High-level Language Extensions for Run-time Reconfigurable Systems

T.K. Lee, A. Derbyshire and W. Luk
Department of Computing
Imperial College London
{tk197, arad, wl}@doc.ic.ac.uk

Abstract

This paper presents high-level language extensions for
designs that can be reconfigured af run time. Such ex-
tensions provide a unified framework for instantiating and
controlling reconfigurable hardware blocks. Our frame-
work involves capturing functional blocks at the task level,
with language constructs for describing run-time reconfig-
urable tasks, and dynamic datatypes for describing run-
time parametrisable designs. Two compilation paths, one
mvolving the Handel-C system and the other involving the
RT Pebble tools, have been developed. The effectiveness of
our approach has been evaluated using designs for shape-
adaptive template matching and network firewall.

1 Introduction

Dynamic optirnisation based on hardware specialisation
at run time can improve performance and reduce resource
usage [9]. This technique has been shown to benefit many
applications, such as cryptography [7], image processing
4] and networking [11].

Hardware design tools have been developed to facili-
tate exploitation of rup-time reconfiguration. For instance,
the Lava system uses a client-server architecture to enable
rapid generation of configuration bitstreams remotely [9].
The Lava language provides primitive components to allow
circuits to be described as blocks. Such hardware blocks
can be instanced and placed. Lava, however, is intended for
producing high-quality structural designs. Another system,
JHDL [1], provides an object-oriented model to manage re-
configurable resources. Circuits are developed in an object
hierarchy. JHDL supports run-time and partial configura-
tion. A single description can integrate both the software
simulation and hardware execution. '

Both Lava and JHDL are fine for capturing reconfigu-
ration at the hardware-logic level of abstraction. This pa-
per proposes an approach complementary to their work:
adopting language extensions that enable the description
of run-time reconfigurable designs and their run-time con-

P.Y.K. Cheung
Department of Electrical Engineering
Imperial College London
p.cheung@imperial.ac.uk

trol in a single representation. This approach should also
provide us an abstraction that facilitates re-use of run-time
parametrisable designs [5].

The contributions described in this paper include:

e unified language extensions for specifying mn-time
parametrisable designs, run-time reconfiguration and
the corresponding run-time control;

* two compilation paths that support the proposed lan-
guage for designs with and without run-time reconfig-
uration;

» case studies involving run-time parametrisable de-
signs for video searching and for network firewall us-
ing our high-level description language.

2 Framework overview

Figure 1 shows an overview of our framework for de-
veloping run-time reconfigurable designs with a high-level
description language. There are four design objectives:
{1} to provide abstractions for systems that involve hard-
ware software co-operation; (2) to allow run-time reconfig-
uration to be captured explicitly in a high-level language;
(3) to support the inclusion of dynamic components, such
as run-time parametrisable cores, in a design; (4) to pro-
vide a unified description for the instantiation and run-time
control of reconfigurable hardware blocks.

Our approach uses a single uniform C-like description,
RT C, to accomplish the task of specifying hardware de-
signs and seftware host controls. We adopt a simple model
in which functional operations, for both the hardware and
the software, are described in task blocks. This feature re-
duces the effort required in performing manual hardware
software partitioning.

In addition, the same description can be used to spec-
ify both a static functional design and its run-time be-
haviour. Specialised constructs are provided for schedul-
ing run-time reconfiguration. Run-time parametrisation is
supported through the introduction of a run-time parameter

—144—

HDIL. — EDIF —* Imtial bitstream

RTC =——= RTCoutra] -————» Control _, Racf)nﬁg}nminn - Fu:]lA:):Paninl
Program interface itstream
l _I—bﬂusl control —[—' T
RTP corc

Figure I: Design flow of our framework.

type. The ability to acquire run-time parametrisable cores
is achieved through the use of an interface.

A top-level host control facility is introduced for coordi-
nating hardware and software operations, monitoring run-
time reconfiguration, and updating a design according to
the run-time parameters. Optimisation control through the
use of constraint expressions is also supported.

The design flow contains two paths: (1) The hardware
part of a design is extracted from the high-level description
and will then be translated to a low-level hardware descrip-
tion language (HDL). This low-level HDL will be used to
produce an initial bitstream using main-stream hardware
synthesis tools. (2) The software host control and the run-
time control information are deduced from the specifica-
tion requirements and will then be used to create a control
program. Device specific reconfiguration interface will be
used to generate partial bitstreams if desired.

Our focus is on run-time reconfiguration language ex-
tensions and their associated run-time control require-
ments. We follow a simple language model. The language
supports C-style operations on base data type with an ar-
bitrary data width size. In addition, it allows specifying
operations that make wse of hardware performance, such
as parallel processing.

We treat Handel-C as a language to be extended. We
test our designs through a modified version of a low-level
hardware description language Pebble {3], the Handel-C
language and the run-time reconfiguration interface JBits.

3 Language extensions

This section discusses the issues in extending a high-
level language to describe run-time reconfiguration. The
language should allow designers to explicitly specify the
reconfiguration requirements. At the same time, it shoutd
provide abstraction from tedious low-level control mech-
anisms. The purpose is to enable designers to control re-
configuration at a high level, while freeing them from low-
level considerations.

Our high-level language unifies hardware design and
software host control in a single description. Functional
operations are structured into task blocks. There are
three types of tasks. Run-time reconfigurable tasks are

those specified in a reconfigurable construct. Run-time
parametrisable tasks are those that contain ene or more dy-
namic data type. Static tasks are those that do not fall into
the previous two categories.

We describe a task as the smallest unit of a hardware
functional block that can be reconfigured. It would be pos-
sible to allow reconfiguration down to the expression or
data item levels. However, every reconfiguration incurs an
overhead of reconfiguration time and keeping track of the
resource usage. Therefore, it is a trade-off between the ef-
ficiency in manipulating a larger hardware block and the
flexibility of identifying a smaller logic element.

A task is basically similar to a C function but with sev-
eral additional restrictions. A task has no return type and
does not return any value, There is also no global variable
allowed within a task description. These restrictions are
required, in order to facilitate an efficient hardware soft-
ware partitioning, and optimisation in processing of several
tasks in parallel.

To allow a task to communicate with another task or
with a sofiware host, the argument list is used. Data flow
into and out of a task is specified in the argument list. There
are two classes of argument: either in only, or in and out.
The former class allowes a task to receive data. While the
latter is mainly for sending data, it can also be used as a
data input similar to a pointer to a memory location in stan-
dard C. Although the communications are synchronous in
nature, buffering is still employed to allow asynchronous
paraliel processing. On-board SRAMs are used to buffer
large quantity of data such as a video image, while on-chip
registers are used for small amount of data.

A task is started when the host processing encounters a
reference of the task in a design description. A task is ter-
minated, when it is out of an execution scope, for instance,
at the end of each iteration of a for loop.

A task is described by using the TASK functional class
specifier. To indicate that a data type is dedicated for ir
and out, an & sign is used after the data type specifiers in an
argument list. Figure 2 shows an example task description.

Unlike a C function, which is shared by every instance
that it is used, a task is not shared by default. Each use
of a task in different parts of a design description will in-
stantiate a different instance of the corresponding hardware
block. However, repeated use of the same task, such as in a
loop, will not instantiate another instance. By not sharing
an instance of a task, it is possible to allow parallel process-
ing on different instances. To allow a task to be shared, the
shared qualifier can be used before the TASK keyword.

Each instance of a task is translated into a correspending
hardware block in the low-level language. Notice that any
statement that is not in a task block can be taken as software
execution code in the host control.

—145—

TASK taskid(int 8 argl, int& 8 arg2) {
// do something
1
(a} An example task description

argl arg2
2R taskad 2

{b) A block-level view of (a)

Figure 2: This example describes the task taskid, which
has two argumenits. The first argument arg/ is of type int
and is used as data in. The second argument arg?2 is also of
type int and is used as data out. Both these two arguments
have a data width size of 8 bits.

RECQMF syne taskarrid[arrsize]:
{a) An example reconfigurable task array

RECOMNF #ync struct taskstructid {
taskoidl. ..} 7

raskNidl. ..} ;
}
{b} An example reconfigurable task struct

RECOHY wync unian taekunionid {
taskoid{. .};

:a;kﬂidf.,,l;
3
(c) An example reconfigurable task union

Figure 3: Examples of reconfiguration construct.

4 Reconfiguration constructs

To allow designers to explicitly specify reconfiguration,
we introduce three different classes of reconfiguration con-
struct. Each class provides different types of performance
consideration and flexibility in specifying reconfiguration.
A designer has control over which part of a design is to be
reconfigured, when the reconfiguration will occur, and how
the reconfiguration is to be carried out. These constructs
are characterised by the specifier RECONF. Figure 3 shows
some examples of reconfiguration construct. Figure 4 il-
lustrates a task reconfiguration.

All the tasks within the same construct are suppesed to
share virtual hardware over tiine. The resources concealed
by a particular task will be released, if a reconfiguration of
another task from the same construct is required. When a
description encounters a reference to a task that is not al-
ready in hardware, a run-time reconfiguration will be initi-
ated. Hence, a designer can explicitly specify the schedul-
ing of task reconfiguration in a design description.

A task assigned as the first element of a reconfiguration
construct is considered as the default task. A default task
will form part of the initial bitstream, and will act as a place

Dexign deseription Hardwan:
- Resource relese

centrol

Tusk list ton]

ekl

—
skl
skl |

- wskl
sk [l

Figure 4: An illustration of task reconfiguration. When
a host processing encounters a reference to fask! in the
design description at run time, it initiates a reconfiguration,
The corresponding bitstream will then be uploaded to the
hardware.

bitstreum

holder on the hardware for all the tasks in the same con-
struct. When a reconfiguration is specified, the resources
concealed by the default task will be released and displaced
by the upcoming task. Since a default task is already in
the initial bitstream, it therefore can be used immediately
without reconfiguration delay, provided that the task has
not been displaced. .

The optional sync type qualifier requests a synchro-
nization to be performed at both the beginning and the end
of a task. A blocking communication is conducted be-
tween a hardware task and the software host. Each time
before a task is started, it waits until the software host has
sent a synchronization signal. Similarly, after the task has
finished its processing, it will also send a synchronization
signal to the blocked software host.

Tasks that are not assigned to any one of these three con-
structs imply that they are static, except those involving the
dynamic data type that will be discussed later in this sec-
tion. Static tasks will not be subjected to reconfiguration.

A reconfiguration construct will be translated to a list of
hardware blocks in the low-level HDL. Appropriate anno-
tations, which indicates reconfiguration information, will
be added to the HDL description. A separate description of
the corresponding run-time requirements is also produced
for the host control.

Reconfigurable task array. This construct, see Fig-
ure 3(a), provides a syntactically convenient way to specify
a list of tasks. A parameter can be set to a default value,
so that it will behave as a task struct or as a task union. A
reconfigurable task array is similar to a C function-pointer
array. [t maintains a list of task identifiers. Unlike a C
function-pointer array, it does not require an identical func-
tion signature among the instances in an array, This can be
done because the array only maintains a list of the task
identifiers, and they are verified against the corresponding
task declarations during the construction of the array. In
addition, task identifiers are not allowed to be overloaded
as in C++, so the function arguments are not necessary.
Therefore, a task array can have instances with different
argument lists. To use the array identifier as an alias of

—146—

the task identifier, the array index must be a compile-time
constant in order to verify the task signature. Otherwise, if
a variable array index has to be used, all the tasks within
the same recenfigurable task array must have an identical
signature.

Reconfigurable task struct. This construct, see Fig-
ure 3(b), maintains a set of task identifiers, and allows sev-
eral tasks within the same construct to be simultaneocusly
active on the hardware. This is to say a logical static re-
configuration using multiplexor switching is performed. A
physicat dynamic reconfiguration is carried out when more
space is required by displacing out an instance of task on
the hardware. :

This is analogous to the memory paging mechanism in
operating systems. Bookkeeping is required to keep track
of which tasks are on the hardware. A parameter is defined
to indicate the maximum number of tasks in a construct
that can be allowed simuitancously on the hardware. Dif-
ferent strategies can be used to select which task is to be
replaced. For example, first-in first-out or least frequently
used. In addition, different strategies can also be used to
decide when a task is loaded. For example, pre-load as
many tasks as possible, or load when first use. More so-
phisticated strategies, such as statistical profiling or specu-
lative pre-fetching, could also be used. It is however, due to
the reconfiguration overhead, complicated strategies may
not often be justified.

Situations that may favour the use of this construct oc-
cur when the size of the tasks are in similar order and there
is extra space to accommodate an additional task on hard-
ware. This is because in such cases, the scheduling and
space requirement of the tasks can be more easily calcu-
lated at compile time.

Reconfigurable task union. This construct, see Fig-
ure 3(c), explicitly specifies that all the tasks described in
the construct are mutually exclusive. This indicates that a
physical dynamic reconfiguration has to be carried out.

Situations that may favour the use of this construct oc-
cur when the size of the tasks in a construct are varied sig-
mificantly. The use of this construct reduces the amount of
work in keeping track of the resource usage. In addition, it
produces simple task scheduling.

Parametrisable data types and operators. Run-time
parametrisation is supported by the dynamic data type [9].
A run-time parameter is described using the dynamic
data-type qualifier. Optimised designs can be achieved by
specialising a hardware block with the commesponding run-
time parameters. Figure 5 shows an example using the dy-
namic data type.

Overloaded operators dealing with operations on dy-
namic data types are also introduced. These operators

TAIE taskidlint 8 k)
dynaslc int 8 x=0, y=0;

while | 1) {
. // some processing involve x and y

RTPCONPF |
Ak

10 Des k { yer: x = 0}

}
}

Figure 5: An example of dynamic data type. Both the pa-
rameters x and y can have their values changed at run-time.
An instantiation and reconfiguration of the task block us-
ing the updated value of the parameters will be initiated at
the end of the RTPCCNF block scope.

include assignment operators, arithmetic operators, rela-
tional operators and bitwise operators.

A task block using the dynamic data type will only be
instantiated when the values of the corresponding run-time
parameters are specified. In addition, changes to the value
of the run-time parameters will implicitly trigger a run-
time reconfiguration of the comresponding tasks.

It is, however, sometimes desirable to have several run-
time parameters updated at the same time. It would be in-
efficient, if run-time reconfiguration is required every time
a run-time parameter is changed. To allow the value of sev-
eral run-time parameters to be changed before a reconfig-
uratien is initiated, the block specifier RTPCONF is used.
An instantiation and run-time reconfiguration of the task
using the updated parameters will only proceed at the end
of the RTPCONF block scope.

A task using the dynamic data type will be translated
to a corresponding parametrised low-level HDL hardware
block. Annotation will be added to the HDL description to
indicate the run-time requirements and methods of param-
eter update.

Constraints. Our high-level description supports use of
constraint through annotation. The with specifier block is
used to describe a list of constraints. It can be used to facili-
tate the low-level tools in guiding the design layout, timing
requirement and other optimisation constraints. This spec-
ifier can be attached to a hardware block. For example, a
task or a block can be enclosed by the { and } delimiters.

Placement information is usually an important factor
that affects the performance of run-time reconfiguration.
It provides crucial information that can guide the low-level
tools in performing partial reconfiguration. It allows locat-
ing only those portions of a design that will require recon-
figuration. A partial bitstream will be generated with those
bits that need to be changed. Otherwise, the whole design
would have to be rebuilt at run time.

Placement attributes can be described using the rloc
placement specifier. Similar to other low-level HDL de-

— 147

TASE taskidl ...t { .
{ /* a funetional block +/ } with {rloc(x.X.y.¥")}

}

Figure 6: Example of placement attributes. The values X
and ¥ denote placement control expressions. While x.
and y . specify Cartesian coordinates in unit of functional
blocks within a same scope.

typedef int B8 BYTE;
TASK Dilalicn{BYTE srec[ImgHelght] [ImgWidth],

BYTES dest [1mgReight] [TmgWidrh] . BYTE mask(MSiza) [MSizell;
TASK Erosion(BYTE sre[imgdeight] [Imgwiden],

BYTE: dst [ImgBeight] (ImgWidth], BYTE mask[MSize] (MSizel):

void main(void}

RECCP syne Operation|] = {Dilation, Ercsien};
BYTE ing[ImgHeight] [IngWidth), tmplImgHeight] [TmgWidth] ;

while {11 {
capture {img) ;
pilation(img, tmp, maskD};
Erasion(tmp, img, maskEe):
cutput (img) ;
}
1

Figure 7: An example main function. This example de-
clares two tasks: Dilation and Erosion, which are some
morphological filtering operations.

scriptions, placement attributes are specified for respective
hardware blocks. Attributes can be specified as Cartesian
coordinates, a method that is commonly used in varicus
families of FPGA. Attributes specified by x. and y. de-
note the horizontal and vertical coordinates in task or func-
tional block unit within the same scope. Example of place-
ment attributes can be found in Figure 6.

All other forms of annotation using the with specifier
will be translated to the HDL without interpretation.

Initial bitstream and start of processing. An initial bit-
streamn contains the representation of all static and default
tasks. The main function is used as in standard C. It
denotes the start of processing and provides a means of
scheduling tasks or specifying top-level control. The main
function also implicitly denotes loading of the initial bit-
stream before the processing is actually started. As long as
a bitstream is loaded, processing can be expected to have
started. However, if it is desirable for the hardware to wait
for a software host, a sync functional class specifier can
be used before the main keyword. This specifier will initi-
ate a blocking communication and requests a synchroniza-
tion signal before the first reference of a hardware task.
Figure 7 shows an example main function. In this ex-
ample, the arguments s7c and mask in the tasks provide
input data, and the argument ds is the data output. These
two tasks are assigned to the same reconfigurable construct
Operation. Since Dilation is the first element in the con-
struet, it is therefore a default task that forms part of the
initial bitstream. As soon as the processing has entered into

the main block scope, the initial bitstream is expected to
be loaded. Since Operation has declared sync, any refer-
ence to the two tasks will require a synchronization signal
right before and after the tasks. Dilation will start only af-
ter capture is finished. Erosion will start only after Dilation
is finished. Similarly, ouspif can start as soon as Erosion
has finished. Indeed, since the two tasks are in the same re-
configurable construct, either one of the two tasks will be
on the hardware at any time. Therefore, Erosion would not
be started before Dilation has finished, even without using
the sync specifier. '

The top-level control, task scheduling, and synchroniza-
tion information will be separated from the hardware task
descriptions and then translated to the host control.

Interfacing run-time parametrisable cores. To allow
reuse of existing cores, an interface that connects the ex-
ternal core to a design can be constructed. There are four
types of data to be specified: input data paths, output data
paths, compile-time parameters, and run-time parameters.
An interface is declared using the interface key-
word. It is followed by an argument list, which specifies
the four types of data that are mentioned earlier. Each in-
terface has its own namescope, which is implicitly declared
using the identifier of itself. To name an argument declared
in an interface, use the identifier of the interface followed
by a full-stop symbol and then the identifier of the argu-
ment. An example interface can be found in Figure 11.

5 Compilation

We illustrate the generality of our design methodology
using two different compilation paths, based on two differ-
ent design languages. The first path involves the Handel-C
language which does not have reconfiguration support. The
second path involves RTPebble [3], which allows compil-
ing run-time parametrisable designs.

Our target platform is Xilinx's Virtex series FPGAs with
the JBits API. This reconfiguration platform allows dy-
namic circuit modification through manipulation of bit-
sireams. It also supports partial reconfiguration and con-
structions of parametrisable core.

Designs are run on the Celoxica’s RC1000-PP recon-
figuration board, which is supported by the JBits’ XHWF
interface. The board also comes with a run-time library
and a set of pre-defined C function interfaces.

Path 1. We use the Handel-C language, which supports a
high-level programming style, to compile designs into syn-
chronous hardware. Handel-C supports most of the stan-
dard C syntax, but does not support run-time reconfigura-
tion. Figure 8 shows a design flow of the method.

—148—

j Handel-C — VHDL —> EDIF —— lnitial bitstream

RTC ==+ RTConrol ——" Java + JBits - Partial

T —LHoslcunlml —-]_’ I bitstream

RTPcore

Figure 8: Compilation flow involving Handel-C.

We implement a parser that takes a design described
in our high-level language and extracts the associated in-
formation. The information about the hardware design is
described as hardware tasks, reconfiguration requirement
is specified by the reconfigurable tasks, and run-time and
software host control forms the skeleton that are not com-
piled to hardware. The parser generates the hardware part
of a design in Handel-C, and the ran-time and host control
in a description file. The hardware design is compiled to
VHDL using the Handel-C compiler. Since Handel-C does
not support placement constraint, all the placement infor-
mation is lost. The VHDL output is then required to piece
together with the run-time control information to produce
a Java program for the JBits platform. This is a manual
process, in which each VHDL block is converted to a cor-
responding description using JBits, and has little control
in the generation of hardware blocks in VHDL. Partial au-
tomation can be achieved by converting VHDL to Pebble.
The process of re-inserting the placement attributes back to
the VHDL output, however, can be automated by matching
the identifiers of the generated hardware blocks.

Path 2. We use a low-level HDL that supports run-time
parametrisation and generates Java program that uses the
JBits APL This low-level HDL, RTPebble [3], can also
produce output in VHDL in order to facilitate the produc-
tion of an Initial bitstream. Figure 9 shows a design flow
of the method.

We use the same parser that is mentioned in Path [to
parse a design description. The generated Handel-C output
is then hand coded to RTPebble with placement and run-
time attributes intact. The run-time and host control infor-
mation are then used to produce a Java host program that
supplies the run-time parameters. The Handel-C to RTPeb-
ble translation process can be automated by a method such
as [8). This process wiil form part of our future work.

6 Case studies

This section evaluates our approach for unifying the in-
stantiation and control of run-time parametrisable cores us-
ing a high-level language. We illustrate the capability of
our approach through a video searching operation and a

‘l—' RTPebble —* VHDL — EDIF —— Initial bitstream
(1

RTC Java + IBits — Partil

T _L”Hbslcnnlml —j——. T bitstream

RTP core

Figure 9: Compilation flow involving RTPebble.

TASK Sammiinc imglImgHeight] [ImgWidth), int tmpl[TmplHeighc] [Tmplwidch],
int mask{TmplHeight] {TuplWidth], ints match) {

for (int y=0; y < ImgHeight; ye+l {
for (int x=0: X < Ingwidth: xes) {

int eum = 0;
for (int i=0; i < Tmplieight; i¢+)
for {int }=0; J < TmplHldh; j++)
i (mask (il (3] == 1)
/f acoumulace difference over template:
sum += abs{ ing[i ¢ y)[j + x] - tesplil[j]):

match {y] (x] = sum;

Figure 10: The SA-TM algorithm.

network firewall example.

Video searching. We compare the implementations of a
video searching method using reconfigurable designs con-
structed with our techniques against static-configuration
designs synthesised with standard tools. This case study
is intended to show: (1} how our techniques provide an ef-
fective framework in which to use run-time parametrised
cores, and (2) how these cores can be used to improve the
performance and area of designs deseribed with high-level
languages.

The Shape-Adaptive Template Matching (SA-TM)
method allows retrieval of arbitrarily shaped objects from
video streams [4]. This method measures the similarity
of a template image at every position in every frame of a
video stream. The similarity is measured by calculating
the sum of absolute differences (SAD) on the luminance
value of the pixels. Possible matches are identified when a
position gives the minimum SAD value or when the SAD
value is below a threshold. Both the search image and the
template image are rectangular. A mask image can be used
to specify an object in arbitrary shape. Only pixels that are
masked are used for calculating the SAD. Figure 10 shows
the SA-TM algorithm.

For a static-configuration implementation, in order to
achieve acceptable performance-area trade offs over a
range of object sizes, several factors have 10 be consid-
ered. For example, designer has to determine the size of
arrays that are used to buffer the images, and the amount
of resources to be shared.

A run-time reconfiguration design may involve parti-
tioning the matching processes into several tasks. For ex-

—149—

interface satmrtpllnts 8 match, int & image, inc 1 c=-clk,
dynamic int tmpl{] [J, dynsmic int mask(][1):
whila(1} {
... [/ wait i/o or fetch template, magk and image dara
RTPCONP |

satmrtp.oopl (0} [0) = ... ;
gatmrtp.topl (0] [1) = ... ;

satmrep.mask[o]l (o] » ... ;
gatmrep.mask{0) (1) =~ ...

} // recontigure here uaing tha updared run-time paraneters

whilal notEndofvides | {
while! notEndafframe | { // calc addr and fetch/store daca
sa_tm.image » image(y] (x];
matchly] (x] = matm.macch;

)
}

. // postr-process results to determine best matches

Figure 11: A wrapper function that uses a SA-TM core.
The interface satm_rtp declares the connection, while both
tmpl and mask are run-time parametrisable parameters.

ample, matching of a search image can be divided into
matching of the top half and the bottom half of an image.
The reconfigurable constructs, described in Section 4, can
be used to perform the reconfiguration. The two matching
processes, top and bottom, will be performed in an alter-
nating manner.

Given a static SA-TM core, a control mechanism is re-
quired to provide the search image from video input, to
allocate storage from matching results, and to supply tem-
plate and mask data for the matching processes.

In the case of a run-time parametnisable SA-TM core,
additional control mechanisms are required. These mech-
anisms include supplying run-time parameters such as the
template and mask images for dynamically specialising a
circuit, initiating the run-time generation of a core and the
management of hardware configuration processes. Other
possible run-time parameters include the width and height
of the array, and the horizontal and vertical position of a
design. Figure 11 shows an example control code of the
SA-TM core.

We have implemented two static-configuration SA-TM
designs. They are both derived directly from the algo-
rithm as shown in Figure 10 and are then parallelised by
hand. Both the designs have their inner loops unrolled and
memory accesses are parallelised by using image scan-line
buffers. One of the implementation uses distributed RAMs
as the scan-line buffers, and have the two innermost loops
unrolled to form a combinational chain of additions. The
other implementation uses an amray that gets synthesised
into shift registers. This array is used to store the summa-
tion results across the image scan lines. In addition, the two
innermost loops are unrolled to an indirect form where the
image pixels are broadcasted to the inner loop summations
and the accumulated results are registered.

We have also implemented two run-time reconfigurable
SA-TM designs. Both designs are hand placed. In one de-

image

match

G-'D-—I

1
'CI-‘EI—-OD“J
line buffer shift registers

0

Figure 12: Floorplan of a run-time parametrisable design
of SA-TM.

Table 1: Speed and area trade-offs for SA-TM designs.

Speed/MHz Area/slice RIR time/ms
Static distributed RAM 25 4045 -
shift register 4 3573 -
RIP shift repister 38 1539 26
pipclined 5 2113 26

sign, it features an additional pipelining on the image sig-
nal. This is to reduce the delay caused by large fanout when
broadcasting image data. Both designs are specialised by
supplying the template and mask data as run-time param-
eters. These parameters are used to configure the look-
up tables and the routing inside configurable logic blocks
{CLBs). The specialised designs reduce the amount of
logic required to store and to process the templates and
the masks. Figure 12 shows a floorplan of a run-time
parametrisable design of the SA-TM. Pixels of the search
image are streamed into the design horizontally one scan
line at a time. These signals are then broadcasted to all of
the processing elements.

All our designs are implemented on a Xilinx Virtex
FPGA (XCV1000-6). The reconfiguration time is calcu-
lated for a XCV1000 in SelectMap mode at 60MHz using
partial reconfiguration. The software is executed on a Pen-
tium 4 at 1.6GHz with 512MB RAM.

Table 1 shows the results of speed, area and reconfigu-
ration overhead of the four SA-TM designs. The templates
that used in the tests are 12x 12 pixels, while the search
images are 100x 100 pixels.

The static-configuration design that uses distributed
RAM is the most straightforward derivation from the orig-
inal SA-TM algorithm. However, it provides the lowest
speed and largest area. This design could be further op-
timised if the combinational additions could be pipelined
and dedicated RAMs, such as the BlockRAMs in Virtex
devices, could be used.

The run-time parametrisable design that uses shift reg-
isters provides less performance than the equivalent static-
conflguration design. However, the run-time parametris-
able version uses less than half of the configurable re-
sources in the static-configuration version. The majority of
the delay in this run-time parametrisable design is due to

—150—

RECONF Cirewalls(}{]
» {{account Propaganda, Engineering Propaganda, Publie Propaganda},
{Account Siamese, Engineering.siamese, Public Siamese}}:

if { onCondition) Livewalls[deparctment] (performance] ;

Figure 13: An example of reconfiguring between different
firewalls.

the large fanout caused by broadcasting the image signals.
On the other hand, the run-time parametrisable pipelined
design reduces this delay by pipelining the image signal.
This has achieved an increase in speed and also a reduc-
tion in resource usage.

Since the Virtex device and our implementation of the
run-time software in Java are not optimised for run-time
parametrisation, a large reconfiguration overhead has re-
sulted. However, this overhead can be offset by processing
a large amount of data. This is the typical case for search-
ing images in a video library such as the SA-TM operation.

Network firewall. A packet-filtering firewall processor
performs packet matching based on filter rules. Different
sets of filter rules may be used to protect different parts of
an organisationat network. A previous study [6] has shown
that a firewall implementation that uses the Siamese Twins
structure can be in some cases up to 75% more area effi-
cient than the Propaganda structure. On the other hand, the
Propaganda structure can achieve up to 230% of the speed
of the Siamese Twins structure. Therefore, differsnt per-
formance and hardware optimisation issues may determine
the implementation scheme as welt as the set of filter rules
to be loaded on to the hardware.

Figure 13 shows an example of how the reconfigura-
tion construct can be used for switching between different
firewall implementations. Various network management
schemes combined with different performance trade-offs
can also be involved in determining the reconfiguration.

7 Conclusion

We have presented a unified description language for
specifying run-time reconfiguration and its associated run-
time control mechanisms. Two compilation paths have
been introduced for two different hardware design lan-
guages with the JBits AP1. We discuss case studies that use
our high-level description language to describe run-time
parametrisable template matching designs and a network
firewall. The results show that our system can be used to
achieve a trade-off between increased performance and re-
duction of resource usages.

Our current and future work includes automating the
translation process from generated Handel-C output to RT-
Pebble, extending the system to include additional data

types such as floating point and a type checker, to incor-
porate self-reconfiguration [2], and to automate mn-time
allocation and placement [10].

Acknowledgements. The support of UK Engineering and Phys-
ical Sciences Research Council (Grant number GR/R 31409,
GR/R 55931 and GR/N 66599), the Croucher Foundation, Celox-
ica Limited and Xilinx, Inc. is gratefully acknowledged.

References

{11 P. Bellows and B. Hutchings, “JHDL — An HDL for Re-
configurable Systems”, in Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, IEEE Com-
puter Society Press, 1998, pp. 175-184.

B. Blodget, S. McMillan and P. Lysaght, “Lightweight ap-

proach for embedded reconfiguration of FPGAs”, in Proc.

Design, Automation and Test in Europe Conference and Ex-

hibition, 2003, pp. 399-400.

[3] A. Derbyshire and W. Luk, *“Compiling Run-Time

Parametrisable Designs”, in Proc. IEEE International Conf

on Field-Programmable Technology, 2002, pp. 44-51.

I. Gause, P.Y.K. Cheung and W, Luk, “Reconfigurable

Shape-Adaptive Template Matching Architectures”, in

Proc. IEEE Symp. on Field Programmable Custom Com-

puting Machines, IEEE Computer Society Press, 2002, pp.

98-107.

[5] S.A. Guccione and D. Levi, “Run-Time Parameterizable

Cores™, in Field Programmable Logic and Applications,

LNCS 1673, Springer, 1999, pp. 215-222.

TK. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and N. Du-

lay, “Irregular Reconfigurable CAM Structures for Firewall

Applications”, in Field Programmable Logic and Applica-

tions, LNCS 2778, Springer, 2003, pp. 890-899.

[71 S. McMillan and C. Patterson, “JBits Implementations

of the Advanced Encryption Standard (Rijndael)”, in

Field Programmable Logic and Applications, LNCS 2147,

Springer, 2001, pp. 162-171.

L. Page and W. Luk, “Compiling Occam into FPGAs”, in

FPGAs, W. Moore and W. Luk (eds), Abingdon FE&CS

Books, 1991, pp. 271-283.

{9] S. Singh and P. James-Roxby, “Rapid Construction of Par-
tial Configuration Datastreams from High-Level Constructs
Using JBits”, in Field Programmable Logic and Applica-
tions, LNCS 2147, Springer, 2001, pp. 346-356.

[10] G.B. Wigley, D.A. Keamey and D. Warren, “Introduc-
ing ReConfigME: An Operating System for Reconfigurable
Computing”, in Field Programmable Logic and Applica-
tions, LNCS 2438, Springer, 2002, pp. 687-697.

[111 S. Young, P. Altke, C. Fewer, 8. McMillan, B. Blodget and
D. Levi, “A High IO Reconfigurable Crossbar Switch”, in
Proc. IEEE Symp. on Field-Programmable Custom Com-
puting Machines, IEEE Computer Society Press, 2003.

[2

—

[4

fnee)

[6

[}

[8

—_—

—1531—

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

