ergodic

b

Averages

Lecture 2

4 Time average:

no) =tim— [ n(r)de
< > T—)OOT T/2

4 Ensemble average:

4 DC component:

& Average power:

E{n}= fx n p(n) dn

pdf random variable

Efn@®)}=(n())

E{n2 (I)}: <”2 (t)> =0’ (zero-mean Gaussian process only)

Lecture 2
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Example

# Consider the signal: ~ x(¢) = A e/*"*?
where 0 is a random variable, uniformly distributed over O to 27

1. Calculate its average power using time averaging.

2. Calculate its average power (mean-square) using statistical averaging.

Autocorrelation

Lecture 2

4 How can one represent the
spectrum of a random process?

not [ )
RN PR

Autocorrelation:

. N\ A N NAA A
SR S AAA e
/\\ N N N AVAVAV
R (7) = Efx(t)x(t +7)} ~ T VvV

'
>
>
>
>
>

~~ vryvvvuy
L) ® oy )
& NOTE: Average power is "o
P=E{(n)}
=R, (0) 0
©
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Frequency content

Original Filtered speech
: H(f) (smaller bandwidth)

speech

Power Spectrum Magnitude (dB)

= = = 40 H ; H H . ;
Q): 4): @: 0 1000 2000 3000 4000 5000 6000 7000 8000

Frequenc
Original LPF4kHz LPF 1kHz -

Power spectral density

Lecture 2

4 PSD measures distribution of power with frequency, units watts/Hz

Wiener-Khinchine theorem:

()= [ R@e dr
=FT{R, (7}

o Hence, R (T)= fwsx( £ye™ I df

4 Average power:

P=R (0)=[ S.(f) df

Lecture 2 16




Power spectral density

¢ Thermal noise: P=kTB = kaTT df

¢ White noise: S(f) = A;"

PSD is same for all frequencies

2B

Summary

Lecture 2

Channel

& Additive Gaussian noise channel: s(0) o ——

nit)

# Autocorrelation: R (7) = E{x(t)x(l‘ + T)}

& Power spectral density:

S.(f)=[ R@e ™ dr

N()

4 White noise: S(f) =

pdf random
& Expectation operator: ,/ / variable
Elg}=[ 1g(01p,(x) dx
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Lecture 3

¢ Representation of band-limited noise
= Why band-limited noise?
(See Chapter 2, section 2.4)

¢ Noise in an analog baseband system
(See Chapter 3, sections 3.1, 3.2)

Analog communication system

Lecture 3

Channel noise

n(t)
Input Py P P,

. . N
—>— Transmitter Channel Recever f—ao>———
m{1) Output
Lecture 3 2

Receiver

Bandlimited Noise

\ 4

Predetection Filter Detector

A 4

& Predetection filter:
= removes out-of-band noise
= has a bandwidth matched to the transmission bandwidth

v

Lecture 3

¢ For any bandpass (i.e., modulated) system, the predetection
noise will be bandlimited

¢ Bandpass noise signal can be expressed in terms of two
baseband waveforms

n(t)=n.(t)cos@.)—n (t)sin(@.t)

I

bandpass baseband carrier baseband carrier

¢ PSD of n(t) is centred about £, (and — f,)
¢ PSDs of n(t) and n(t) are centred about 0 Hz

Lecture 3 6




PSD of n(1)

Af

- 2W_.

Af
=] |

_f k _fc

4 In slice shown (for Af small):

n, (t)=a, cos(2rw f,t+06,)

R

i

n,(t)=a, cos(w,t+6,)
let w, =(w, —w.)+®,

n, (1) = a, cos|(a, —a);)t+0k + ffﬁ’]

B
use cos(A+B)=cosAcosB—sinAsin B

n () term
N
- ~

n, () = a, cos|[(w, — @)t +6, |cos(w.1)

—a, sin[(@, — @)t +6, Jsin(w,1)
- )

~"
n (t) term
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Example — frequency Example — time
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Example — histogram

,2 WWWHHUHHHHH% D
el | e
| .

Probability density functions

n(t) = Z a, cos(w,t+6,)
k
n ()= a,cos|(®, —w,)t+6,]

n(t)=> a,sin[(@, - o)t +6,]
k

& Each waveform is Gaussian distributed
s Central limit theorem
& Mean of each waveform is 0

Lecture 3

Average power

n(t)=> a, cos(®,+6,)

& Power in a, cos(awr+6) is E{a,?}/2 (see Example 1.1, or study group sheet 2, Q1)
2
Ela,”}
2
n (1) = Z a, COS((wk —w)t +9k)
k

n(t)=> a,sin((®, — o)t +6,)
k

# Average power inn(1)is: P, = Z
%

Ela]) p _yEla)
LB =X

& Average power in n(t) and n(?) is: Pm = Z >
k

& n(t), n,(t) and n(t) all have same average power!

Lecture 3 13

Average power

& What is the average power in n(t) ?

4 Find using the power spectral density (PSD):

2w

¢ From Lecture 2: pP= ,EOS(f) df

/' oW 2

(one for positive fregs,
one for negative)

¢ Average power in n(t) , n(t) and ny(t) is: 2N,W

= ZJ-ﬁ.+W N, df = 2%(W—‘W) =2NW
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Power spectral densities

Example — power spectral densities

g W=1000 Hz
g 50 : \
Snif) E,, ol
£ / A\
2 50 A/ ‘\
%o & AP A n(t)
___________ é}'woo 100 2000 2000 4000 5000 60 7000 8000
PSD Of n(t) % 50 FreqL‘Jency
L . 1 §’ ok
= + * f : '
2w % o \VWW AN n.(t)
- . ® o0 GG ‘
Sy A = Sn ) g o 1000 2000 3000 4000 5000 60 7000 8000
= Frequency
N, 3 % : T
PSD of n(t) and n(1): 5 ol \WW ny1)
‘?-1 00 ' \AMMWWWWWMM AARAAAARY A
g 1000 2000 3000 4000 5000 6000 7000 8000
Q Frequency
-W __b_- w !
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Example - zoomed Phasor representation
g W=1000 Hz
310 \ \
£ st .
e A - n(t) =n,(t)cos(w,t)—n (t)sin(@.t)
é Se / \
‘?_ i ; A n(t e 1
é 1% 1000 2000 3000 4000 5000 6000 7000 8000 ® let 8 (t) n c (t) + Jn s (t)
& 0 Frequency
o T .
% cht _ . .
} o gt)e’™ =n_(t)cosw.t+ jn (t)sin@.t
£ 0 {
S n (1) + jn (t)cos@.t—n (t)sin @.t
f‘%?"wo 100 2000 3000 4000 5000 6000 7000 8000
4 10 Freql‘lency 'a)‘t
N so n(t)=Ryg@)e’™ e
2
= ol
£ 4l n(t)
b ‘ ‘ ‘
2 1000 2000 3000 4000 5000 6000 7000 8000
a Frequency
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Analog communication system

Channel noise

n(¢)

Input ) Py Iy B
—>— Transmitter Channel Receiver f—a>—
m(t) Output

& Performance measure:

Baseband system

Message signal = m(r) Lowpass ¥p (t)

Message bandwidth = W band\f\:!:ﬁL =W

Noise
SNR = Average message power at receiver output
’ average noise power at receiver output
4 Compare systems with same transmitted power
Lecture 3 19 Lecture 3 20
Baseband SNR Summary
¢ Baseband SNR:
P

SN Rbase =1

NW

\\<Signa|

—-w . w

Noise

¢ Transmitted (message) power is: P,

& Noise power is:

N, .
Po=1 S df =NW

4 SNR at receiver output:
P
S N Rbase =—1—
NW

Lecture 3 21

¢ Bandpass noise representation:

n(t) =n.(t)cos(@.t) —n (t)sin(@,t)

¢ All waveforms have same:
4 Probability density function (zero-mean Gaussian)
& Average power

¢ n,(t) and n(t) have same power spectral density

Lecture 3

22




Lecture 4

¢ Noise (AWGN) in AM systems:
= DSB-SC
= AM, synchronous detection
= AM, envelope detection
(See Chapter 3, section 3.3)

Analog communication system

Channel noise

Input Pr
—>— Transmitter Channel
m{r)

& Performance measure:

n(¢)

P B
Receiver b—o—o—
Output

__average message power at receiver output

SNR, =

average noise power at receiver output

¢ Compare systems with same transmitted power

Lecture 4 Lecture 4 2
Amplitude modulation Amplitude modulation
# Modulated signal: T 3 ; T
(1) a = A, +m(t)]cos @ t | I | ‘\, ‘;\ H MH ‘H_
| Il Il \“ ‘ g\a
. . L
m(t) is message signal n “ ‘
¢ Modulation index: m .
_r — —
a A, .
_ , ww
m, is peak amplitude of message “ I I bl | ““ I
o i
Lecture 4 Lecture 4 4




DSB-SC

5(H)pspsc = A.m(t)cosat

\, " m nf 3 ] m ,\M JW ! I

rrrrrrrrr

Synchronous detection

Lecture 4

Predetection | X(1) 20,
——3 bandpass
filter
2 co8 (wt)

& Signal after multiplier:

Postdetection V(1)
lowpass ——>

filter

¥(t) oy = A, +m(t)]cos @, x2cos @t
=[A +m()](1+cos2m,1)

V() psp_sc = A.m(@)(1+cos2w,t)

Lecture 4

Noise in DSB-SC

¢ Transmitted signal:

S(Z)DSB_SC = Acm(l‘) cosa.t

¢ Predetection signal:
x(t)=Am(t)cos@.t+n_(t)cosw.t—n (t)sinw.t
- ~ - ~
Transmitted signal Bandlimited noise

¢ Receiver output (after LPF):
y(0) =Am()+n. (1)

Lecture 4

SNR of DSB-SC

4 Output signal power:

P =((Am®))= A’ R

power of message

¢ Output noise power:
Po=[ PSDdf = [ N, df =2NW
PSD of (1)

¢ Output SNR:
A’P

SNRpsp.sc = W

PSD of bandpass noise n(z)

1"

PSD of baseband noise n (t)

Lecture 4
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SNR of DSB-SC

¢ Transmitted power:
o AP
P = <(Acm(t) cosa,t) > = 5

¢ Output SNR:

P
SNRsy sc == SNR

o

base

¢ DSB-SC has no performance advantage over baseband

Noise in AM (synch. detector)

Lecture 4 9

¢ Predetection signal:

x(t) =[A +m()]|cosw t+n_(r)coswt—n_ (t)sin @ 1

T~ ~
Transmitted signal Bandlimited noise

¢ Receiver output:
y@)=A. +m(t)+n.(1)

& Output sig(al power: & Output SNR:
P =(m’(t))="P
s <m ( )> SNR,, = P
¢ Output noise power: 2N W
P, =2NW

Lecture 4 10

Noise in AM (synch. detector)

¢ Transmitted signal:

s(t) g = A, +m(0)]cos a1

¢ Transmitted power:

2
PT:AC +£
2 2

¢ Output SNR:
P P P
L 2 = 2 SNRba%e
NW A>+P A’+P ‘

SNR,,, =

¢ The performance of AM is always worse than baseband

Noise in AM, envelope detector

Lecture 4 11

¢ Predetection signal:

x(t) =[A. +m(t)|cos @t +n_(t)cos .t —n, (t)sin @t
G )

Transmitted signal Bandlimited noise

Input signal, vy, (¢) Output signal, v, (1)

-
N

: %Q UUUUUUUUUUI
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Noise in AM, envelope detector

¢ Receiver output:

y(t) =envelope of x(1)
= JIA, +m(@)+n,(OF +n* (1)

Noise in AM, envelope detector

& Small noise case:

y()=A. +m(t)+n.(t)
= output of synchronous detector

¢ Large noise case:

y(@)=E, (t)+[A. +m(t)]cosb (1)

A+m() n()
] Byl
E,(®) ng(f) ¢ Envelope detector has a threshold effect
¥(t) ¢ Not really a problem in practice
Lecture 4 14 Lecture 4 15
Example Summary

¢ Anunmodulated carrier (of amplitude A, and frequency f,) and
bandlimited white noise are summed and then passed through an ideal
envelope detector.

¢ Assume the noise spectral density to be of height N /2 and bandwidth
2W, centred about the carrier frequency.

¢ Assume the input carrier-to-noise ratio is high.

1. Calculate the carrier-to-noise ratio at the output of the envelope detector,
and compare it with the carrier-to-noise ratio at the detector input.

Lecture 4 16

¢ Synchronous detector:

SNR g5 s = SNR

base

P
SNR ;= SNR

2 base
.+

¢ Envelope detector:
= threshold effect

= for small noise, performance is same as synchronous
detector

Lecture 4 17




Lecture 5

Frequency modulation

¢ Noise in FM systems

= pre-emphasis and de-emphasis
(See section 3.4)

¢ Comparison of analog systems

(See section 3.5)

¢ FM waveform:

Sy = A, cos[anct + 2k, L m(7) dr)
=A, cosf (1)

¢ A1) is instantaneous phase
¢ Instantaneous frequency:

_ 1 dé (1)
fi= 27 dt

= f.+k,m(t)

¢ Frequency is proportional to message signal

Lecture 5
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FM waveforms

FM frequency deviation

Message:

>
<

//~ No modulatiin)

FM:

7
/

/

/

=

fe(t)

LALALAARAAEA AR AR AARAIER AL
UL LA I

(c)

Lecture 5

# Instantaneous frequency varies between f.-k,m, and f+k,m,,
where m,, is peak message amplitude

¢ Frequency deviation (max. departure of carrier wave from f,):

Af =k,m,

¢ Deviation ratio:

_
ﬂ_W

where W is bandwidth of message signal

¢ Commercial FM uses: Af=75 kHz and W=15 kHz

Lecture 5 5




Power Spectrum Magnitude (dB)

Bandwidth considerations

Modulation Index = 0.01
T

Power Spectrum Magnitude (dB)

Modulation Index = 2

FM receiver

x(t) v(r) | Baseband
M Band-pass - o Qutput
signal () > / filter Limiter —= Discriminator \omtp;ss _9signal
Noise
w(t)

Frequency 10 Frequency 1 ¢ Discriminator: output is proportional to deviation of instantaneous
frequency away from carrier frequency
& Carson’s rule:
B, =2W(B+1)=2(Af +W)
Lecture 5 6 Lecture 5 7
Noise in FM versus AM Noise in FM
¢ Predetection signal:
¢ AM: ¢ FM:

= Amplitude of modulated
signal carries message

= Noise adds directly to
modulated signal

= Performance no better than
baseband

Lecture 5

Frequency of modulated
signal carries message

Zero crossings of modulated
signal important

Effect of noise should be less
than in AM

Bandlimited noise
N

(1) = A_cos(2af.t+ ¢(1))+n. (1) cos2af.1) —n. (£) sin(f.1)
where p(1) = 27 k, L, m(7)dt

Transmitted signal

& If carrier power is much larger than noise power:
1. Noise does not affect signal power at output
2. Message does not affect noise power at output

Lecture 5 9




Assumptions

1. Noise does not affect signal power at output

¢ Signal component at receiver:
x,(t) = A, cos(2af.t + (1))

Im
¢ Instantaneous frequency:
1 do@)
(t)=— =k m(t .
Ji(@) T &t sm(r) A

& Output signal power: o)

Re

!
_ 12

R =kiP

power of message signal

Lecture 5

Assumptions

2. Signal does not affect noise at output

¢ Message-free component at receiver:
x,(t) = A, cos(2xf,t)+n_(t) cos(2nf.t) —n (t) sin(2zf )

Im

ns(r)
9
\/\ Re

‘ Ac neft)
¢ Instantaneous frequency:

f,-(f)=L 46() =1dtan‘1{ns(0}:1d("s(t)]
¢ dt 27 dt A +n(r)] 2mdi\ A

¢ We know the PSD of n(t), but what about its derivative??

Lecture 5 11

¢ Discriminator output:

J”,-(t)z#d”s(’) n) —| 1 2L

2r A, dt 2r A, dt

C

¢ Fourier theory property: x(1) © X (f)
MO o jox X (f)

1
N.(f) A j2r f F()

— /@)

Lecture 5

¢ PSD property:
X(f) H(f)— Y(/)=H(HX()

Sy (f) S, (N =HE Sy (f)

¢ PSD of discriminator output:

N —| L B
c If 2
S, (/) 5:0= 05,0

Lecture 5 13




& PSD of LPF noise term:

2
psDof 4O T picw
PSD of n,(1) L mA, dr A
" ¢ Average power of noise at output:
w
| £ 17 2N | f° 2N W
1 dn,(®) P, = N, df =—2|—| =—2
PSDof N f:v A’ AP 3], 34’
& 0 ’*zr f
S, /1
PSD after LPF ¢ Increasing the carrier power has a noise quieting effect
Lecture 5 14 Lecture 5 15
SNR of FM Threshold effect in FM
¢ SNR at output: ¢ SNRp,, is valid when the predetection SNR > 10
3A%K2 P ¢ Predetection signal is:
SNR, =——L— .
2N W x(t) = A, cos(2xf.t + $(1))+n,(t) cos(2xf.t) —n, (1) sin(2xf.t)

¢ Transmitted power:
2

P, =((A coslo 1+ ()1 ) = Azc

4 SNR at output:

3k>P 2
SNRFM:Wf SR, =3B onr

2 base
ml’

base

Lecture 5

. L 2
& Predetection SNR is: SNR = A
" 2N,B,

o

¢ Threshold point is: A—cz >10
AN W(B+1)

¢ Cannot arbitrarily increase SNR,, by increasing

Lecture 5 18




Pre-emphasis and De-emphasis

Pre-emphasis| M + M De-emphasis
mft) -3 filter = transmitter ceceiver P> filter
Hoel My (f)

w(t)

¢ Can improve output SNR by about 13 dB

Message plus

Example

Lecture 5

¢ The improvement in output SNR afforded

by using pre-

emphasis and de-emphasis in FM is defined by:

SNR with pre - /de - emphasis

~ SNR without pre - /de - emphasis

__average output noise power without pre - /de - emphasis

average output noise power with pre - /de - emphasis

o If H,,(f) is the transfer function of the de-empbhasis filter,

find an expression for the improvement, /.

Lecture 5
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Analog system performance

& Parameters:
= Single-tone message  m(t) =cos(27 f,1)
= Message bandwidth w =,
= AM system u=1
= FM system B=5

& Performance: 4 Bandwidth:

SNRs5_sc =SNR,,, Bsg sc = 2w
SNR,,, =%SNRbm B,,, =2W
SNR;,, = 7—25 SNR, ., B, =12W

Analog system performance

Lecture 5

21

0 T T L T T

60+ FM with deemphasis

FM, no deemphasis

W

(S/N)gy (dB)

Baseband
DSB

SSB
20

AM
{envelope
detection)

- AM
"~ (product
P - detection)
0 L 1 1 . 1

5 10 15 20 25
(8/N) pasebana (d4B)

Lecture 5
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Summary

¢ Noise in FM:
= Increasing carrier power reduces noise at receiver output
= Has threshold effect
= Pre-emphasis

¢ Comparison of analog modulation schemes:
= AM worse than baseband
= DSB/SSB same as baseband
= FM better than baseband

Lecture 5
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Lecture 6

¢ Digital communication systems
= Digital vs Analog communications
= Pulse Code Modulation

(See sections 4.1, 4.2 and 4.3)

Digital vs Analog

¢ Analog message: ¢ Digital message:

Speech waveform Binary waveform

. )
' | (/"u”” L

F

Lecture 6

Lecture 6

Digital vs Analog
¢ Analog: ¢ Digital:
= Recreate waveform = Decide which symbol was
accurately sent
= Performance criterion is = Performance criterion is
SNR at receiver output probability of receiver

making a decision error

¢ Advantages of digital:
1. Digital signals are more immune to noise

2. Repeaters can re-transmit a noise-free signal

Sampling: discrete in time

Lecture 6

/\/’\J/\ f

Nyquist Sampling Theorem:

A signal whose bandwidth is limited to W Hz can be reconstructed
exactly from its samples taken uniformly at a rate of R>2W Hz.

Lecture 6




Maximum information rate

Channel
B Hz

4 How many bits can be transferred over a channel of bandwidth B Hz
(ignoring noise)?

4 Signal with a bandwidth of B Hz is not distorted over this channel

¢ Signal with a bandwidth of B Hz requires samples taken at 2B Hz

Pulse-code modulation

¢ Represent an analog waveform in digital form

4 Can transmit: mlt) . PCM
2 bits of information per second per Hz Sampler Quantizer Encoder output
Lecture 6 5 Lecture 6
Quantization: discrete in amplitude Encode

mp =
[ m(t) z Quantized samples of m()

£ P

5 f

§ & T

& il 2

=) .

: = .

: i
i L T e e L

—mp

4 Round amplitude of each sample to nearest one of a finite number of
levels

Lecture 6 7

Code Quantization

wmber level m{t), volts
4 m(t)
7 35 / _
7~ )
s 25 3 / \\
2 // N
5 15 —
1y -
4 05 AN
0 !
3 -05 —— :
e IS — —
2 -15 . y . :
-2 : L i i AN B
1 -25 : ; H ! [
-3} ' ! ) : [
0 -35 . : i ; N
-4 + 1 ! ! — —
H i H
H : i i !
Sample value 13 36 23 0.7 -07 -24 34
Nearest quantization level 1.5 35 25 0.5 -05 -25 -35
Code number 5 7 6 4 3 1 0
Binary representation 101 111 110 100 011 001 000

4 Assign each quantization level a code

Lecture 6




Sampling vs Quantization

¢ Sampling:
= Non-destructive if f,>2W

= Can reconstruct analog waveform exactly by using a low-pass filter

¢ Quantization:
= Destructive

= Once signal has been rounded off it can never be reconstructed
exactly

Lecture 6 9

Quantization noise

Sampled signal "M

E L L L L L L L L L
0 0.001 0.002 0.003 0.004 0.005 0006 0007 0.008 0.009 0.01

Quantized signal O'Z’
(step size of 0.1) 05k )

A L L L L L L L L L
0 0.001 0.002 0.003 0.004 0.005 0006 0007 0.008 0.009 0.01

Quantization error I . ’ ‘ | [ | 7

L L L L L L L L L
0 0.001 0.002 0.003 0.004 0.005 0006 0007 0.008 0.009 0.01

Lecture 6 10

Quantization noise

& Let A be the separation between quantization levels

A:2mp
L

where L=2" is the no. of quantization levels

m, is peak allowed signal amplitude

& Round-off effect of quantizer ensures that Igl< A4/2, where ¢ is a
random variable representing the quantization error

4 Assume q is zero mean with uniform pdf, so mean square error is:

Elq’}=[ ¢'pg)dg

2
/2
=| ¢ +dg=—

A2 12

Lecture 6 11

Quantization noise

¢ Let message power be P

# Noise power is: P, = E{g”} (since zero mean)

& _(y)y_ om

12 12 3x2™
¢ Output SNR of quantizer:

P, 3P
B 2
p

SNR, = x 2%
P, m
or in dB:

dB

SNR, =6.02n+10log, ;—Ij
p

Lecture 6 12




Bandwidth of PCM

¢ Each message sample requires 7 bits

& If message has bandwidth W Hz, then PCM contains 2nW bits per
second

¢ Bandwidth required is: B, =nW

¢ SNR can be written: SNR, = 3_}:>< 2281w

m,

4 Small increase in bandwidth yields a large increase in SNR

Lecture 6

Nonuniform quantization

¢ For audio signals (e.g. speech), small signal amplitudes occur more
often than large signal amplitudes

# Better to have closely spaced quantization levels at low signal
amplitudes, widely spaced levels at large signal amplitudes

¢ Quantizer has better resolution at low amplitudes (where signal spends
more time)

|
L~
]

Uniform quantization Non-uniform quantization

Lecture 6

Nonuniform quantization

mp

Quantization m(t) T :

levels - 2 I

i f |

B 2 N U SE— i i

— | [ !

~ | |

= Uniform{ Ay { { {
—— — -

= r P I I

: | |

- Pl i

1

—>1 —Am m

p— m

_ Nonuniform
my,

¢ Uniform quantizer is easier to implement that nonlinear

& Compress signal first, then use uniform quantizer, then expand signal
(i.e., compand)

Lecture 6

Companding

———3 Compressor A/D Communication

Input converter system
message L

D/A
converter

——> Expander
Output

message
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Summary

¢ Analog communications system:
s Receiver must recreate transmitted waveform

= Performance measure is signal-to-noise ratio

¢ Digital communications system:
= Receiver must decide which symbol was transmitted
s Performance measure is probability of error

¢ Pulse-code modulation:
4 Scheme to represent analog signal in digital format
& Sample, quantize, encode
4 Companding (nonuniform quantization)

Lecture 6 18




Lecture 7

¢ Performance of digital systems in noise:
= Baseband
= ASK
= PSK, FSK

= Compare all schemes

(See sections 4.4, 4.5)

Lecture 7 1

Digital receiver

. t f—=-Choose 1 if y,> Threshold
+ x(e) Filter + yia . Ve Decision Yk
s(1) Demodulator [~ © device :
sample f—a- Choose 0O if g, < Threshold
+ attime ¢, T

Wh‘lte Threshold

noise

w(t)

Lecture 7 2

Baseband digital system

s(t) x(t) yl2) Yi 3 Choose 1 if y,> Threshold
+ . Decision
Filter -q—-o\)* device .
sample b Chooose O if y < Threshold
+ attime t T

Wh-i te Threshold

noise

w(t}

Lecture 7 3

Gaussian noise, probability

Noise waveform, n(z) Probability density function, f{n)

1
pn) = exp| —
o2 [
=N(m,o 2) ‘\ Normal distribution

mean, m
variance, &@

prob(a<n<b)= [ p(n)dn

Lecture 7 4




Gaussian noise, spectrum

White noise NOTE: For zero-mean noise,

Baseband system — “0” transmitted

Noss variance = average power Al i Transmitted signal
ie., o?=P o 8o(1)
0 f
LPF (use for baseband) < Ar 1 1\1((;)156 signal
- Loo— n
NG p—
Nor2 P_[":/ S df =NW
w0 w ! L AL 1 Received signal
BPF (use for bandpass) N v | Yo(t)= s,(1)+n(1)
2w _ of . +W o ftW o
oz P=[, 5 i+, Sl
, L, =N Errorif y,(t) > A/2 P, = r N(0,0 2) dn
& 0 f ¢ 2
Lecture 7 5 Lecture 7
Baseband system — “1” transmitted Baseband system — errors
¢ Possible errors:
1. Symbol “0” transmitted, receiver decides “1”
A Tr(‘ll;‘smi“ed signal > Symbol “1” transmitted, receiver decides “0”
oF 1 SI

‘ Al 1 Noise signal
,< o o)
- A | Received signal
: ol L yi(t)=s,(1)+n(t)

Errorif y,(1)<A/2

P, = [ 'N(A.cdn

Lecture 7 7

¢ Total probability of error:

P,=p,P,+pPF

el

Probability of Probability of making an
“0” being sent  error if “0” was sent

Lecture 7 8




Baseband system — errors

¢ For equally-probable symbols:
1 1

P,=—P,+—F,
2 2

¢ Can show that P, = P,;

How to calculate P,?

= ! exp| — " dn
¢ ung.ior p 202
1. Complementary error function (er fc in Matlab)

erfc(u) = } rexp(—nz) dn
7[ 2]

I
P Pe] i
<0 : 2. Q-function (tail function)
0 4 0 A A 1 -n’
: 2 Ou)=—— exp[ j dn
& Hence, P, =2 P,+ 2P, =P, \/jff 'r 2
— 2 P =0 —
P=[ N©0%dn e Q(zaJ
Lecture 7 9 Lecture 7 10
Baseband error probability Example
10 T & Consider a digital system which uses a voltage level of 0 volts to
— 1 represent a “0”, and a level of 0.22 volts to represent a ““1”. The digital
02 \‘ . waveform has a bandwidth of 15 kHz.
. AN & If this digital waveform is to be transmitted over a baseband channel
; 1ot having additive noise with flat power spectral density of N /2=3 x 108
;g ! W/Hz, what is the probability of error at the receiver output?
z |
F10¢ — { \ ol
; !
|
- |
107¢ — \‘\
(| - ! 1 1
[ |
00—l L 4
N
6 10 14 %18 E 2 A
7.’4 11‘42 é

Lecture 7
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Amplitude-shift keying

5,(t)=0
s5,(t)=Acos(w.t)

Synchronous detector

Lecture 7

» Band-pass low-pass |
fiItelP filter

2c0s wct

& Identical to analog synchronous detector

Lecture 7

ASK — “0” transmitted

¢ Predetection signal:

x,(#)= 0 +n_,(t)cos(w,t)—n (t)sin(@.t)

ASK “0” Bandpass noise

& After multiplier:

7,(t) = x,(t)x2cos(w.t)
=n.(1)2 cos’ (w.t)—n (t)2sin(w,t) cos(@,t)
= n,(0)[1+cosR@,1)| - n, (Dsint20,1)

& Receiver output:
Yo(t) =n,()

ASK — “1” transmitted

Lecture 7

& Predetection signal:

x,(t)=Acos(w,t)+n_(t)cos(w.t)—n (t)sin(w,t)
H_/

ASK “1” Bandpass noise

¢ After multiplier:
r(t)= x,(t)x2cos(w.t)
= [A +n, (t)] 2cos’ (w,t)—n (t)2sin(@,t)cos(@,t)
=[a+n,0O]1+cos2aD)] - n, (Dsint20,1)

& Receiver output:
»(@)=A+n.(1)

Lecture 7




PDFs at receiver output

& ASK — “0” transmitted: & ASK — “1” transmitted:

PDF of y,(t) =n,(t) PDFof y,(t)=A+n,(7)
m 0|’::: %‘

& Same as baseband!

A
P =lerfc] ——
e, ASK 2 [O_ 2\/5}

B ———

Lecture 7

Phase-shift keying

s,(t) =—Acos(a,t)
PSK 1| " 5,(t) = Acos(w,1)

FSK

:

Lecture 7

PSK demodulator
R Low-pass
— Baf?ﬁefass fiter |

2cos wot

4 Band-pass filter bandwidth matched to modulated signal bandwidth

¢ Carrier frequency is @,
& Low-pass filter leaves only baseband signals

Lecture 7

PSK — “0” transmitted

& Predetection signal:
X,(t)=—Acos(w.t) +n_(t)cos(w.t)—n (t)sin(w,t)

PSK “0” Bandpass noise

¢ After multiplier:
7y(1) = x,(t)x2cos(w.t)
= [— A+n, (t)] 2cos’ (w.t)—n (t)2sin(@,t)cos(@,t)

=[-A+n, O+ cos@m )] - n (1)sint2m,1)

& Receiver output:
Yo(t)=—A+n.(1)

Lecture 7
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PSK — “1” transmitted

¢ Predetection signal:
x,(t)=Acos(w,t) +n_(t)cos(w,t)—n (t)sin(w,t)
H_J

PSK “1” Bandpass noise

¢ After multiplier:
r(t)= x,(t)x2cos(w.t)
= [A +n, (t)] 2cos’ (@,t)—n (t)2sin(@,t)cos(w,t)
=[A+n, 01+ cos2m )] - n,(1)sint2@,1)

& Receiver output:
y@®)=A+n.(t)

PSK - PDFs at receiver output

Lecture 7 21

¢ PSK — “0” transmitted:

PDFof y,(t)=—A+n_(t)

Probability
of error

& Set threshold at O:

if y<0, decide"0"
if y>0, decide"1"

¢ PSK — “1” transmitted:

PDFof y,(t)=A+n_.(t)

Probability
of error
Pa

Lecture 7

22

PSK — probability of error

Probability Probability
of error of error
Fa

¢ Probability of bit error:
A

1
P =—erfc
e,PSK 2 [O'«\/EJ

Frequency-shift keying

Lecture 7 23

Binary

PSK 0

FSK

5, (t) = Acos(@,t)
s5,(t) = Acos(wt)

Lecture 7
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FSK detector

2 cos wt

BPF

8, (1) = Acos(@,t)
s,(t) = Acos(a,t)
BPF

Lol Hyleo) —-(%—‘ Ipf

2cos wat

FSK

Lecture 7
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¢ Receiver output:

Yoty ==A+[n! () =n° ()]

(0 = A+[n' (1) =" (1))

N

Independent noise sources,
variances add

& PDFs same as for PSK, but variance is doubled:

1 A
P =—erfc| —
¢, FSK 2 ( 20_ J

Probability Probability
of error of error

Fa

Lecture 7 26

Digital performance comparison

Summary

Lecture 7
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¢ For a baseband (or ASK) system:
_ 2 _ 1
P=[ N©0%dn= 2erfCL

A
o242
¢ Probability of error for PSK and FSK:

1 A 1 A
P =—erfc I kel
ePsk = ( > \/EJ P, rsx 5 erfc( 2o ]

¢ Comparison of digital systems:
PSK best, then FSK, ASK and baseband same

Lecture 7 28




Lecture 8

¢ Information theory
= Why?
= Information
= Entropy
= Source coding (a little)

(See sections 5.1 to 5.4.2)

Why information theory?

Lecture 8

Information
source and Tr i 1
input transducer

Channel

Qutpul | Output
signal transducer

Receiver [~—

& What is the performance of the “best” system?

“What would be the characteristics of an ideal system, [one that] is not
limited by our engineering ingenuity and inventiveness but limited
rather only by the fundamental nature of the physical universe”

Taub & Schilling

Lecture 8 2

Information

¢ The purpose of a communication system is to convey
information from one point to another

¢ What is information?

¢ Definition:

I(s)= logz[lj =-log,(p) bits
p

|

Information in Probability of Conventional unit
symbol s occurrence of of information
symbol s

Properties of I(s)

Lecture 8

I(s) |
I(s)=-log,(p) bits
P
1. If p=1, I(s)=0
(symbol that is certain to occur conveys no information)

2. O<p<l, oo<l(s)<0
3. If p=pXp,, I(s)=1(s,)+1(s;)

Lecture 8 4




Example

¢ Suppose we have two symbols:
5, =0
s, =1
¢ Each has probability of occurrence:
Po =P :%

¢ Each symbol represents:
I(s)=-log, (%) =1 bit of information

¢ In this example, one symbol = one information bit,
but it is not always so!

Lecture 8 5

Sources and symbols

Symbols I
1
Information ™ Transmission :'—"
I
I
1
1
1
1

| . Destination
source ! and Reception

¢ Symbols:
= may be binary (“0” and “1”)
= can have more than 2 symbols, e.g. letters of the alphabet, etc.

¢ Sequence of symbols is random (otherwise no information is conveyed)
4 Definition:
If successive symbols are statistically independent, the information

source is a zero-memory source (or discrete memoryless source)

4 How much information is conveyed by symbols?

Lecture 8 6

Entropy

& Definition:

H(S) Z_Z Pr logz(Pk)

all k
¢ collection of all possible symbols

where S =1s,.5,....,5, } is alphabet

symbol
p, 1s probability of occurence of symbol s,

Note that : Z p. =1 We’re certain that the symbol

m comes from the known alphabet
aj

¢ Entropy: average information per symbol

Lecture 8 7

Example — binary source

¢ Alphabet: i

$ =5} 2}

& Probabilities:  py=1-p, 05

# Entropy: D
H(S)=-3 p, log,(p,) N

all k

=—(1- Pl)logz(l_ b )_ Py logz(pl)

¢ How to represent (encode) each symbol?
let s,=0,s =1

this requires 1 bit/symbol to transmit

Lecture 8 8




Example — three symbol alphabet

Example — three symbol alphabet

¢ Alphabet:
S = {A’ B, C} Svmbol Code words — -----zzsmmmmmmsiianooooees |
ymbols ! i
Information Source : IKI & @ ‘
¢ Probabilities: p,=0.7, p,=0.2, p.=0.1 source |ABAACA  coder  [000100001000 | i
: Noise
¢ Entropy:  H($)=-) p, log,(p,)
allk
=1.157 bits/symbol
¢ How to represent (encode) each symbol?
let A=00
B=01 Symbols generated at Bitstream generated at System needs to
C=10 rate of 1 symbol/sec rate of 2 bits/sec process 2 bits/sec
this requires 2 bits/symbol to transmit
Lecture 8 9 Lecture 8 10
Source coding Examples

¢ Amount of information we need to transmit, is determined
(amongst other things) by how many bits we need to
transmit for each symbol

¢ In the binary case, only 1 bit required to transmit each symbol
& Inthe {A,B,C} case, 2 bits required to transmit each symbol

Lecture 8 11

¢ Telephone:

. System needs to
Speech waveform 8000 symbols/sec 64000 bits/sec

process 64 kb/s
Information Sample 8—bit PCM — TX ? RX ;
source at 8 kHz Quantizer : |
Noise

¢ Cell phone:

. System needs to
Speech waveform 8000 symbols/sec 13000 bits/sec

Information Sample GSM — TX ? RX ;
source at 8 kHz Speech Codey i i
i Noise !

Lecture 8 12




Source vs channel coding

,,,,,,,,,,,,

|
|
|
!
1
i
I
Information Source Channel | | Waveform
source coder coder } modulator
i
I
| l
i
1
1
| Waveform
: channel
1
I
1
I
I
I
Information Source Channel ! ‘Waveform
user decoder decoder 1 demodulator
|
|
1

¢ Source coding: minimize the number of bits to be transmitted

4 Channel coding: add extra bits to detect/correct errors

Source coding

¢ All symbols do not need to be encoded with the same
number of bits

p,=07, p,=02, p.=0.1

Lecture 8

¢ Example:
let A=0
B=10
Cc=11
Information Source = TX P Iﬁl
source  |ABAACA  coder [01000110} \r
Noise
6 symbols 8 bits

Lecture 8

Average codeword length

& Definition:

L= Zpk L
allk/‘ \

Probability of occurrence Number of bits used to
of symbol s, represent symbol s,

¢ Example: p,=07, py;=02, p.=0.1
let A=0, B=10, C=11

L=07x1+0.2%x2+0.1x2
=1.3 bits/symbol

Source coding

Lecture 8

¢ Use variable-length code words

¢ Symbol that occurs frequently (i.e., relatively high p,)
should have short code word

¢ Symbol that occurs rarely should have long code word

Lecture 8




Summary

¢ Information content (of a particular symbol):
1 .
I(s)= logz(—J =-log,(p) bits
p

¢ Entropy (for a complete alphabet, is the average
information content per symbol):

H(S)= —Z D logz(pk) bits/symbol

allk

¢ Source coding:

How many bits do we need to represent each symbol?

Lecture 8 17




Lecture 9

¢ Source coding theorem
¢ Huffman coding algorithm

(See sections 5.4.2, 5.4.3)

Source coding

¢ All symbols do not need to be encoded with the same
number of bits

Lecture 9 1

¢ Example:
p,=0.7, p,=0.2, p.=0.1 +— probabilities
A=0, B=10, C=11 <——— codewords
L=0.7x1+02x2+0.1x2
=13 bits/syrnbol <«—— average codeword length
Information Source - TX i RX
source ABAACA .oder OlOOOllOE \r
! Noise
6 symbols 8 bits

Lecture 9 2

Source coding

& How can we reduce the number of bits we need to transmit?

& What is the minimum number of bits we need for a
particular symbol?

(Source coding theorem)

¢ How can we encode symbols to achieve this minimum
number of bits?

(Huffman coding algorithm)

Equal probability symbols

Lecture 9 3

¢ Example:

Alphabet: S = {A, B}
Probabilities: p, =0.5, p,=0.5
Code words: A=0, B=1

Requires 1 bit for each symbol

¢ In general, for n equally-likely symbols:
Probability of occurrence of each symbol is p=1/n
Number of bits to represent each symbol is

= logz(lj = logz(n)
p

Lecture 9 4




Unequal probabilities?

Alphabet: S = {sl,sz,..., SK}

Probabilities:  p,, p,,..., pg

Any random sequence of N symbols (large N):
5,2 N X p, occurrences

s,: N X p, occurrences
Particular sequence of N symbols:

Sy =151 85080255, 85, 85,5,
Probability of this particular sequence occurring:

D(SY) = DX Py X PyXPyXPyX Py X p X,
Np, Np,
=p, Xp, 7 X...

Unequal probabilities ? (cont.)

Lecture 9

Probability of any sequence of N symbols occurring:

pS)=p" xp," %

Number of bits required to represent a sequence of N symbols:

Ly :logz[ Jz—logz(plN”‘ szN”zx...)
P(SN)

=—Np, logz(pl)_sz logz(pz)_---
=-N) p,log,(p,)=N H(S)

allk

Average number of bits for one symbol is:

_
L=""=H(S
N ()

Lecture 9

Minimum codeword length

Huffman coding algorithm

Source Coding Theorem:

For a general alphabet S, the minimum average codeword
length is given by the entropy, H(S).

+ Significance:

For any practical source coding scheme, the average codeword length
will always be greater than or equal to the source entropys, i.e.,

L>H(S) bits/symbol

¢ How can we design an efficient coding scheme?

Lecture 9

¢ Optimum coding scheme — yields the shortest average
codeword length
1

Sort in decreasing v
order of probability Assign0and 1 to
the two codewords

Merge the two
least probable

Is any clement the
result of merger
of two clements

Append the codeword
with 0 and 1

Number of clements = 27

Stop

Lecture 9




Example

¢ Consider a five-symbol alphabet having the probabilities
indicated:

Symbols: A,B,C,D,E
Probabilities : p, =0.05, p, =0.15, p. =04, p, =0.3, p,. =0.1

1. Calculate the entropy of the alphabet.

2. Using the Huffman algorithm, design a source coding
scheme for this alphabet, and comment on the average

codeword length achieved.

Lecture 9

Huffman coding algorithm

¢ Uniquely decodable

i.e., only one way to break bit stream into valid code words

¢ Instantaneous
i.e., know immediately when a code word has ended

Lecture 9

Summary

¢ Source coding theorem:
For a general alphabet S, the minimum average codeword
length is given by the entropy, H(S).

¢ Huffman coding algorithm:
Practical coding scheme that yields the shortest average
codeword length

Lecture 9




Lecture 10 Reliable transfer of information

¢ How much information can be reliably transferred over a
noisy channel?

‘Waveform
modulator

y

(Channel capacity) Information Source Channel

source coder coder

I
I
I
i
1
I
|
|
|
I
E
¢ What does information theory have to say about analog 3 o
communication systems? | chemel
g
I
1
I
i
1
i
|
|

Waveform
demodulator

(See sections 5.5, 5.6) Infolrl;r;zrltionl S Crannel

& If channel is noisy, can information be transferred reliably?
4 How much information?

Lecture 10 1 Lecture 10

Information rate Channel capacity

& Definition:

. ¢ Definition:
R=r H bits/sec

Channel capacity, C, is maximum rate of information
/ transfer over a noisy channel with arbitrarily small
Avg no. of information Avg. no. of symbols  Avg. no. of information probability of error
bits transferred per second  per second bits per symbol

¢ Intuition:

# R can be increased arbitrarily by increasing symbol rate r

Channel Capacity Theorem
¢ For noisy channel, errors are bound to occur If R<C, then there exists a coding scheme such that

symbols can be transmitted over a noisy channel with
an arbitrarily small probability of error

# Is there a value of R where probability of error is arbitrarily small?

Lecture 10 3 Lecture 10




Channel capacity

¢ Channel capacity theorem is a surprising result:

= Gaussian noise has PDF

Channel capacity

m This is non-zero for all noise amplitudes ol

= Sometimes (however infrequent) noise must over-ride signal — bit
error

= But, theorem says we can transfer information without error!!

¢ Basic limitation due to noise is on speed of
communication, not on reliability

¢ So what is the channel capacity C ??

Hartley-Shannon Theorem

For an additive white Gaussian noise channel, the
channel capacity is: .
Average signal power
Ps at the receiver
C=Blog,| 1+—
P N
Average noise power

Bandwidth of .
at the receiver

the channel
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Example

¢ Consider a baseband system

¢ Noise power is:

NU j—
P= S-df =N, B

No/2

Example

¢ Channel capacity:

P,
C=Blog,|1+—2
gz[ NB]

o

& Consider a baseband channel with a bandwidth of B=4 kHz. Assume a
message signal with an average power of Ps=10 W, is transmitted over
this channel which has additive noise with a flat spectral density of
height No/2 with No=10¢ W/Hz.

1. Calculate the channel capacity of this channel.

2. If the message signal is amplified by a factor of n before transmission,
calculate the channel capacity when (a) n=2, and (b) n=10.

3. If the bandwidth of the channel is doubled to 8 kHz, what is the
channel capacity now?

Lecture 10
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Example

Comments

P,
C =Blog, 1+P—S

N

& More signal power increases capacity, but increase is slow
Can increase capacity arbitrarily through Py

4 More bandwidth allows more symbols per second, but also increases
the noise

& Canshow that: 1limC = 1.44i
B—oo N

o

Cannot increase capacity arbitrarily through B

15 1
09
B=4000
08 6
No=10"
@ @or
o 10 o
S Zos:
9 904—
o o
S ° guz—
02
01/
10 10° 10! 1;1" 10° 10"
SOURCE POWER (W)
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More comments

P,
C =Blog, 1+P—5

N

¢ This is capacity of an ideal “best” system
¢ How can we design something that comes close?

= Through channel coding, modulation/demodulation
schemes

= But, no deterministic method exists to do it !

Information theory and analog

Lecture 10 11

) t)

Signal m

source —{ Modulator
s(t)

White Gaussian Predetection Postdetection
noise n{z) signal-to-noise ratio signal-to-noise ratio
x() (SNR);, (SNR)O
Predetection Postdetection y®
filter Demodulator — filter
bandwidth = 8 bandwidth = W

4 Optimum communication system achieves the largest SNR at the
receiver output

Lecture 10 12




Optimum analog system

¢ Maximum rate that information can arrive at receiver:

C, = Blog,(1+SNR, )

4 Maximum rate that information can leave receiver:
Cout = W lOgZ (1 + SNRout )

¢ Ideally, no information is lost:
Cuut = Cin

¢ Equating gives:
SNR,,, = (1+SNR, )" -1

¢ For any increase in bandwidth, output SNR increases
exponentially

Lecture 10

Optimum analog system

¢ Assume that channel noise is AWGN, having PSD: N /2

& Average noise power at demodulator input is: P, =N B

¢ SNR at receiver input:

Transmitted power

Baseband SNR
\‘P W P
SNR, =—1-=——L
NB B NW

Bandwidth spreading ratio
transmission bw/message bw

¢ SNR at receiver output:

B/W
SNR,, = (1 + % SNRM] -1
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Analog performance

70 T T 7 T T T 7
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540 / 4 = z Or
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3 / g 3
%c ”’, // / P - g
/ - 2 ok
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/ e
2 // /// 20
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/ ) e - T
/ / -
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e
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0 5 10 15 20 2 30 3% s 10 15 20
SNRy ¢ (dB) (S/N) pasebans (dB)

Ideal performance

Actual performance
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Summary

& Information rate: R = r H bits/sec

¢ Channel Capacity Theorem:

If R<C, then there exists a coding scheme such that
symbols can be transmitted over a noisy channel with an
arbitrarily small probability of error

¢ Hartley-Shannon Theorem (Gaussian noise channel):
C=Blog, 1+£ bits/sec
PN

¢ Analog communication systems:
Information theory tells us the best SNR
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