Hierarchical Segmentation Schemes for Function Evaluation

Dong-U Lee and Wayne Luk John Villasenor Peter Y.K. Cheung
Department of Computing Electrical Engineering Department Department of EEE
Imperial College University of California Imperial College
London Los Angeles London
United Kingdom USA United Kingdom
{dong.lee, w.luk}@ic.ac.uk villa@icsl.ucia.edu p.cheung@ic.ac.uk

Abstract

This paper presents a method for evaluating funcrions
based on piecewise polynomial approximation with a novel
hierarchical segmentation scheme. The use of a novel hier-
archy scheme of uniform segments and segments with size
varying by powers of two enables us to approximate non-
linear regions of a function particularly well. This parti-
tioning is automated: efficient look-up tables and their co-
efficients are generated for a given function, input range,
order of the pelynomials, desired accuracy and finite preci-
sion constraints. We describe an algorithm to find the opti-
mum number of segments and the placement of their bound-
aries, which is used to analyze the properties of a function
and to benchmark our approach. Our method is illustrated
using three non-linear compound functions, /—log(x),
x log(x) and a high order rational function. We present
results for various operand sizes between § and 24 bits for
Sirst and second order polynomial approximations.

1 Introduction

The evaluation of functions is often the performance bot-
tleneck of many compute-bound applications. Examples of
these functions include elementary functions such as log(x)
and /z, and compound functions such as y/— log(x) and
tan?(x) + 1. Computing these Functions quickly and accu-
rately is a major goal in computer arithmetic.

The evaluation of elementary functions has received sig-
nificant interest [8]. In contrast, there has been little atten-
tion on the efficient approximation of compound funetions
for special purpose applications. Examples of such appli-
cations include Gaussian noise generation [6], channel cod-
ing [3] and Limage registration [11]. In principle, these com-
pound functions can be approximated by splitting them into
several elementary functions, but this approach would result
in long delay, propagation of rounding ermors and possibil-

ities of catastrophic cancellations. Range reduction [8] is
not feasible for compound functions, so highly non-linear
regions of a function need to be approximated. Since we
are looking at the entire function over a given input range,
the advantages of our method increase significantly as com-
pound functions become more complex. We illustrate our
method with the following three functions:

ho= /=loglz) n
o = =zlog(x) 2)
f = 0.0004x + 0.0002 o)

x4 — 1.962% + 1.348z2 — 0.378z + 0.0373

where = is an n-bit number over [0,1) of the form
0.z,,—1..xg. The function f is used in the Box-Muller al-
gorithm for the generation of Gaussian noise [6], and fo
is commonly used for entropy calculation such as mutual
information computation in image registration {11]. Note
that the functions f; and f» cannot be computed for z = 0,
therefore we approximate these functions over (0,1} and
generate an exception when == 0. In this paper, we imple-
ment an n-bit in n-bit out system. However, the position of
the decimal (or binary} point in the input and output formats
can be different in order to maximize the precision that can
be described.

The principal contribution of this paper is a systematic
method for producing fast and efficient hardware function
evaluators for both compound and elementary functions us-
ing piecewise polynomial approximations with a hierarchi-
cal segmentation scheme. The novelties of our work in-
clude:

+ analgorithm for locating optimum segment boundaries
given a function, input interval and maximum error;

e a scheme for piecewise polynomial approximations
with a hierarchy of segments;

« cvaluation of this method with three compound func-
tions;



o hardware architecture and implementation of the pro-
posed method.

The rest of this paper is organized as follows: Section 2
covers background material and previous work. Section 3
explains how our algorithm finds the optimum placement of
the segments. Section 4 presents our hierarchical segmenta-
tion scheme. Section 5 describes our hardware architecture,
Section 6 discusses evaluation and results, and Section 7
offers conclusions and future work.

2 Background

Many applications including digital sighal processing,
computer graphics and scientific computing require the
evaluation of mathematical functions. Applications that
do not require high precision, often employ direct table
look-ups. However, this becomes impractical for precisions
higher than a few bits, because the size of the table is expo-
nential in the input size.

CORDIC has been a popular method for evaluating func-
tions, invelving only shift and add operations. However, it
has an execution time which is linearty proportional to the
number of operands, and is not suitable for applications re-
quiring high accuracy and speed .

Recently, table look-up and addition methods have at-
tracted significant attention. Table look-up and addition
methods use two or mere parallel table look-ups followed
by multi-operand addition. Such methods include the sym-
metric bipartite table method (SBTM) [12] and the sym-
metric table addition method (STAM) [13]. These meth-
ods exploit the symmetry of the Taylor approximations and
leading zeros in the table coefficients to reduce the look-up
table size. Although these methods yield in significant im-
provements in table size over direct look-ups, they can be
inefficient for functions that are highly non-linear.

Piecewise polynomial approximation [10] which is the
method we use in this paper, involves approximating a con-
tinuous function f with one or more polynomials p of de-
gree d on a closed interval [, b]. The polynomials are of the
form

plx) = ec®teizt + i tazte (4
. and with Homer’s rule, this becomes

plr) = ({cax+egr)z+.)r+o (5)
where x is the input. The aim is to minimize a distance
[lp— F1l. Our work is based on minjmax polynomial approx-
imations, which involve minimizing the maximum absolute
error. The distance for minimax approximations is:

P = flloo = max [f(z) —p(x)]. (6)

a<r<b

The minimax polynomial is found in an iterative manner
using the Remez exchange algorithm, which is often used
for determining optimal coefficients for digital filters.

Approximations using uniform segments are suitable for
functions with linear regions, but are inefficient for non-
linear functions, especially when the function varies expo-
nentially. It is desirable to choose the boundaries of the
segments to cater for the non-linearities of the function.
Highly non-linear regions may need smaller segments than-
linear regions. This approach minimizes the amount of stor-
age required to approximate the function, leading to more
compact and efficient designs. We use a hierarchy of uni-
form segments (US) and powers of two segments {P25):
segments with the size varying by increasing or decreasing
powers of two.

3 Optimum Placement of Segments

This section introduces a method for computing the op-
timum placement of segments for function approximation.
We shall use it as a reference in comparing the uniform
segment method and our proposed method, as shown in
Table 2 (Section 4). Let f be a continuous function on
[a,8], and let an integer m > 2 specify the number of
contiguous segments into which [a, &] has been partitioned:
¢ =1y < g < ... <y, = b Letdbe anon-negative
integer and let P; denote the set of functions p; whose poly-
nomials are of degrees less or equal to d. Fori = 1,...,m,
define

hi(u;—1,1u;) = min  max
2( = l) Pi€P us <z<u,

Sflzy=pilz)l. D
Let €100 = emaz(u) = maXj<i<m hi(”i—l: ui)- The seg-
mented minimax approximaticn problem is that of minimiz-
ing €rnqz over all partitions u of [a, b]. If the error norm is
a non-decreasing function of the length of the interval of
approximation, the function to be approximated is contin-
uous and that the goal is to minimize the maximum error
norm on each interval, then a balanced errer solution is op-
timal; the term *‘balanced error” means that the error norms
on each interval are equal [5]. One class of algorithms to
tackle this problem is based on the remainder formula [2]
and assumes that the (d + 1)th derivative of f is either of
fixed sign or bounded away from zero. However, in many
practical cases this assumption does not hold [9]. Often, the
(d + 1}th derivative may be zero or very small over most
of [a, b] except a few points where it has very large values.
This precisely is the case with the non-linear functions we
are approximating.

We have developed a novel algorithm to find the opti-
mum boundaries for a given f, [u, ], d, emq, and unit in
the last place (ulp). The ulp is the least significant bit of
the fraction of a number in its standard representation. For

4,93__



instance, if a number has F* fractional bits, the ulp of that
number would be 27, The ulp is required as an input, since
the input is quantized to n bits. The MATLAB code for the
algorithm is shown in Figure 1. The algerithm is based on
binary search and finds the optimum beundaries over [a, 4.
We first set 1 = ¢ and x2 = b and find the minimax ap-
proximation over the interval [x1, z2]. If the error e of this
approximation is larger than e,,q;, we set ©2 = 22/2 and
obtain the error for [a, z2]. We keep halving the interval of
approximation until e < e,,,.. At this point we increment
x2 by a small amount and compute the error again. This
small amount is either (ahs(z2 — prev_z2)}/2 or the ulp,
whichever is smaller (prev.«c2 is the value of 22 in the pre-
vious iteration). When this small amount is the ulp, in the
next iterations 22 will keep oscillating between the ideal
(un-quantized) boundary. We take the x2 whose eror e is
just below eqz as our boundary, set x1 = 2 and z2 = b,
and move on to approximating over [x1,:x2]. This is per-
formed until the error over [x1, 2] is less than or equal to
€maz and x2 has the same value as b. We can see that the
boundaries up to the last one are optimum for the given ulp
(the last segment is always smaller than its optimum size,
as it can be seen in Figure 2 for f;). Although our segments
are not optimum in the sense that the errors of the segments
are not fully balanced, we can conclude that given the error
constraint e,,,, and the ulp, the placement of our segment
boundaries is optimum. This is because the maximum er-
ror we obtain is less than or equal to e,,,, and this is not
achievable with fewer segments.

The results of our segmentation can be used for various
other applications [9] including pattemn recognition, data
compression, non-linear filtering and picture processing. In

- the ideal case, one would use these optimum boundaries to
approximate the functions. However, from a hardware im-
plementation point of view, this can be impractical. The
circmt to find the nght segment for a given input could be
complex, hence large and siow. Nevertheless, the optimum
segments give us an indication of how well a given segmen-
tation scheme matches the optimum segmentiation. More-
over, they provide information on the non-linearities of a
function. Figure 2 shows the optimum boundaries for the
three functions in Section 1 for 16-bit operands and sec-
ond order approximations. We observe that f, needs more
segments {n the regions near 0 and 1, f, requires more seg-
ments near 0 and f5 requires more segments in the two re-
gions in the lower and upper half of the interval.

Figure 3 compares the ratio of the number of optimum
segments required by first and second order approximations
for 8, 12, 16, 20 and 24-bit approximations to the three
functions. We can see that savings of second order approx-
imations get larger as the bit width increases. However one
should note that, whereas first order approximations involve
one multiply and one add, second order approximations in-

% Inputs: a, b, d, £, e _max, ulp
% Output: u(}

Xl = a; x2 = b; m = 1; done = 0; check x2 = 0; prev_x2 = a;
azcillating = 0; done = 0;

while (“done)
error = minimax{f,d,xl,x2,ulp);
if (error «= req_errox)
if {x2 == b}
uli) = x2;
done = 1;
else
if [oseillating)
ufm) = x2;
rrev_x2 = x2;
x1 = X25
X2 = b;
m = m+l;
osgcillating = 0;
else
change_x2 = abs{xZ-prev_x2)/2;
prev _x2 = X2;
if (change_x2 > ulp)
x2 = %2 + change _x2;
alae
x2 = %2 + ulp;
end
end
end
else
change_x2 = abs(xz-prev_x2}/2;
prev_x2 = x2;
if {(change x2 > ulp)
%2 = x2 - change x2;
elae
X2 = x2 - ulp;
if (check x2 == x2)
oscillakting = 1;
else
chaeck x2 = x2;
end
end
end

Figure 1. MATLAB code for finding the opti-
mum boundaries.

volve two multiplies and two adds. Therefore, there is a
tradeoff between the lock-up table size and the circuit com-

plexity.
4 Hierarchical Segmentation

Let a segmentation scheme A € {US,P2S} where
US = uniform segments and P28 = powers of two seg-
ments. The proposed segment hierarchy H is of the form
Aa(A1(...(Ax21))) where A is the number of levels in the
hierarchy. This structure can be implemented in a cascaded
look-up table structure, where the output of one table is used
as the address of the next. Let ¢ = 0..\. The input : is split
into A + 1 partitions called 8;. Let v; denote the bit width
and s; denote the number of segments of the 7th partition ;.
Therefore, n = z;\:o 1;, where n is the number of bits of
the input z. Then s; can be defined with the following set

__94._



7,(x)

01

Figure 2. Optimum locations of the segments
for the three functions in Section 1 for 16-hit
operands and second order approximation.

of equations:

2%, if A; =US (8
if A; =P25 (¢2)]

8;
s < 2y ’

For US, it is clear that 2% segments can be formed, since
uniform segments are addressed with v; bits. However for
P28, it is not so clear why up to 2v; segments can be formed.

Consider the case when Ag = P2S,n = 8, vp = 5 and
v; = 3. When »; = 5§ it is possible to cobstruct 10 P2S
ag illustrated in Table 1. Notice that the segment sizes in-
crease by powers of two till “01111111” (end of location
4) and start decreasing by powers of two from “10000000”
(beginning of location 5} until the end. It can be seen that
the maximum number of P25 that can be constructed with
d; is 2v;. Fewer segments can be obtained by omitting parts
of the table. For example with locations 0-4, one can have
segments that only increase by powers of two. To compute
the segment address for a given input &;, we need to detect
the leading zeros for locations 0-4, and leading ones for lo-
cations 5-9. A simple cascade of AND and OR gates and a
1-bit multi-operand adder can be used to find the segment
address for a given input 4; as shown in Figure 4. The ap-
propriate taps are taken from the cascades depending on the
choice of the segments and are added to work out the P25

@

®> @ B BB &

First Order / Second Order
A

8 10 12 14 16 18 20 22 24
Operand Bit Width

Figure 3. Ratio of the number of optimum seg-
ments required for first and second order ap-
proximations to the three functions.

Table 1. The ranges for P2S addresses for
Ay = P28, n =8, vp = 5 and v; = 3. The five
P2S address bits J; are highlighted in bold.

P28 address range

0 00000|000~00000|111
00001/000~00001(111
0001{0000~0001]1111
001/00000~001}11111
01[000000~01|2021111
14]000000~10]111111
110/00000~110]21111
1110[/0000~1110j2111
11110|000~11110]|111
11111[000~11111111

LT-RE- N - T R A S

address. For P2S that increase and decrease by powers of
two, the full circuit is used, and for P25 that decrease only to
the left side (P2SL), just the AND gates are used. Similarly
for P2S that decrease to the right side (P2SR), the cascade
OR gates are used. These circuits can be pipelined and a
circuit with shorter critical path but requiring more area can
be used [4]. Note that in the last partition, d, is not used
as an address. If A; = US, then 4, uses the next set of
bits v;41. However if A; = P28, then the location of d;44
depends on the value of 4;. Let j denote the P2S address,
where 7 = 0..5; ~ 1. From the vertical lines in Table I, we
observe that §;;1 should be placed after ¢ for j = 0 and
j=s;—1,aftera;_; forj = 1to j = (s;/2)— 1, and after
ty_g_jforj=s;/2t0j =5 -2

In principle it is possible to have any number of lev-
els of nested A, as long as Z;\=o v; < n. The more lev-



* ]
l

P23 Address

Figure 4. Circuit to calculate the P2S address
for a given input é;, where §; = a,_1a,-2..uq.
The adder counts the number of ones in the
output of the two prefix circuits.

els are used, the closer the total number of segments m
will be to the optimum. However as A (the number of lev-
els) increases the partitioning problem becomes more com-
plex, and the cascade of look-up tables gets longer, increas-
ing the delay to find the final segment. Therefore there is
a tradeoff between the partitioning complexity, delay and
m. Our tests with the functions we consider in this paper
show that the rate of reduction of m decreases rapidly as
A increases. A = 2 gives a very close m to the optimum
with acceptable partitioning complexity and delay. More-
over, A > 2 gives diminishing retums in terms of small
improvement in m with high partitioning complexity and
long delays. Therefore, in this paper we limit ourselves to
A = 2, which consists of one outer segment Ay and one
inner segment A;. P2S is used as the outer segment if the
function varies exponentially in the beginning and the end
of the interval. P2SL and P2SR are used as the outer seg-
ment when the function varies exponentially at the begin-
ning or at the end respectively. US is used if the function is
non-linear in arbitary regions. Although we limit ourselves
with A = 2, higher levels of hierarchies could be useful
for certain functions. The hierarchy schemes we have cho-
sen are H = {P25(US), P2SL(US}, P2SR(US), US(US)}.
These four schemes cover most of the non-linear functions
of interest.

‘We have implemented a hierarchical function segmenter
(HFS) in MATLAB, which deals with the four schemes.
The program takes as inputs the function f to be approx-
imated, input range, operand size », hierarchy scheme H,
number of bits for the outer segment wy, the requested out-
put eITor €,,,4z, and the precision of the polynomial coef-
ficients and the data paths. HFS divides the input interval
into outer seginents whose boundaries are determined by
H and vg. HFS finds the optimum number of bits ; for
the inner segments for each outer segment, which meets the
requested output error constraint. For each outer segment,
HFS starts with 1, = 0 and cotmnputes the error e of the ap-

Number of Segments

Figure 5. Variation of total number of seg-
ments against v, for a 16-bit second order
approximation to f;.

proximation. If € > e, then vy is incremented by one
and the error e for each inner segment is computed, i.e. the
number of inner segments is doubled in every iteration. If
it detects that € > e,,4, it increments v; again. This pro-
cess is repeated until ¢ < €naz for all inner segments of
the current cuter segment. This is the point HFS obtains
the optimum number of bits for the current outer segment.
Once this process is performed forall outer segments, HFS
generates the a look-up table containing the polynomial co-
efficients or each of the segments. It also generates a report,
which contains the total number of segments m, maximum
error, percentage of exactly rounded results, and the sizes of
the multipliers, adders and look-up tables.

Experiments are carried out to find the optimum number
of bits for the outer segment vg. Figure 5 shows how the
total number of segments varies with vg for 16-bit second
order approximation to f3. We can observe the figure of U
shape, and there is a point at which g is optimum, which
13 five bits in this particular case. When vy is too small,
there are not enough outer segments to cater to local non-
linearities. When wy is too large, there are too many unnec-
essary outer segments. Note that when »y = 0, it is equiv-
alent to using standard uniform segmentation. Figure 6
shows the segmented functions obtained from HFS for 16-
bit second order appreximations to the three functions. It
can be seen that the segments produced by HFS closely re-
semble the optimum segments in Figure 2. Table 2 shows
a comparison in terms of numbers of segments for various
second order approximations for uniform, HFS, and the op-
tumum number of segments. Double precision is used for
the data paths and the output for this comparison. We can
see that HE'S is significantly more efficient than using uni-
form segments, and the difference between the optimum
ones are around a factor of 1.7. Looking at the results for
24-bit approximation to fi, we can see that HFS performs



T L '
as 0.6 0.7 0.8 09

1 4]

Figure 6. The segmented functions generated
by HFS for 16-bit second order approxima-
tions. fi, f; and f; employ P28(US), P2SL(US)
and US(US) respectively. The black and grey
vertical lines are the boundaries for the cuter
and inner segments respectively.

worse than average. This is due to the fact that insufficient
bits are left for 4, (19 bits are already used for dg).

An interesting aspect of our approach is that it could be
used to accelerate applications that have involve pure float-
ing point hardware such as software applications. This is
because our method computes compound functions at once
using polynomial approximations, instead of decomposing
the compound functions into sub-functions and computing
the sub-functions one by one.

5 Architecture

The architecture of our function evaluator for HFS is
shown in Figure 7. The P25 unit performs the P2S address
calculation (Figure 4) on dg if 6y is of type P2S (Ag = P2S).
If Ay = US, & is bypassed. The bit selection unit selects
the appropriate bits from the input based on the values of
1, and v;. This variable bit selection is implemented using
a barrel shifter. There are two look-up tables: one used for
storing the v; values and the offset (ROMO), and the other
storing the polynomial coefficients (ROM1). The offset in
ROMO stores the starting address in ROM! for the different

Table 2. Number of segments for second or-
der approximations to the three functions.
Results for uniform, HFS and optimum are
shown.

functien | operand uniform HFS | optimum | HFS
width | segments | sepments | sepments | foptimum

f Y ] 517 . 4l 125

12 1,024 23 {5 L33

16 32,768 72 44 L.64

20 524,288 218 126 173

24 16,777,216 742 287 2.59

fz 8 8 5 | 125

) 12 128 15 10 1.50
16 2,048 44 26 1.69

20 32,768 124 66 1.88

24 524,228 315 167 .89

fa 8 64 20 10 2.00

12 256 41 24 17

16 512 107 591 LBl

20 1,024 234 151 1.55

24 2,048 573 379 1.51

8g values. The depth 59 of ROMO is defined in Equations
(8) and (9), and the depth of m of ROM1 is the total number
of segments. The size of the two look-up tables are defined
as follows:

ROMO = {[logy(max(v1))] + (10)
[log,(max{offset))]} x so
d

ROMI = 3 wixm an

i=0

In practice, ROMO is significantly smaller than ROM],
since the depth is bounded by vg and the entries v, and
offset are small. There is an interesting tradeof¥ factor for
ROML. the wider the widths of the coefficients 1, the fewer
segments m are needed, since the approximaticns will be
more accurate. However, if w is over a certain threshold, it
has negligible effect on m. It is desirable to find the right
widths that minimize the total ROM size.

Let &; denote the the boundaries of the outer segments
where j = 0..m — 1 and § = max(b; — b;;,) which is the
maximum width of the outer segment. Instead of approxi-
mating each interval over [b;, ;11 ), we perform the trans-
lation & = x — b;, which translates the interval [b;, b;11) to
(0, 8). This form reduces the widths of the data paths, since
£ € [0, 8) requires fewer bits to represent than x.

Highly non-linear functions such as f; which have expo-
nentially varying regions to infinity, have a large dynamic
range on the coefficients. For instance, the largest coeffi-
cient cz of a 24-bit second order approximation to f; is in
the order of 1012, In such cases, floating-point arithmetic is
needed. For fo and f;, where the ranges of the coefficients



o index v, offset A v,

selection
unit

o
Syt
O
index ¢, Cyy C, G
0
1
m-1
W, g W, W, %
X +
X
4
L )+

pix)

Figure 7. HFS function evaluator architecture
for A = 2 and degree J approximations. Note
that '’ is a concatenation operator.

are relatively small, standard fixed point arithmetic is used.

For typical applications targeting FP(iAs, the size of the
two ROMs are small and can be implemented on-chip using
distributed RAM or block RAM. Often the multiplier would
be the part taking up a significant portion of the area. The
size of the multipliers depend on the width of v, +v5 and the
coefficients. Recent FPGASs, such as Xilinx Virtex-1I or Al-
tera Stratix devices, provide dedicated hardware resources
for multiplication which can benefit the proposed architec-
ture.

6 Evaluation and Results

Table 3 compares our approach with direct table look-
up, SBTM and STAM for 16 and 24-bit second order ap-
proximations to fo. We observe that table sizes for direct
look-up approach are not feasible when the accuracy re-

Table 3, Comparison of direct look-up, SBTM,
STAM and HFS for 16 and 24-bit second order
approximation to f,. The subscript for STAM
denotes the number of tables used. SBTM is
equivalent to STAM,.

operand | method table size | compression | multiplier | adder
width (bits)

16 direct 1,048,576 227 - .
SBTM 29,656 6 - 1

STAM,4 16,384 4 - 3

HEFS 4,620 1 2 3

24 direct | 402,653,184 9,955 - -
SBTM 2,293,760 57 - 1

STAMe 491,520 12 5

HFS 40,446 1 2 3

quirement 1s high. SBTM/STAM significantly reduce the
table sizes compared to the direct table look-up approach,
at the expense of some adders and control circuitry. How-
ever, we can see that the table size for HFS is 4 to 12 times
smaller than SBTM/STAM, at the expense of two multi-
pliers and three adders, hence higher latency. The differ-
ence between HFS and other methods gets larger as the
bit width increases. HSF achieves smaller table size than
SBTM/STAM at the expense of more complexity in terms
of multipliers and adders, and the difference in table size
gets larger as the accuracy requirement increases. For ap-
plications that require relatively low accuracies and low la-
tencies, SBTM/STAM may be preferred. For high accuracy
applications that can tolerate more latencies, HFS would be
more appropriate.

A variant {7] of our approximation scheme to fj
and trigonometric functions, with one level of P2S and
US(P2S), has been implemented and successfully used for
the generation of Gaussian noise samples [6]. Table 4 con-
tains results for f» and f3 with 16 and 24-bit operands and
second otder approximation. The designs have been im-
plemented with Xilinx Systemn Generator, and are mapped
and tested on a Xilinx Virtex-II XC2V4000-6 FPGA. The
precision of bit width and the data paths have been opti-
mized to minimize the size of the multipliers and look-up
tables. The design is fully pipelined generating a result ev-
ery clock cycle. Designs with lower latency and clock speed
can be obtained by reducing the number of pipeline stages.
The designs have been tested exhaustively over all possible
input values to verify that all outputs are indeed faithfully
rounded. Although we have not synthesized the designs for
SBTM and STAM, we estimate that they will take signif-
icantly less area in terms of slices than HFS (since only



Table 4. Hardware synthesis results on a Xil-
inx Virtex-ll XC2V4000-6 FPGA for 16 and 24-
bit second order approximations to f, and f;.

function | operand | speed | latency | slices | block block
width | (MHz) | (eycles) RAMs | multipliers
fa 16 153 13 483 1 4
24 135 14 871 2 10
fa i6 198 12 234 1 3
24 157 13 | 409 | 3 4

adders and some control circuity are required, and adders

are efficiently implemented on Xilinx FPGAs using fast

carty chains), but at the expense of more block RAM us-
age. The difference of block RAM usage between HFS and
SBTM/STAM will get more significant as the accuracy re-
quirement increases as shown in Table 3.

7 Conclusion

We have presented a novel method for evaluating func-
tions using piecewise polynomial approximatiens by with
an efficient hierarchical segmentation scheme. An algo-
rithm that finds the optimum segments for a given func-
tion, input range, maximum error and ulp has been pre-
sented. The four hierarchical schemes P2S(US), P2SL(US),
P2SR(US) and US(US) deal with the non-linearities of
functions which occur frequently. A simple cascade of
AND and OR gates can be used to rapidly calculate the
P2S address for a given input. Results show the advantages
of using our hierarchical approach over the traditional vni-
form approach. Compared to other popular methods, our
approach has longer latency and more operators, but the
size of the look-up tables are considerably smaller. Current
and future work includes extending the hierarchical func-
tion segmenter (HES) to cover functions with twe variables,
floating point arnthmetic implementation and autornating
the optimization of the widths of coefficients and data paths.
We will also look at how HFS can be used to speed up ad-
dition and subtraction functions in logarithmic number sys-
tems, which are highly non-linear.

Acknowledgment

The authors thank Altaf Abdul Gaffar, Jun Jiang, Shay
Ping Seng, Suk-Hyun Kum and Su-Ho Choi for their as-
sistance. The support of Celoxica Limited, Xilinx Inc., the
U.K. Engingering and Physical Sciences Research Council
(Grant number GR/N 66599 and GR/R 31409}, and the U.S.
Office of Naval Research is gratefully acknowledged.

References

[1] D. Das Sarma and D.W. Matula, “Faithful bipartite
rom reciprocal tables”, Proc. 12th IEEE Symp. on
Computer Arithmetic, pp. 17-28, 1995,

[2] R.E. Esch and W.L. Eastman, “Computational meth-
ods for best spline approximation”, J. of Approx. The-
ory, vol. 2, pp. 85-96, 1969.

[3] C. Jones, E. Vallés, M. Smith and J. Villasenor, “A
high throughput low complexity deceder architec-
ture for irregular LDPC codes”™, Proc. IEEE Military
Comm. Conf. (MILCOM), 2003.

[4] R.E. Ladner and M.J. Fischer, “Parallel prefix compu-
tation”, J. of the ACM, vol. 27, no. 4, pp. 831-838,
1980.

[5] C.L. Lawson, “Characteristic properties of the seg-
mented rational minimax approximation problem”,
Numer. Marth., vol. 6, pp. 293-301, 1964.

[6] D. Lee, W. Luk, J. Villasenor and PY.K. Cheung, “A
hardware Gaussian noise generator for channel code
evaluation”, Proc. IEEE Symp. on Field-Prog. Cust.
Comput. Mach., pp. 69-78, 2003,

[7] D. Lee, W. Luk, J. Villasenor and P.YK. Cheung,
“Hardware function evaluation using non-linear seg-
ments”, Proc. Field-Prog. Logic and Applications,
LNCS 2778, Springer-Verlag, pp. 796-807, 2003.

18] JM. Muller, Elementary Functions: Algorithms and
Implementation, Birkhauser Verlag AG, 1997.

[9] T. Pavlidis, “Waveform segmentaticn through func-
tional approximation”, IFEE Trans. on Comput.,
~vol. C-22, no. 7, pp. 689-697, 1973.

18] JR. Rice, The Approximation of Functions, vol. 1,2,
Addison-Wesley, 1964, 1969.

[11] D. Rueckert, L1 Sonoda, C. Hayes, D.L. Hill,
M.O. Leach and D.J. Hawkes, “Nonrigid registra-
tion using free-form deformations: application to
breast MR images”, [EEE Trans. on Medical Imaging,
vol. 18, no. 8, pp. 712-720, 1999.

[12] M.J. Schulte and J.E. Stine, “Symmetric bipartite ta-
bles for accurate function approximation”, Proc. 13th
IEEE Symp. on Comput. 4rith., vol. 48, no. 9, pp. 175-
183, 1997. :

{13] J.E. Stine and M.J. Schuite, “The symmetric table ad-
dition method for accurate function approximation”,
J. of VLSI Signal Processing, vol. 21, no. 2, pp. 167-
177, 1999,



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


