Information

- Lecturer: Dr. Darren Ward, Room 811C
- Email: d.ward@imperial.ac.uk, Phone: (759) 46230

- Reference books:

- Course material:
 - http://www.ee.ic.ac.uk/dward/

Aims:
The aim of this part of the course is to give you an understanding of how communication systems perform in the presence of noise.

Objectives:
By the end of the course you should be able to:
- Compare the performance of various communication systems
- Describe a suitable model for noise in communications
- Determine the SNR performance of analog communication systems
- Determine the probability of error for digital systems
- Understand information theory and its significance in determining system performance

Lecture 1

1. What is the course about, and how does it fit together
2. Some definitions (signals, power, bandwidth, phasors)

See Chapter 1 of notes

Definitions

- **Signal**: a single-valued function of time that conveys information
- **Deterministic** signal: completely specified function of time
- **Random** signal: cannot be completely specified as function of time
Definitions

- **Analog** signal: continuous function of time with continuous amplitude
- **Discrete-time** signal: only defined at discrete points in time, amplitude continuous
- **Digital** signal: discrete in both time and amplitude (e.g., PCM signals, see Chapter 4)

![Waveform Diagrams]

Definitions

- Instantaneous power:
 \[p = \frac{|v(t)|^2}{R} = |r(t)|^2 R = |g(t)|^2 \]
- Average power:
 \[P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 \, dt \]

For periodic signals, with period \(T_o \) (see Problem sheet 1):

\[P = \frac{1}{T_o} \int_{-T/2}^{T/2} |g(t)|^2 \, dt \]

Bandwidth

- Bandwidth: extent of the significant spectral content of a signal for positive frequencies

![Bandwidth Diagrams]
Phasors

- General sinusoid:

\[x(t) = A \cos(2\pi ft + \theta) \]
\[x(t) = \mathcal{R}\{Ae^{j\theta} e^{j2\pi ft}\} \]

- Alternative representation:

\[x(t) = A \frac{e^{j\theta} e^{j2\pi ft}}{2} + A \frac{e^{-j\theta} e^{-j2\pi ft}}{2} \]

Phasors

- Anti-clockwise rotation (positive frequency): \(\exp(j2\pi ft) \)
- Clockwise rotation (negative frequency): \(\exp(-j2\pi ft) \)

Summary

1. The fundamental question: How do communications systems perform in the presence of noise?
2. Some definitions:
 - Signals
 - Average power
 \[P = \lim_{T \to \infty} \frac{1}{T} \int_{T/2}^{0} |x(t)|^2 \, dt \]
 - Bandwidth: significant spectral content for positive frequencies
 - Phasors – complex conjugate representation (negative frequency)
 \[x(t) = A \frac{e^{j\theta} e^{j2\pi ft}}{2} + A \frac{e^{-j\theta} e^{-j2\pi ft}}{2} \]
Lecture 2

1. Model for noise
2. Autocorrelation and Power spectral density

See Chapter 2 of notes, sections 2.1, 2.2, 2.3

Sources of noise

1. External noise
 - synthetic (e.g. other users)
 - atmospheric (e.g. lightning)
 - galactic (e.g. cosmic radiation)
2. Internal noise
 - shot noise
 - thermal noise

◆ Average power of thermal noise: \(P = kTB \)

◆ Effective noise temperature:

\[
T_e = \frac{P}{kB}
\]

Temperature of fictitious thermal noise source at i/p, that would be required to produce same noise power at o/p

Example

◆ Consider an amplifier with 20 dB power gain and a bandwidth of \(B = 20 \text{ MHz} \)

◆ Assume the average thermal noise at its output is \(P_o = 2.2 \times 10^{-11} \text{ W} \)

1. What is the amplifier’s effective noise temperature?
2. What is the noise output if two of these amplifiers are cascaded?
3. How many stages can be used if the noise output must be less than \(20 \text{ mW} \)?
Gaussian noise

- **Gaussian noise**: amplitude of noise signal has a Gaussian probability density function (p.d.f.)

![Gaussian noise graph](image)

- **Central limit theorem**: sum of n independent random variables approaches Gaussian distribution as $n \to \infty$

Noise model

- Model for effect of noise is additive Gaussian noise channel:

![Noise model diagram](image)

- For $n(t)$ a random signal, need more info:
 - What happens to noise at receiver?
 - Statistical tools

Motivation

- How often is a decision error made?

![Motivation graph](image)

Random variable

- A random variable x is a rule that assigns a real number x_i to the ith sample point in the sample space

![Random variable diagram](image)
Probability density function

- Probability that the r.v. \(x \) is within a certain range is:
 \[
P(x_1 < x < x_2) = \int_{x_1}^{x_2} p_x(x) \, dx
 \]

- Example, Gaussian pdf:
 \[
p_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-m)^2/2\sigma^2}
 \]

Statistical averages

- Expectation of a r.v. is:
 \[
 E\{x\} = \int_{-\infty}^{\infty} x \, p_x(x) \, dx
 \]
 where \(E\{x\} \) is the expectation operator

- In general, if \(y = g(x) \)
 then \[
 E\{y\} = E\{g(x)\} = \int_{-\infty}^{\infty} g(x) \, p_x(x) \, dx
 \]

- For example, the mean square amplitude of a signal is the mean of the square of the amplitude, ie, \(E\{x^2\} \)

Random process

- Stationary
 - Ergodic

Averages

- Time average:
 \[
 \langle n(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} n(t) \, dt
 \]

- Ensemble average:
 \[
 E\{n\} = \int_{n} n \, p(n) \, dn
 \]
 pdf random variable

- DC component:
 \[
 E\{n(t)\} = \langle n(t) \rangle
 \]

- Average power:
 \[
 E\{n^2(t)\} = \langle n^2(t) \rangle = \sigma^2 \text{ (zero-mean Gaussian process only)}
 \]
Example

Consider the signal: \(x(t) = A e^{j(\omega_0 t + \theta)} \)

where \(\theta \) is a random variable, uniformly distributed over 0 to \(2\pi \)

1. Calculate its average power using time averaging.
2. Calculate its average power (mean-square) using statistical averaging.

Autocorrelation

How can one represent the spectrum of a random process?

Autocorrelation:

\[R_x(\tau) = E\{x(t)x(t+\tau)\} \]

NOTE: Average power is

\[P = E\{x^2(t)\} = R_x(0) \]

Frequency content

PSD measures distribution of power with frequency, units watts/Hz

Wiener-Khinchine theorem:

\[S_x(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j2\pi ft} \, d\tau \]

\[= \text{FT}\{R_x(\tau)\} \]

Hence,

\[R_x(\tau) = \int_{-\infty}^{\infty} S_x(f) e^{j2\pi ft} \, df \]

Average power:

\[P = R_x(0) = \int_{-\infty}^{\infty} S_x(f) \, df \]
Power spectral density

- Thermal noise: \[P = kTB = \int_{-B}^{B} \frac{kT}{2} df \]

- White noise: \[S(f) = \frac{N_o}{2} \]

PSD is same for all frequencies

Summary

- Additive Gaussian noise channel:

- Autocorrelation: \[R_x(\tau) = E\{x(t)x(t+\tau)\} \]

- Power spectral density:
 \[S_x(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j2\pi ft} d\tau \]

- White noise: \[S(f) = \frac{N_o}{2} \]

- Expectation operator:
 \[E\{g(x)\} = \int_{-\infty}^{\infty} [g(x)] p_x(x) dx \]
Lecture 3

- Representation of band-limited noise
 - Why band-limited noise?
 (See Chapter 2, section 2.4)

- Noise in an analog baseband system
 (See Chapter 3, sections 3.1, 3.2)

Analog communication system

Receiver

- Predetection filter:
 - Removes out-of-band noise
 - Has a bandwidth matched to the transmission bandwidth

Bandlimited Noise

- For any bandpass (i.e., modulated) system, the predetection noise will be bandlimited
- Bandpass noise signal can be expressed in terms of two baseband waveforms

\[n(t) = n_c(t) \cos(\omega_c t) - n_s(t) \sin(\omega_c t) \]

- PSD of \(n(t) \) is centred about \(f_c \) (and \(-f_c\))
- PSDs of \(n_c(t) \) and \(n_s(t) \) are centred about 0 Hz
PSD of $n(t)$

- In slice shown (for Δf small):
 \[n_k(t) = a_k \cos(2\pi f_c t + \theta_k) \]

\[n_k(t) = a_k \cos(\omega_k t + \theta_k) \]

\[n_c(t) = a_k \cos[\omega_k(\omega_c t + \theta_c) + \omega_c t] \]

\[n_s(t) = a_k \sin[\omega_k(\omega_c t + \theta_c) + \omega_c t] \sin(\omega_c t) \]

Example – frequency

\[n(t) \]

\[n_c(t) \]

\[n_s(t) \]

Example – time

\[n(t) \]

\[n_c(t) \]

\[n_s(t) \]
Example – histogram

Probability density functions

\[n(t) = \sum_{k} a_k \cos(\omega_k t + \theta_k) \]
\[n_c(t) = \sum_{k} a_k \cos[(\omega_k - \omega_c)t + \theta_k] \]
\[n_s(t) = \sum_{k} a_k \sin[(\omega_k - \omega_c)t + \theta_k] \]

- Each waveform is Gaussian distributed
- Central limit theorem
- Mean of each waveform is 0

Average power

\[n(t) = \sum_{k} a_k \cos(\omega_k t + \theta_k) \]

- Power in \(\sum a_k \cos(\alpha + \theta) \) is \((a_k^2)/2 \) (see Example 1.1, or study group sheet 2, Q1)
- Average power in \(n(t) \) is: \(P_n = \sum_{k} \frac{E(a_k^2)}{2} \)

\[n_c(t) = \sum_{k} a_k \cos((\omega_k - \omega_c)t + \theta_k) \]
\[n_s(t) = \sum_{k} a_k \sin((\omega_k - \omega_c)t + \theta_k) \]

- Average power in \(n_c(t) \) and \(n_s(t) \) is: \(P_{n_c} = \sum_{k} \frac{E(a_k^2)}{2} \), \(P_{n_s} = \sum_{k} \frac{E(a_k^2)}{2} \)
- \(n(t) \), \(n_c(t) \) and \(n_s(t) \) all have same average power!

Average power

- What is the average power in \(n(t) \)?
- Find using the power spectral density (PSD):

\[P = \int_{-\infty}^{\infty} S(f) \, df \]
\[= 2 \int_{-W}^{W} \frac{N_0}{2} \, df = 2 \frac{N_0}{2} (W - W) = 2N_0 W \]

(one for positive freqs, one for negative)

- Average power in \(n(t) \), \(n_c(t) \) and \(n_s(t) \) is: \(2N_0 W \)
Power spectral densities

Example - power spectral densities

Example - zoomed

Phasor representation

\[n(t) = n_c(t) \cos(\omega_c t) - n_s(t) \sin(\omega_s t) \]

let \[g(t) = n_c(t) + jn_s(t) \]

\[g(t)e^{j\omega_c t} = n_c(t) \cos(\omega_c t) + jn_c(t) \sin(\omega_c t) + jn_s(t) \cos(\omega_c t) - n_s(t) \sin(\omega_s t) \]

so \[n(t) = \Re\{g(t)e^{j\omega_c t}\} \]
Analog communication system

- Performance measure:
 \[
 \text{SNR}_o = \frac{\text{average message power at receiver output}}{\text{average noise power at receiver output}}
 \]

- Compare systems with same transmitted power

Baseband system

- Message signal = \(m(t) \)
- Message bandwidth = \(W \)
- Lowpass filter bandwidth = \(W \)
- Noise power: \(N_o \)
- Transmitted (message) power is: \(P_T \)
- Noise power is:
 \[
 P_N = \frac{N_o W}{2}
 \]
- SNR at receiver output:
 \[
 \text{SNR}_{\text{base}} = \frac{P_T}{N_o W}
 \]

Summary

- Baseband SNR:
 \[
 \text{SNR}_{\text{base}} = \frac{P_T}{N_o W}
 \]
- Bandpass noise representation:
 \[
 n(t) = n_c(t) \cos(\omega_c t) - n_s(t) \sin(\omega_c t)
 \]
- All waveforms have same:
 - Probability density function (zero-mean Gaussian)
 - Average power
- \(n_c(t) \) and \(n_s(t) \) have same power spectral density
Lecture 4

- Noise (AWGN) in AM systems:
 - DSB-SC
 - AM, synchronous detection
 - AM, envelope detection
(See Chapter 3, section 3.3)

Analog communication system

- Performance measure:
 \[
 SNR_r = \frac{\text{average message power at receiver output}}{\text{average noise power at receiver output}}
 \]

- Compare systems with same transmitted power

Amplitude modulation

- Modulated signal:
 \[
 s(t)_{AM} = A_c + m(t)\cos\omega t
 \]
 \[m(t)\text{ is message signal}

- Modulation index:
 \[
 \mu = \frac{m_p}{A_c}
 \]
 \[m_p\text{ is peak amplitude of message}

Amplitude modulation

DSB-SC

\[s(t)_{\text{DSB-SC}} = A_c m(t) \cos \omega_c t \]

Synchronous detection

- Signal after multiplier:
 \[y(t)_{\text{AM}} = \left[A_c + m(t) \right] \cos \omega_c t \times 2 \cos \omega_c t = \left[A_c + m(t) \right] (1 + \cos 2\omega_c t) \]
 \[y(t)_{\text{DSB-SC}} = A_c m(t)(1 + \cos 2\omega_c t) \]

Noise in DSB-SC

- Transmitted signal:
 \[s(t)_{\text{DSB-SC}} = A_c m(t) \cos \omega_c t \]

- Predetection signal:
 \[x(t) = A_c m(t) \cos \omega_c t + n_c(t) \cos \omega_c t - n_s(t) \sin \omega_c t \]
 Transmitted signal \hspace{1cm} Bandlimited noise

- Receiver output (after LPF):
 \[y(t) = A_c m(t) + n_c(t) \]

SNR of DSB-SC

- Output signal power:
 \[P_s = \left(A_c m(t) \right)^2 = A_c^2 P \]
 power of message

- Output noise power:
 \[P_N = \int_{-W}^{W} \text{PSD} \, df = \int_{-W}^{W} N_o \, df = 2N_o W \]

- Output SNR:
 \[\text{SNR}_{\text{DSB-SC}} = \frac{A_c^2 P}{2N_o W} \]
SNR of DSB-SC

- Transmitted power:
 \[P_T = \langle (A_c m(t) \cos \omega_c t)^2 \rangle = \frac{A_c^2 P}{2} \]

- Output SNR:
 \[SNR_{DSB-SC} = \frac{P_T}{N_{o} W} = SNR_{base} \]

- DSB-SC has no performance advantage over baseband

Noise in AM (synch. detector)

- Transmitted signal:
 \[s(t)_{AM} = [A_c + m(t)] \cos \omega_c t \]

- Transmitted power:
 \[P_T = \frac{A_c^2}{2} + \frac{P}{2} \]

- Output SNR:
 \[SNR_{AM} = \frac{P_T}{N_{o} W \, A_c^2 + P} = \frac{P}{A_c^2 + P} \, SNR_{base} \]

- The performance of AM is always worse than baseband

Noise in AM (synch. detector)

- Predetection signal:
 \[x(t) = [A_c + m(t)] \cos \omega_c t + n_c(t) \cos \omega_c t - n_c(t) \sin \omega_c t \]

- Receiver output:
 \[y(t) = A_c + m(t) + n_c(t) \]

- Output signal power:
 \[P_S = \langle m^2(t) \rangle = P \]

- Output noise power:
 \[P_N = 2N_{o} W \]

- Output SNR:
 \[SNR_{AM} = \frac{P}{2N_{o} W} \]

Noise in AM, envelope detector

- Predetection signal:
 \[x(t) = [A_c + m(t)] \cos \omega_c t + n_c(t) \cos \omega_c t - n_c(t) \sin \omega_c t \]

- Receiver output:
 \[y(t) = A_c + m(t) + n_c(t) \]

- Output signal power:
 \[P_S = \langle m^2(t) \rangle = P \]

- Output noise power:
 \[P_N = 2N_{o} W \]

- Output SNR:
 \[SNR_{AM} = \frac{P}{2N_{o} W} \]
Noise in AM, envelope detector

Receiver output:

\[y(t) = \text{envelope of } x(t) = \sqrt{[A_c + m(t) + n_c(t)]^2 + n_s^2(t)} \]

Small noise case:

\[y(t) = A_c + m(t) + n_c(t) \]

Large noise case:

\[y(t) = E_n(t) + [A_c + m(t)]\cos \theta_n(t) \]

Envelope detector has a **threshold effect**

Not really a problem in practice

Example

- An unmodulated carrier (of amplitude \(A_c \) and frequency \(f_c \)) and bandlimited white noise are summed and then passed through an ideal envelope detector.
- Assume the noise spectral density to be of height \(N_o/2 \) and bandwidth \(2W \), centred about the carrier frequency.
- Assume the input carrier-to-noise ratio is high.

1. Calculate the carrier-to-noise ratio at the output of the envelope detector, and compare it with the carrier-to-noise ratio at the detector input.

Summary

- Synchronous detector:
 \[\text{SNR}_{\text{DSB-SC}} = \text{SNR}_{\text{base}} \]
 \[\text{SNR}_{\text{AM}} = \frac{P}{A_c^2 + P} \text{SNR}_{\text{base}} \]

- Envelope detector:
 - threshold effect
 - for small noise, performance is same as synchronous detector
Lecture 5

- Noise in FM systems
 - pre-emphasis and de-emphasis
 (See section 3.4)

- Comparison of analog systems
 (See section 3.5)

Frequency modulation

- FM waveform:
 \[s(t)_{\text{FM}} = A_c \cos \left(2\pi f_c t + 2\pi k_f \int m(\tau) \, d\tau \right) = A_c \cos \theta(t) \]

- \(\theta(t) \) is instantaneous phase
- Instantaneous frequency:
 \[f_i = \frac{1}{2\pi} \frac{d\theta(t)}{dt} = f_c + k_f m(t) \]

- Frequency is proportional to message signal

FM waveforms

- Instantaneous frequency varies between \(f_c - k_f m_p \) and \(f_c + k_f m_p \), where \(m_p \) is peak message amplitude
- Frequency deviation (max. departure of carrier wave from \(f_c \)):
 \[\Delta f = k_f m_p \]
- Deviation ratio:
 \[\beta = \frac{\Delta f}{W} \]
 where \(W \) is bandwidth of message signal
- Commercial FM uses: \(\Delta f = 75 \text{ kHz} \) and \(W = 15 \text{ kHz} \)
Bandwidth considerations

- Carson’s rule:
 \[B_c = 2W(\beta + 1) = 2(\Delta f + W) \]

FM receiver

- Discriminator: output is proportional to deviation of instantaneous frequency away from carrier frequency

Noise in FM versus AM

- AM:
 - Amplitude of modulated signal carries message
 - Noise adds directly to modulated signal
 - Performance no better than baseband

- FM:
 - Frequency of modulated signal carries message
 - Zero crossings of modulated signal important
 - Effect of noise should be less than in AM

Noise in FM

- Predetection signal:

 \[x(t) = A_i \cos(2\pi f_c t + \phi(t)) + n_c(t) \cos(2\pi f_c t) - n_s(t) \sin(2\pi f_c t) \]

 where \(\phi(t) = 2\pi k_i \int_{-\infty}^{t} m(\tau) d\tau \)

- If carrier power is much larger than noise power:
 1. Noise does not affect signal power at output
 2. Message does not affect noise power at output

Assumptions

1. Noise does not affect signal power at output
 - Signal component at receiver:
 \[x_s(t) = A_c \cos(2\pi f_c t + \phi(t)) \]
 - Instantaneous frequency:
 \[f_i(t) = \frac{1}{2\pi} \frac{d\phi(t)}{dt} = k_j \cdot m(t) \]
 - Output signal power:
 \[P_s = k_j^2 P \text{power of message signal} \]

 Assumptions

2. Signal does not affect noise at output
 - Message-free component at receiver:
 \[x_n(t) = A_c \cos(2\pi f_c t) + n_c(t) \cos(2\pi f_c t) - n_s(t) \sin(2\pi f_c t) \]
 - Instantaneous frequency:
 \[f_i(t) = \frac{1}{2\pi} \frac{d\theta(t)}{dt} = \frac{1}{2\pi} \frac{d}{dt} \tan^{-1}\left\{ \frac{n_c(t)}{A_c + n_s(t)} \right\} = \frac{1}{2\pi} \frac{d}{dt} \left(\frac{n_c(t)}{A_c} \right) \]
 - We know the PSD of \(n_s(t) \), but what about its derivative??

\[\text{Discriminator output:} \]
\[f_i(t) = \frac{1}{2\pi A_c} \frac{d n_s(t)}{dt} \]
\[n_s(t) \longrightarrow \frac{1}{2\pi A_c} \frac{d}{dt} \longrightarrow f_i(t) \]

\[\text{Fourier theory property:} \]
\[x(t) \Leftrightarrow X(f) \]
\[\frac{dx(t)}{dt} \Leftrightarrow j2\pi f X(f) \]

\[N_i(f) \longrightarrow \frac{1}{2\pi A_c} j2\pi f \longrightarrow F_i(f) \]

\[\text{PSD property:} \]
\[X(f) \longrightarrow H(f) \longrightarrow Y(f) = H(f)X(f) \]
\[S_X(f) \quad S_Y(f) = |H(f)|^2 S_X(f) \]

\[\text{PSD of discriminator output:} \]
\[N_i(f) \longrightarrow \frac{j f}{A_c} \longrightarrow F_i(f) \]
\[S_N(f) \quad S_Y(f) = \frac{|f|^2}{A_c^2} S_N(f) \]
SNR of FM

- **SNR at output:**
 \[SNR_o = \frac{3A_c^2k_f^2P}{2N_oW^3} \]

- **Transmitted power:**
 \[P_T = \left(A_c \cos(\omega_c t + \phi(t)) \right)^2 = \frac{A_c^2}{2} \]

- **SNR at output:**
 \[SNR_{FM} = \frac{3k_f^2P}{W^2} \cdot SNR_{base} = \frac{3\beta^2P}{m_p} \cdot SNR_{base} \]

Threshold effect in FM

- **SNR$_{FM}$** is valid when the **predetection** SNR > 10

- **Predetection signal is:**
 \[x(t) = A_c \cos(2\pi f_c t + \phi(t)) + n_c(t) \cos(2\pi f_c t) - n_o(t) \sin(2\pi f_c t) \]

- **Predetection SNR is:**
 \[SNR_{pre} = \frac{A_c^2}{2N_oB_f} \]

- **Threshold point is:**
 \[\frac{A_c^2}{4N_oW(\beta + 1)} > 10 \]

- **Cannot arbitrarily increase SNR$_{FM}$ by increasing β**

PSD of LPF noise term:

\[
PSD of \quad \frac{1}{2 \pi A_c} \frac{dn_o(t)}{dt} = \frac{1}{A_c^2} N_o, \quad |f| < W
\]

- **Average power of noise at output:**
 \[P_N = \int_{-W}^{W} \frac{1}{A_c^2} N_o |f|^2 df = \frac{2N_o}{A_c^2} \left[\frac{f^3}{3} \right]_{-W}^{W} = \frac{2N_oW^3}{3A_c^2} \]

- **Increasing the carrier power has a **noise quieting** effect**
Pre-emphasis and De-emphasis

- Can improve output SNR by about 13 dB

Example

- The improvement in output SNR afforded by using pre-emphasis and de-emphasis in FM is defined by:

 \[
 I = \frac{\text{SNR with pre-/de-emphasis}}{\text{SNR without pre-/de-emphasis}}
 \]

 average output noise power without pre-/de-emphasis
 average output noise power with pre-/de-emphasis

- If \(H_{de}(f) \) is the transfer function of the de-emphasis filter, find an expression for the improvement, \(I \).

Analog system performance

- Parameters:
 - Single-tone message \(m(t) = \cos(2\pi f_m t) \)
 - Message bandwidth \(W = f_m \)
 - AM system \(\mu = 1 \)
 - FM system \(\beta = 5 \)

- Performance:

 \[
 \begin{align*}
 \text{SNR}_{DSB-SC} &= \text{SNR}_{base} \\
 \text{SNR}_{AM} &= \frac{1}{5} \text{SNR}_{base} \\
 \text{SNR}_{FM} &= \frac{75}{2} \text{SNR}_{base}
 \end{align*}
 \]

- Bandwidth:

 \[
 \begin{align*}
 B_{DSB-SC} &= 2W \\
 B_{AM} &= 2W \\
 B_{FM} &= 12W
 \end{align*}
 \]
Summary

- Noise in FM:
 - Increasing carrier power reduces noise at receiver output
 - Has threshold effect
 - Pre-emphasis

- Comparison of analog modulation schemes:
 - AM worse than baseband
 - DSB/SSB same as baseband
 - FM better than baseband
Lecture 6

- Digital communication systems
 - Digital vs Analog communications
 - Pulse Code Modulation

(See sections 4.1, 4.2 and 4.3)

Digital vs Analog

- Analog message:
 - Recreate waveform accurately
 - Performance criterion is SNR at receiver output

- Digital message:
 - Decide which symbol was sent
 - Performance criterion is probability of receiver making a decision error

Advantages of digital:
1. Digital signals are more immune to noise
2. Repeaters can re-transmit a noise-free signal

Sampling: discrete in time

Nyquist Sampling Theorem:
A signal whose bandwidth is limited to W Hz can be reconstructed exactly from its samples taken uniformly at a rate of $R>2W$ Hz.
Maximum information rate

- How many bits can be transferred over a channel of bandwidth B Hz (ignoring noise)?
- Signal with a bandwidth of B Hz is not distorted over this channel
- Signal with a bandwidth of B Hz requires samples taken at $2B$ Hz
- Can transmit:

 2 bits of information per second per Hz

Pulse-code modulation

- Represent an analog waveform in digital form

```
\[ m(t) \rightarrow \text{Sampler} \rightarrow \text{Quantizer} \rightarrow \text{Encoder} \rightarrow \text{PCM output} \]
```

Quantization: discrete in amplitude

- Round amplitude of each sample to nearest one of a finite number of levels

Encode

- Assign each quantization level a code
Sampling vs Quantization

- **Sampling:**
 - Non-destructive if \(f_s > 2W \)
 - Can reconstruct analog waveform exactly by using a low-pass filter

- **Quantization:**
 - Destructive
 - Once signal has been rounded off it can never be reconstructed exactly

Quantization noise

- Let \(\Delta \) be the separation between quantization levels
 \[
 \Delta = \frac{2m_p}{L}
 \]
 where \(L = 2^n \) is the no. of quantization levels
 \(m_p \) is peak allowed signal amplitude

- Round-off effect of quantizer ensures that \(|q| < \Delta/2\), where \(q \) is a random variable representing the quantization error

- Assume \(q \) is zero mean with uniform pdf, so mean square error is:
 \[
 E(q^2) = \int_{-\Delta/2}^{\Delta/2} q^2 \frac{1}{\Delta} \, dq = \frac{\Delta^2}{12}
 \]

Quantization noise

- Let message power be \(P \)

- Noise power is: \(P_N = E(q^2) \) (since zero mean)
 \[
 = \Delta^2 \left(\frac{2m_p}{L} \right)^2 = \frac{m_p^2}{12} \times 3 \times 2^{2n}
 \]

- Output SNR of quantizer:
 \[
 SNR_q = \frac{P}{P_N} = \frac{3P}{m_p^2} \times 2^{2n}
 \]
 or in dB:
 \[
 SNR_{dB} = 6.02n + 10 \log_{10} \left(\frac{3P}{m_p^2} \right)
 \]
Bandwidth of PCM

- Each message sample requires n bits
- If message has bandwidth W Hz, then PCM contains $2nW$ bits per second
- Bandwidth required is: $B_r = nW$
- SNR can be written: $SNR_Q = \frac{3P}{m^2} \times 2^{2B_r/W}$
- Small increase in bandwidth yields a large increase in SNR

Nonuniform quantization

- For audio signals (e.g. speech), small signal amplitudes occur more often than large signal amplitudes
- Better to have closely spaced quantization levels at low signal amplitudes, widely spaced levels at large signal amplitudes
- Quantizer has better resolution at low amplitudes (where signal spends more time)

Uniform quantization

Non-uniform quantization

Companding

- Uniform quantizer is easier to implement than nonlinear
- **Compress** signal first, then use uniform quantizer, then **expand** signal (i.e., compand)
Summary

- Analog communications system:
 - Receiver must recreate transmitted waveform
 - Performance measure is signal-to-noise ratio

- Digital communications system:
 - Receiver must decide which symbol was transmitted
 - Performance measure is probability of error

- Pulse-code modulation:
 - Scheme to represent analog signal in digital format
 - Sample, quantize, encode
 - Companding (nonuniform quantization)
Lecture 7

- Performance of digital systems in noise:
 - Baseband
 - ASK
 - PSK, FSK
 - Compare all schemes

(See sections 4.4, 4.5)

Digital receiver

Baseband digital system

Gaussian noise, probability

Noise waveform, $n(t)$

Probability density function, $f(n)$

\[p(n) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(n-m)^2}{2\sigma^2} \right) \]

\[= \mathcal{N}(m, \sigma^2) \]

Normal distribution

Mean, m

Variance, σ^2

\[\text{prob}(a < n < b) = \int_{a}^{b} p(n) \, dn \]
Gaussian noise, spectrum

NOTE: For zero-mean noise, variance = average power
i.e., \(\sigma^2 = P \)

LPF (use for baseband)

\[
P = \int_{-\infty}^{\infty} \frac{N_0}{2} df = N_0 W
\]

BPF (use for bandpass)

\[
P = \int_{-f_c}^{f_c} \frac{N_0}{2} df + \int_{f_c}^{\infty} \frac{N_0}{2} df = 2N_0 W
\]

Baseband system – “0” transmitted

- Transmitted signal \(s_f(t) \)
- Noise signal \(n(t) \)
- Received signal \(y_0(t) = s_f(t) + n(t) \)

Error if \(y_0(t) > A/2 \)

\[
P_{e0} = \int_{A/2}^{\infty} N(0, \sigma^2) \, dn
\]

Baseband system – “1” transmitted

- Transmitted signal \(s_1(t) \)
- Noise signal \(n(t) \)
- Received signal \(y_1(t) = s_1(t) + n(t) \)

Error if \(y_1(t) < A/2 \)

\[
P_{e1} = \int_{-A/2}^{0} N(A, \sigma^2) \, dn
\]

Baseband system – errors

- Possible errors:
 1. Symbol “0” transmitted, receiver decides “1”
 2. Symbol “1” transmitted, receiver decides “0”

- Total probability of error:

\[
P_e = p_o P_{e0} + p_1 P_{e1}
\]

Probability of “0” being sent

Probability of making an error if “0” was sent
Baseband system – errors

- For equally-probable symbols:
 \[P_e = \frac{1}{2} P_{e0} + \frac{1}{2} P_{e1} \]
- Can show that \(P_{e0} = P_{e1} \)
- Hence, \(P_e = \frac{1}{2} P_{e0} + \frac{1}{2} P_{e0} = P_{e0} \)

\[P_e = \int_{-\infty}^{\infty} N(0, \sigma^2) \, dn \]

How to calculate \(P_e \)?

1. Complementary error function (\(\text{erfc} \) in Matlab)

 \[\text{erfc}(u) = \frac{2}{\sqrt{\pi}} \int_{u}^{\infty} \exp(-n^2) \, dn \]
 \[P_e = \frac{1}{2} \text{erfc} \left(\frac{A}{\sigma \sqrt{2}} \right) \]

2. Q-function (tail function)

 \[Q(u) = \frac{1}{\sqrt{2\pi}} \int_{u}^{\infty} \exp \left(-\frac{n^2}{2} \right) \, dn \]
 \[P_e = Q \left(\frac{A}{2\sigma} \right) \]

Example

- Consider a digital system which uses a voltage level of 0 volts to represent a “0”, and a level of 0.22 volts to represent a “1”. The digital waveform has a bandwidth of 15 kHz.
- If this digital waveform is to be transmitted over a baseband channel having additive noise with flat power spectral density of \(N_0/2 = 3 \times 10^{-8} \) W/Hz, what is the probability of error at the receiver output?
Amplitude-shift keying

\[s_0(t) = 0 \]
\[s_1(t) = A \cos(\omega t) \]

Synchronous detector

- Identical to analog synchronous detector

ASK – “0” transmitted

- Predetection signal:
 \[x_0(t) = 0 + n_c(t) \cos(\omega t) - n_s(t) \sin(\omega t) \]
 ASK “0” Bandpass noise

- After multiplier:
 \[r_0(t) = x_0(t) \times 2 \cos(\omega t) \]
 \[= n_c(t) 2 \cos^2(\omega t) - n_s(t) 2 \sin(\omega t) \cos(\omega t) \]
 \[= n_c(t) \left[1 + \cos(2\omega t) \right] - n_s(t) \sin(2\omega t) \]

- Receiver output:
 \[y_0(t) = n_c(t) \]

ASK – “1” transmitted

- Predetection signal:
 \[x_1(t) = A \cos(\omega t) + n_c(t) \cos(\omega t) - n_s(t) \sin(\omega t) \]
 ASK “1” Bandpass noise

- After multiplier:
 \[r_1(t) = x_1(t) \times 2 \cos(\omega t) \]
 \[= \left[A + n_c(t) \right] 2 \cos^2(\omega t) - n_s(t) 2 \sin(\omega t) \cos(\omega t) \]
 \[= \left[A + n_c(t) \right] \left[1 + \cos(2\omega t) \right] - n_s(t) \sin(2\omega t) \]

- Receiver output:
 \[y_1(t) = A + n_c(t) \]
PDFs at receiver output

- ASK – “0” transmitted:
 - PDF of \(y_0(t) = n_0(t) \)
- ASK – “1” transmitted:
 - PDF of \(y_1(t) = A + n_1(t) \)

- Same as baseband!

\[
P_{\text{e,ASK}} = \frac{1}{2} \text{erfc} \left(\frac{A}{\sigma 2\sqrt{2}} \right)
\]

Phase-shift keying

- ASK ± \(0^\circ \) transmitted:
- ASK ± \(1^\circ \) transmitted:

\[
s_0(t) = -A \cos(\omega t)
\]
\[
s_1(t) = A \cos(\omega t)
\]

PSK demodulator

- Predetection signal:
 \[
x_0(t) = -A \cos(\omega t) + n_c(t) \cos(\omega t) - n_c(t) \sin(\omega t)
\]

- After multiplier:
 \[
r_0(t) = x_0(t) \times 2\cos(\omega t)
 = \left[-A + n_c(t)\right] 2\cos(\omega t) - n_c(t) 2\sin(\omega t) \cos(\omega t)
 = \left[-A + n_c(t)\right] 1 + \cos(2\omega t) - n_c(t) \sin(2\omega t)
\]

- Receiver output:
 \[
y_0(t) = -A + n_c(t)
\]
PSK – “1” transmitted

- Predetection signal:
 \[x_1(t) = A\cos(\omega t) + n_c(t)\cos(\omega t) - n_s(t)\sin(\omega t) \]
 \(\text{PSK “1”} \quad \text{Bandpass noise} \)

- After multiplier:
 \[r_1(t) = x_1(t)\times2\cos(\omega t) \]
 \[= [A + n_c(t)][2\cos^2(\omega t) - n_s(t)2\sin(\omega t)\cos(\omega t)] \]
 \[= [A + n_c(t)][1 + \cos(2\omega t)] - n_s(t)\sin(2\omega t) \]

- Receiver output:
 \[y_1(t) = A + n_c(t) \]

PSK – PDFs at receiver output

- PSK – “0” transmitted:
 \(\text{PDF of } y_0(t) = -A + n_c(t) \)

- PSK – “1” transmitted:
 \(\text{PDF of } y_1(t) = A + n_c(t) \)

- Set threshold at 0:
 if \(y < 0 \), decide "0"
 if \(y > 0 \), decide "1"

PSK – probability of error

- Probability of bit error:
 \[P_{e,\text{PSK}} = \frac{1}{2}\text{erfc}\left(\frac{A}{\sigma\sqrt{2}}\right) \]

Frequency-shift keying

- PSK
 \[s_0(t) = A\cos(\omega_0 t) \]
 \[s_1(t) = A\cos(\omega t) \]

- FSK
FSK detector

\[s_0(t) = A \cos(\omega_0 t) \]
\[s_1(t) = A \cos(\omega_1 t) \]

FSK

- Receiver output:
 \[y_0(t) = -A + [n'_0(t) - n^0_0(t)] \]
 \[y_1(t) = A + [n'_1(t) - n^0_1(t)] \]

 Independent noise sources, variances add

- PDFs same as for PSK, but variance is doubled:
 \[P_e,FSK = \frac{1}{2} \text{erfc}\left(\frac{A}{2\sigma}\right) \]

Digital performance comparison

Summary

- For a baseband (or ASK) system:
 \[P_e = \int_{-A/2}^{A/2} N(0, \sigma^2) \, dn = \frac{1}{2} \text{erfc}\left(\frac{A}{\sigma \sqrt{2}}\right) \]

- Probability of error for PSK and FSK:
 \[P_e,PSK = \frac{1}{2} \text{erfc}\left(\frac{A}{\sigma \sqrt{2}}\right) \]
 \[P_e,FSK = \frac{1}{2} \text{erfc}\left(\frac{A}{2\sigma}\right) \]

- Comparison of digital systems:
 PSK best, then FSK, ASK and baseband same
Lecture 8

- Information theory
 - Why?
 - Information
 - Entropy
 - Source coding (a little)

(See sections 5.1 to 5.4.2)

Why information theory?

“Why would be the characteristics of an ideal system, [one that] is not limited by our engineering ingenuity and inventiveness but limited rather only by the fundamental nature of the physical universe”

Taub & Schilling

Information

- The purpose of a communication system is to **convey information from one point to another**

- What is information?

- Definition:

\[
I(s) = \log_2 \left(\frac{1}{p} \right) = -\log_2 (p) \quad \text{bits}
\]

Information in symbol \(s\)

Probability of occurrence of symbol \(s\)

Conventional unit of information

Properties of \(I(s)\)

\[
I(s) = -\log_2 (p) \quad \text{bits}
\]

1. If \(p=1\), \(I(s)=0\)

 (symbol that is certain to occur conveys no information)

2. \(0<p<1\), \(\infty<I(s)<0\)

3. If \(p=p_1 \times p_2\), \(I(s)=I(s_1)+I(s_2)\)
Example

- Suppose we have two symbols:
 \[s_0 = 0 \]
 \[s_1 = 1 \]
- Each has probability of occurrence:
 \[p_0 = p_1 = \frac{1}{2} \]
- Each symbol represents:
 \[I(s) = -\log_2(\frac{1}{2}) = 1 \text{ bit of information} \]
- In this example, one symbol = one information bit, but it is not always so!

Sources and symbols

- Symbols:
 - may be binary ("0" and "1")
 - can have more than 2 symbols, e.g. letters of the alphabet, etc.
- Sequence of symbols is random (otherwise no information is conveyed)
- Definition:
 - If successive symbols are statistically independent, the information source is a zero-memory source (or discrete memoryless source)
- How much information is conveyed by symbols?

Entropy

- Definition:
 \[H(S) = -\sum_{k=1}^{n} p_k \log_2(p_k) \]
 where \(S = \{s_1, s_2, \ldots, s_k\} \) is alphabet
 \(p_k \) is probability of occurrence of symbol \(s_k \)
 \(\sum_{k=1}^{n} p_k = 1 \) We're certain that the symbol comes from the known alphabet
- Entropy: average information per symbol

Example – binary source

- Alphabet:
 \[S = \{s_0, s_1\} \]
- Probabilities:
 \[p_0 = 1 - p_1 \]
- Entropy:
 \[H(S) = -\sum_{k=1}^{n} p_k \log_2(p_k) \]
 \[= -(1 - p_1) \log_2(1 - p_1) - p_1 \log_2(p_1) \]
- How to represent (encode) each symbol?
 - let \(s_0 = 0, s_1 = 1 \)
 - this requires 1 bit/symbol to transmit
Example – three symbol alphabet

- **Alphabet:**
 \[S = \{\text{A, B, C}\} \]

- **Probabilities:**
 \[p_A = 0.7, \quad p_B = 0.2, \quad p_C = 0.1 \]

- **Entropy:**
 \[H(S) = -\sum_{i=1}^{3} p_i \log_2(p_i) \]
 \[= 1.157 \text{ bits/symbol} \]

- **How to represent (encode) each symbol?**

 let \(A = 00 \)

 \(B = 01 \)

 \(C = 10 \)

 this requires 2 bits/symbol to transmit

Source coding

- **Amount of information we need to transmit, is determined (amongst other things) by how many bits we need to transmit for each symbol**

- In the binary case, only 1 bit required to transmit each symbol

- In the \{A,B,C\} case, 2 bits required to transmit each symbol

Examples

- **Telephone:**

 Speech waveform 8000 symbols/sec 64000 bits/sec

 System needs to process 64 kb/s

- **Cell phone:**

 Speech waveform 8000 symbols/sec 13000 bits/sec

 System needs to process 13 kb/s
Source vs channel coding

Source coding: minimize the number of bits to be transmitted
Channel coding: add extra bits to detect/correct errors

Source coding

- All symbols do not need to be encoded with the same number of bits
 \(p_A = 0.7, \quad p_B = 0.2, \quad p_C = 0.1 \)
- Example:
 let \(A = 0 \)
 \(B = 10 \)
 \(C = 11 \)

Average codeword length

Definition:
\[
\overline{L} = \sum_{\text{all } k} p_k l_k
\]
- Probability of occurrence of symbol \(s_k \)
- Number of bits used to represent symbol \(s_k \)

Example: \(p_A = 0.7, \quad p_B = 0.2, \quad p_C = 0.1 \)
let \(A = 0, \quad B = 10, \quad C = 11 \)
\[
\overline{L} = 0.7 \times 1 + 0.2 \times 2 + 0.1 \times 2
= 1.3 \text{ bits/symbol}

Source coding

- Use variable-length code words
- Symbol that occurs frequently (i.e., relatively high \(p_k \)) should have short code word
- Symbol that occurs rarely should have long code word
Summary

- Information content (of a particular symbol):

\[I(s) = \log_2 \left(\frac{1}{p} \right) = -\log_2 (p) \text{ bits} \]

- Entropy (for a complete alphabet, is the average information content per symbol):

\[H(S) = - \sum_{\text{all } A} p_i \log_2 (p_i) \text{ bits/symbol} \]

- Source coding:
 How many bits do we need to represent each symbol?
Source coding

- All symbols do not need to be encoded with the same number of bits
- Example:
 \[p_A = 0.7, \quad p_B = 0.2, \quad p_C = 0.1\]
 \[A = 0, \quad B = 10, \quad C = 11\]
 \[\bar{L} = 0.7 \times 1 + 0.2 \times 2 + 0.1 \times 2\]
 \[= 1.3\]
 bits/symbol

Equal probability symbols

- Example:
 \[S = \{A, B\}\]
 \[p_A = 0.5, \quad p_B = 0.5\]
 \[A = 0, \quad B = 1\]

 Requires 1 bit for each symbol

- In general, for \(n\) equally-likely symbols:
 Probability of occurrence of each symbol is \(p = \frac{1}{n}\)
 Number of bits to represent each symbol is
 \[l = \log_2 \left(\frac{1}{p} \right) = \log_2 (n)\]
Unequal probabilities?

Alphabet: \(S = \{s_1, s_2, \ldots, s_K\} \)

Probabilities: \(p_1, p_2, \ldots, p_K \)

Any random sequence of \(N \) symbols (large \(N \)):
\(s_j: N \times p_j \) occurrences
\(s_k: N \times p_k \) occurrences

Particular sequence of \(N \) symbols:
\(S_N = \{s_1, s_2, s_3, s_4, s_5, s_6, \ldots\} \)

Probability of this particular sequence occurring:
\[
p(S_N) = p_1 \times p_2 \times p_3 \times p_4 \times p_5 \times p_6 \times \ldots
\]

\[
= p_1^{n_1} \times p_2^{n_2} \times \ldots
\]

Minimum codeword length

Source Coding Theorem:
For a general alphabet \(S \), the minimum average codeword length is given by the entropy, \(H(S) \).

\[L \geq H(S) \text{ bits/symbol} \]

How can we design an efficient coding scheme?

Huffman coding algorithm

Optimum coding scheme – yields the shortest average codeword length

Sort in decreasing order of probability

Merge the two least probable

Assign 0 and 1 to the two codewords

Is any element the result of merger of two elements?

Append the codeword with 0 and 1

Stop
Example

- Consider a five-symbol alphabet having the probabilities indicated:

 Symbols: \(A, B, C, D, E\)
 Probabilities: \(p_A = 0.05, p_B = 0.15, p_C = 0.4, p_D = 0.3, p_E = 0.1\)

1. Calculate the entropy of the alphabet.
2. Using the Huffman algorithm, design a source coding scheme for this alphabet, and comment on the average codeword length achieved.

Huffman coding algorithm

- Uniquely decodable
 i.e., only one way to break bit stream into valid code words

- Instantaneous
 i.e., know immediately when a code word has ended

Summary

- Source coding theorem:
 For a general alphabet \(S\), the minimum average codeword length is given by the entropy, \(H(S)\).

- Huffman coding algorithm:
 Practical coding scheme that yields the shortest average codeword length
Lecture 10

- How much information can be reliably transferred over a noisy channel?
 (Channel capacity)

- What does information theory have to say about analog communication systems?

(See sections 5.5, 5.6)

Lecture 10 2

Reliable transfer of information

- If channel is noisy, can information be transferred reliably?
- How much information?

Lecture 10 3

Information rate

- Definition:
 \[R = r \cdot H \] bits/sec

 Avg. no. of information bits transferred per second
 Avg. no. of symbols per second
 Avg. no. of information bits per symbol

- Intuition:
 - \(R \) can be increased arbitrarily by increasing symbol rate \(r \)
 - For noisy channel, errors are bound to occur
 - Is there a value of \(R \) where probability of error is arbitrarily small?

Lecture 10 4

Channel capacity

- Definition:
 Channel capacity, \(C \), is maximum rate of information transfer over a noisy channel with arbitrarily small probability of error

Channel Capacity Theorem
If \(R \leq C \), then there exists a coding scheme such that symbols can be transmitted over a noisy channel with an arbitrarily small probability of error
Channel capacity

Channel capacity theorem is a surprising result:
- Gaussian noise has PDF
- This is non-zero for all noise amplitudes
- Sometimes (however infrequent) noise must over-ride signal \(\rightarrow \) bit error
- But, theorem says we can transfer information without error!!

Basic limitation due to noise is on speed of communication, not on reliability

So what is the channel capacity \(C \) ??

Hartley-Shannon Theorem
For an additive white Gaussian noise channel, the channel capacity is:

\[
C = B \log_2 \left(1 + \frac{P_s}{P_N} \right)
\]

Bandwidth of the channel
Average signal power at the receiver
Average noise power at the receiver

Example

Consider a baseband system
- Noise power is:
 \[
P_N = \int_{-B}^{B} \frac{N_o}{2} \, df = N_o B
\]
- Channel capacity:
 \[
 C = B \log_2 \left(1 + \frac{P_s}{N_o B} \right)
 \]

Consider a baseband channel with a bandwidth of \(B=4 \) kHz. Assume a message signal with an average power of \(P_s=10 \) W, is transmitted over this channel which has additive noise with a flat spectral density of height \(N_o/2 \) with \(N_o=10^{-6} \) W/Hz.

1. Calculate the channel capacity of this channel.
2. If the message signal is amplified by a factor of \(n \) before transmission, calculate the channel capacity when (a) \(n=2 \), and (b) \(n=10 \).
3. If the bandwidth of the channel is doubled to 8 kHz, what is the channel capacity now?
Example

\[C = B \log_2 \left(1 + \frac{P_s}{P_N} \right) \]

- More signal power increases capacity, but increase is slow
 Can increase capacity arbitrarily through \(P_s \)

- More bandwidth allows more symbols per second, **but** also increases the noise

- Can show that:
 \[\lim_{B \to \infty} C = 1.44 \frac{P_s}{N_o} \]
 Cannot increase capacity arbitrarily through \(B \)

More comments

- This is capacity of an ideal “best” system
- How can we design something that comes close?
 - Through channel coding, modulation/demodulation schemes
 - But, no deterministic method exists to do it!

Information theory and analog

- Optimum communication system achieves the largest SNR at the receiver output
Optimum analog system

- Maximum rate that information can arrive at receiver:
 \[C_{in} = B \log_2 (1 + SNR_{in}) \]

- Maximum rate that information can leave receiver:
 \[C_{out} = W \log_2 (1 + SNR_{out}) \]

- Ideally, no information is lost:
 \[C_{out} = C_{in} \]

- Equating gives:
 \[SNR_{out} = (1 + SNR_{in})^{B/W} - 1 \]

- For any increase in bandwidth, output SNR increases exponentially

Analog performance

- Assume that channel noise is AWGN, having PSD: \(N_0/2 \)
- Average noise power at demodulator input is: \(P_n = N_o B \)
- SNR at receiver input:
 \[SNR_{in} = \frac{P_T}{N_o B} = \frac{W}{B} \left(\frac{P_T}{N_o W} \right) \]
 - Bandwidth spreading ratio
 - transmitted bw/message bw
- SNR at receiver output:
 \[SNR_{out} = \left(1 + \frac{W}{B} \cdot SNR_{base} \right)^{B/W} - 1 \]

Summary

- Information rate: \(R = r H \) bits/sec

- Channel Capacity Theorem:
 If \(R \leq C \), then there exists a coding scheme such that symbols can be transmitted over a noisy channel with an arbitrarily small probability of error

- Hartley-Shannon Theorem (Gaussian noise channel):
 \[C = B \log_2 \left(1 + \frac{P_s}{P_n} \right) \] bits/sec

- Analog communication systems:
 Information theory tells us the best SNR