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Abstract

Tile-based data layout has been applied to achieve vari-
ous objectives such as minimizing cache conflicts and mem-
ory row switching activity. In some applications of tile-
based mapping, the size of the tile can be assumed to be
a power of two. In this paper, this ‘power of two’ assump-
tion has been used to drastically simplify the tile-based ad-
dress mapping functions. Once optimized, the implemen-
tation of the non-linear tile-based mapping consumes 60%
less power than the implementation of the linear row-major
mapping. This result is very interesting because one would
normally expect a power penalty in the address generation
stage of the more sophisticated tile-based mapping. More-
over, on average tile-based mapping implementation takes
10% less area and incurs virtually no additional delay over
row-major mapping implementation.

1. Introduction

Multi-dimensional data arrays are a convenient way of
organizing data in high-level hardware description lan-
guages. The index space of these multi-dimensional arrays
must be mapped to the linear memory address space to order
array elements in memory. The most commonly used lay-
out functions are the row-major and the column-major map-
pings. However, there are other array linearization methods
such as tile-based mapping [2, 3, 7, 5].

In [3], we applied tile-based mapping to minimize mem-
ory row switching activity. Minimizing memory row
switching activity leads to a reduction in the energy con-
sumption within the memories. However, it is not sufficient
to consider the power dissipation of the memory alone. Row
switching optimization changes memory address sequences
and therefore affects power dissipation of the address gen-
erators. The implementation of the non-linear tile-based
mapping function may consume more power than the im-
plementation of the linear row-major mapping and offset
any energy saving in the memories. In [3] the problem of

finding the best tile dimensions have been formulated as a
mesh partitioning problem formulation. In the mesh par-
titioning problem formulation each tile represents the set
of data variables that will be mapped to the same memory
row. Therefore, the size of the tile is equal to the size of a
memory row. A careful observation of the memories reveal
that the sizes of memory rows are usually powers of two.
In this paper we present an interesting simplification of the
tile-based address mapping equations using the assumption
that the tile sizes are powers of two. We also present power,
delay, and area results for this novel implementation of tile-
based mapping.

‘Tile-based’ mapping is a loosely defined term. ‘Tile-
based’ indicates that the data arrays are broken down into
tiles, rectangle or windows. It does not define the way data
variables are laid out inside the tiles and how the tiles them-
selves are ordered in memory. More specifically the exact
tile-based mapping used in this work is 4D [2]. In 4D-tile-
based mapping array data variables within the tiles and tiles
themselves are ordered using row-major and column-major
mappings. This gives rise to four mapping equations, from
the array index space to the linear memory address space,
and hence the name 4D.

The paper is organized as follows. Section 2 presents
some of the reported applications of tile-based data layout.
Section 3 defines the notation and technical terms used in
the paper. Section 4 describes the address generator model
used and Section 5 the 4D mapping equations. Section 6
illustrates how the 4D mapping equations can be simplified
using the ‘power of two’ assumption. 4D mapping equa-
tions can only be used alone in special cases. Therefore,
Section 7 presents how 4D mapping can be applied in the
general case. Finally, Section 9 contains conclusions and
indicates future work.

2. Previous Work

Tile-based data layout has been previously used to
achieve various objectives. Some of the previous applica-
tions of tile-based mapping are briefly described here.
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Chatterjee et al. [2] apply 4D-tile-based mapping to min-
imize cache conflicts. The size of the tile in their method is
chosen in relation to the size of the cache. Kim and Park [5]
use a tile-based mapping to increase memory bandwidth of
SDRAMs in video processing applications. In their work
the size of a tile is fixed to the size of a row. In both these
cases it is reasonable to assume that the size of the tile is a
power of two. However, Chatterjee et al. [2] do not report
the use of the ‘power of two’ assumption and implement the
4D mapping in a microprocessor based environment and re-
port low implementation costs. Although, Kim and Park [5]
do not exactly use 4D mapping, it may also be possible to
simplify their mapping implementation using the ‘power of
two’ assumption. Instead, they implement their tile-based
mapping as a programmable address generator with a la-
tency of 26 clock cycles and a small power overhead.

Panda et al. [7] apply 4D-tile-based mapping to mini-
mize off-chip address bus switching activity. They choose
the best tile size by analyzing the loop structure to find a
‘basic shape of access’. In their work it is somewhat diffi-
cult to assume that the size of a tile is a power of two. They
present a hand-crafted implementation of the 4D mapping
and offer an analytical power estimation for it. Power esti-
mation shows that the implementation of 4D-tile-based ad-
dress converter has a power overhead.

As mentioned in Section 1, in [3] 4D-tile-based map-
ping was applied to minimize memory row switching ac-
tivity. However, that work concentrates on row switching
minimization and do not consider the implementation of the
tile-based mapping. The novel implementation of the 4D-
tile-based mapping presented in this work extends the work
in [3]. However, if the size of the tile can be assumed to
be a power of two then simplification of 4D-tile-based im-
plementation presented in this paper can be applied to other
applications of tile-based mapping as well.

3. Notation

The data array dimension are indicated by W ×H, where
W is the width and H is the height of the array. The tile di-
mensions are given by m×n, where m is the width and n is
the height of the tile. x and y are the horizontal and vertical
array indices of a two dimensional data array respectively.
The function f (x,y) represent a mapping from the x-y array
index space to the linear memory address space. The num-
ber of memory words contained in a row (size of a row)
is given by q and also referred to as number of memory
columns. The number of rows is represented by p.

Terms such as ‘data layout’, ’address assignment’ and
‘address mapping’ are used interchangeably in this paper.

symbolic
address

generator

symbolic
to pysical
address

converter

next

reset

physical
memory
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Figure 1. Address generator model

4. Address Generator Model

There are many ways of implementing address genera-
tion hardware. In the model used, the address generator
is functionally divided into a symbolic address generator
and a symbolic to physical address mapping module (See
Figure 1). The symbolic addresses of array data variables
can be represented by their array indices. Therefore, the
symbolic address generator can be implemented in the cus-
tom Address Calculation Unit (cACU) style preferred by
Miranda et al. [6] at IMEC.

The symbolic to physical address converter is deter-
mined by the particular data layout method used. However,
the symbolic address generator is independent of it. There-
fore, the difference in energy consumption of the address
generator for different address assignment schemes can be
investigated without having to analyze the symbolic address
generator at all. There are different degrees of inaccuracy
associated with any energy estimation method, and there-
fore errors can be kept low by estimating energy for mini-
mal functional units. The functional partitioning of the ad-
dress generator shown in Figure 1 is general, elegant and
convenient.

5. 4D-tile-based data layout equations

Figure 2 shows a data array that has been partitioned into
m×n tiles on the x-y index space. When the tiles are ordered
row-major and the data variables within the tiles are ordered
column-major in memory, then equation f rc(x,y) defines a
mapping from the x-y index space to the linear memory ad-
dress space. Let’s say that the memory address for an arbi-
trary data variable at position (x,y) needs to be found. On
the figure there are four different regions which are num-
bered from 1 to 4, and Equation 1 has sub-expressions cor-
respondingly numbered 1-4 as well. Each sub-expression
gives the number of symbolic addresses contained in each
region. Regions 1-2 correspond to the row-major ordering
of rectangles, and regions 3-4 correspond to the column-
major ordering of the data variables within the rectangles.
The physical address of a particular symbolic address is
found by summing the number of symbolic addresses in
each region, as shown in Equation 1.
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Figure 2. A tiled data array and data variable
ordering for equation frc(x,y). 0 ≤ y < H and
0 ≤ x < W .

frc(x,y) = (y− y mod n)W
︸ ︷︷ ︸

+ (x− x mod m)n
︸ ︷︷ ︸

+

1 2
(x mod m)n
︸ ︷︷ ︸

+ y mod n
︸ ︷︷ ︸

3 4
(1)

Equations 2 to 4 define the other three possible 4D map-
ping functions. The first subscript of f (x,y) refers to the
ordering of the tiles, and the second subscript refers to the
ordering within the tiles.

frr(x,y) = (y− y mod n)W +(x− x mod m)n
+(y mod n)m+ x mod m

(2)

fcr(x,y) = (x− x mod m)H +(y− y mod n)m
+(y mod n)m+ x mod m

(3)

fcc(x,y) = (x− x mod m)H +(y− y mod n)m
+(x mod m)n+ y mod n

(4)

6. Simplification of 4D layout equations

Although the simplification presented in this paper is ap-
plicable to all four 4D mapping equations, due to space lim-
itations only one equation is considered here. In order to
demonstrate the simplifying effect of the ‘power of two’ as-
sumption, Equation 1 is rearranged to Equation 5.

frc(x,y) = W (y− y mod n)+ xn+ y mod n (5)

If it can be assumed that the number of memory columns
is a power of two, Equation 5 can be significantly simplified.
However is this ‘power of two’ assumption reasonable?

A careful observation of the configurations of external
memories would reveal that both the number of memory
columns and rows are almost always power of two [4, 8].
This power of two organization is, in fact, due to binary cod-
ing of memory addresses. The row address consists of the
log2(p) MSBs, and the the column address consists of the
log2(q) LSBs. What about embedded memories? Usually,
embedded memories are designed using memory compilers.
So it is quite normal for a designer to request an unusual size
of memory. However, even in this case, because the column
addresses are usually the LSBs, the number of columns is
a power of two number. Even, if the number of memory
columns were not usually power of two, there is no reason
why the memories cannot be designed to satisfy the ‘power
of two’ assumption. The ‘power of two’ assumption is a
very reasonable one and, therefore, was used to optimize
the 4D address mapping equations.

Since the size of a tile (m×n) is equal to the number of
memory columns (q), if q is a power of two number then
both m and n are power of two numbers. When n is a power
of two number, then the following simplifications happen.
y mod n simply means take the log2(n) LSBs of y. There-
fore, y− (y mod n) equates to setting the log2(n) LSBs of y
to zero. Thus far, a mod function and a subtractor have been
eliminated. The xn multiplication, also reduces to a left shift
of x by log2(n) bit positions, with the log2(n) LSBs of x
taking ‘0’ values. Since log2(n) LSBs of x take ‘0’ values,
and y mod n is a log2(n) bit number, the xn multiplication
and its addition to y mod n can be implemented by simply
concatenating x and log2(n) LSBs of y. After these simpli-
fications, only one multiplier and one adder is required to
implement Equation 5. This is further demonstrated in Ex-
ample 1. Note that, row-major mapping also requires one
multiplication and one addition (See Equation 6).

fr(x,y) = (W × y)+ x (6)

Example 1 Consider an 80×80 data array, which is stored
in a memory with 256 rows and 32 columns. Given that the
optimal tile/rectangle shape for the access pattern is m = 8
and n = 4, Figure 3 shows the optimized implementation of
the symbolic to physical address mapping function (Equa-
tion 5), for this example.

Note that although the multiplier has two 7-bit inputs the
output is a 13-bit number. This is due to the restricted range
of the operands, 0≤ x < 80, 0≤ y < 80. The restricted range
of the operands also ensures that when the 9-bit and 13-bit
numbers are added together the output can be represented
by 13-bits. �
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Figure 3. Mapping function implementation
for Example 1. 0 ≤ x < 80 and 0 ≤ y < 80.
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Figure 4. Division of transition mesh into two
regions for the general case of 4D address
mapping. 0 ≤ x < W and 0 ≤ y < H.

7. General Case of Symbolic to Physical Ad-
dress Conversion

In the special case where H is an integer multiple of n,
(H mod n) = 0, the address converter module can be rep-
resented by Equation 5 alone. In general, Equation 5, al-
though a very important part, is only one constituent part of
the symbolic to physical address mapping module.

The first step in the solution to the general case is to
divide the transition mesh into two regions as shown in
Figure 4. The first segment is W ×H ′, where H ′ = H −
(H mod n). The second segment is W × (H mod n). The
symbolic addresses in the first region are assigned addresses
using Equation 5. The symbolic addresses in the second re-
gion are assigned addresses using row-major scheme.

As the two regions use different address mapping equa-
tions, it is necessary to chose which region a particular sym-
bolic address belongs to. This is done by checking if y < H ′.
At first glace it may seem that a ‘<’ operator is required to
implement the checking, however this is not so.

If a symbolic address is in the second region, then H ′ ≤
y < H ′ + n. Moreover, n is a power of two and H ′ is a
multiple of n. Therefore, all numbers from H ′ to H ′ +n−1
are equal to H ′, if log2(n) LSBs of y are set to zero. This

1001000
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1001010
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74
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y

Figure 5. Looking at upper bits is sufficient to
identify if y < 72, where 0 ≤ y < 75.
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Figure 6. Symbolic to physical address con-
verter implementation for Example 3. 0 ≤ x <
90 and 0 ≤ y < 90

fact is further illustrated in Example 2. As a result of this
property, it is possible to simply look at the y index after
setting log2(n) LSBs to zeros. If this modified number is
equal to H ′; then y ≥ H ′, and a data variable in region two
is accessed.

Example 2 Consider a 75× 75 data array, which is stored
in a memory with 256 rows and 32 columns. The optimal
tile/rectangle size for the access pattern has been found to
be m = 8 and n = 4. H ′ = 72, so when y is 72,73 or 74,
row-major mapping should be selected. When y is 72,73,
or 74, y[6 downto 2] bits are identical as shown in Fig-
ure 5,(0 ≤ y < 75).�

Both simplified 4D-tile-based and row-major address as-
signment schemes use one multiplier and one adder. There-
fore, the adder and the multiplier can be shared by using
multiplexors. Example 3 shows a symbolic to physical ad-
dress converter implementation for the general case of 4D-
tile-based address assignment method.

Example 3 Consider a 90× 90 data array, which is stored
in a memory with 256 rows and 32 columns. Given that the
optimal tile/rectangle shape for the access pattern is m = 8
and n = 4, Figure 6 shows the optimized implementation of
the symbolic to physical address mapping function for this
example.

Note that although the multiplier has two 7-bit inputs the
output is a 13-bit number. This is due to the restricted range
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of the operands, 0≤ x < 90, 0≤ y < 90. The restricted range
of the operands also ensure that when the 9-bit and 13-bit
numbers are added together the output can be represented
by 13-bits. �

8. Experimental Results

8.1. Power Results

In this section results are presented which demonstrate
that the 4D-tile-based address assignment hardware, when
optimized using the ‘power of two’ assumption, actually
consumes less power than row-major address assignment
hardware. This result is surprising. Intuitively, one would
expect a power penalty in the address generation stage of
the more sophisticated 4D-tile-based mapping over that of
relatively simple row-major mapping.

The power estimation procedure can be briefly described
as follows. The sum-of-products specification of symbolic
to physical address mapping was synthesized using Syn-
opsys Design Compiler to a commercial 0.18 µm technol-
ogy library. The gate level netlist was then extracted from
Synopsys as a VHDL file and simulated in ModelSim. Us-
ing ModelSim the toggle counts and signal probabilities for
each node of the circuit were collected and fed to Synop-
sys Design Power. Design Power then annotates the gate
level netlist with the toggle and signal probability informa-
tion and produces an average power estimate.

Figure 7 shows the power dissipation of the row-major
and 4D-tile-based mapping modules for ‘compress’ access
sequence. The mesh partitioning based method on aver-
age dissipated 66% less power compared to the row-major
method. Moreover, for every one of the data array sizes, 4D-
tile-based hardware dissipated less power than row-major
hardware.

The reduction in the power dissipation that can be seen
for the 4D-tile-based case is two-fold. The multiplier in
Figure 6 performs a constant multiplication. The variable
inputs are y(6 downto 0) for the row-major case and
y(6 downto 2) & "00" for the 4D-tile-based case.
For the ‘compress’ access sequence, the two least signifi-
cant bits of y switch much more frequently than other bits.
In fact, the two LSBs account for about 75% of all the y
input bit switching activity. The multiplier, in the 4D-tile-
based case, is subjected to 75% less input switching activity
compared to row-major case. Therefore, the multiplier dis-
sipates considerably less power.

The adder has two inputs, one of which is the output
of the multiplier. The multiplier output would, in general,
switch fewer times in the 4D-tile-based case. The second
input to the multiplier is x for the row-major case and x &
y(1 downto 0) for the 4D-tile-based case. Note that, in
the 4D-tile-based address mapping hardware, the two LSBs
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Figure 7. Data array size against power in
Watts for symbolic to physical address map-
per. ‘compress’ access sequence. @ 200MHz
and 1.71V.

Average % power
Example reduction
Compress 66.4
DCT 38.7
GSR 71.2
SOR 64.4

Table 1. Average percentage power dissipa-
tion reduction results over row-major map-
ping.

of y which were not connected to the input of the multiplier
are now connected to the input of the adder. So the adder
would be subjected to the 75% of y input switching activ-
ity that the multiplier was not. x input switches about 50%
more frequently than y input for this access sequence. In
the row-major case the x inputs are connected to lower bit
positions in the adder in comparison to 4D-tile-based case.
The adder is a ripple-carry adder, and therefore, switching
activity in the LSBs of the adder, generally, result in higher
overall switching activity than switching activity in MSBs
due to carry propagation.

Table 1 shows power dissipation reduction results for a
number of example access sequences. The average percent-
age power reduction for the example access sequences is
60%.

The 4D-tile-based mapping was used in the mesh parti-
tioning based address assignment method [3] to save power
in the memory cell array. However, in this work it has been
shown that the 4D-tile-based method, when optimized un-
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der the ‘power of two’ assumption can also save power in
the symbolic to physical address converter.

8.2. Area and Delay Results

The area and delay results of the address converter, for
the two address mapping methods are determined by the
data array sizes. For the 4D-tile-based method, m and n
values also influence area and delay.

On average, for m = 8 and n = 4, 4D-tile-based sym-
bolic to physical address mapping hardware is only 0.7%
slower than row-major hardware. For some data array sizes,
4D-tile-based address mapping hardware is even faster than
row-major hardware.

Area estimates from Synopsys Design Compiler indicate
that on average 4D-tile-based method achieves 10% area re-
duction in the address mapping hardware compared to the
row-major method. In the special case where (H mod n) =
0, 4D-tile-based hardware takes considerably less area than
row-major mapping module (on average 32%). This is due
to the fact that, in the 4D-tile-based case, the log2(n) LSBs
of one of the multiplier inputs are always set to ‘0’. So the
constant multiplier can be simplified. Also, because log2(n)
LSBs of one of the multiplier inputs are always set to ‘0’s,
the same number of outputs are always ‘0’s. Therefore, the
first log2(n) stages of the ripple carry adder can be elimi-
nated. However, in the case where (H mod n) �= 0, due to
the extra multiplexors and multiplexor control signal gen-
erators, 4D-tile-based address mapping module generally
takes more area. However, the amount of extra hardware,
especially as data array size increases is very small (on av-
erage, 2%).

9. Conclusion

Tile-based data layout has been used to achieve various
objectives. In some applications of the tile-based mapping
it can be assumed that the size of the tile is a power of two.
In this paper this ‘power of two’ assumption has been used
to significantly simplify the 4D-tile-based mapping func-
tions. Once optimized the more sophisticated 4D-tile-based
mapping achieves 60% power reductions and 10% area sav-
ings with virtually no performance penalty over row-major
mapping implementation.

In this work the address generator was functionally par-
titioned into a symbolic address generator and a symbolic
to physical address mapper. This is a convenient and el-
egant implementation. However, in ASICs, by combining
the symbolic address generator and symbolic to physical
address mapper into one unit, further optimizations may
be possible. For example, when memory accesses are per-
formed in regular loop structures, it may be possible to
apply techniques such as induction variable analysis and

strength reduction [1] to replace multiplications with ad-
dition operations. The contribution made in this paper by
using the ‘power of two’ assumption to simplify the 4D
mapping functions is still valid even in this case. The com-
plexity of the 4D mapping function has been reduced to one
constant multiplication and one addition: the same com-
plexity of the row-major mapping. Therefore, any strength
reduction optimization that is performed on the row-major
mapping equation can also be applied to mesh partitioning
based mapping equations.

The current hardware implementation of the 4D-tile-
based mapping is application specific, therefore a different
address mapping unit is required for each data array, unless
two or more data arrays have the same tile dimensions. It
is interesting future work to investigate the effects on power
dissipation as more programmability is added to the address
mapper. Moreover, the ‘power of two’ assumption about
the tile size can be used to simplify other types of tile based
mappings in the future.
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