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Abstract: The paper describes an algorithm which
combines logic synthesis and technology mapping
specifically for Xilinx’s XC6200, a new family of
fine-grain, dynamically reconfigurable FPGA.
The algorithm employs a BDD representation of
the logic function and a genetic algorithm (GA) is
used to find a good decomposition variable
ordering. The algorithm also exploits the
architectural features of the XC6200 to minimise
the number of cells required to implement a given
function. Results on benchmark circuits show
that the new algorithm performs similarly or
better than other synthesis tools in a large
number of cases.

1 Introduction

The use of FPGAs in many applications has been
increasing rapidly in recent years. In addition to the
two popular types of commercial FPGAs, namely look-
up table based and multiplexer based, Xilinx has
recently introduced a new fine-grain, dynamically
reconfigurable FPGA family, the XC6200. The func-
tion unit of the XC6200 architecture is as shown in
Fig. 1[1]. The combinational logic part of the function
unit is a universal logic gate. Unlike normal multiplex-
ers, it can implement all two variable functions and
four of the three variable functions because the inputs
to the multiplexers can be complemented if necessary.
The most obvious advantage of this architecture is that
it allows direct implementation of the XOR x &® y,
leading to efficient synthesis. Some works on the prob-
lem of synthesising Boolean networks, and expressing
each node as a network of multiplexers, have been pro-
posed [2-11]. Among these algorithms, [2, 3] operate on
minterms and mux_synthesis [4] is based on disjoint
cubes. In MIS-pga [5], the multiplexer structure was
exploited, thus leading to the representation of Boolean
functions by binary decision diagrams (BDD). Eight
types of BDD pattern corresponding to the basic func-
tionality associated with the Actel architecture were
used to cover these BDDs. In ASYL [6, 7], the Boolean
functions are represented with ROBDDs for area opti-
misation, and a direct mapping was performed which
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had shown high benefit when compared with a library-
based approach. Amap [8] and MIS-pga(new) [9] intro-
duced if-then—else direct acyclic graphs (ITE DAG) to
replace BDD. The main advantage of ITE DAGs over
BDDs is that duplication of cubes can be avoided.
Mux_decomp_opt [10] employed more general DAGs to
represent the Boolean functions, in which different
selector function can be used at the same level.
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Fig.1 XC6200 FPGA function unit

However, all of above algorithms did not consider
the availability of complementary inputs of the multi-
plexers except [4]. These algorithms were designed for
the synthesis of Actel ACT series FPGAs. A logic syn-
thesis package targeted specifically at XC6200 FPGAs
is proposed in the paper. In our algorithm, Boolean
networks are represented by ROBDDs because it is
more memory efficient than minterm and disjoint cube
representations. Different from other published algo-
rithms [2-10], a genetic algorithm (GA) is introduced
to find a good decomposition variable ordering.

2 BDD size minimisation and XC6200
technology mapping

2.1 BDD size minimisation

It is well known that multiplexer-based structures can
be directly related to BDDs [12]. [4, 13] indicate that
finding the optimal data-select variable ordering of the
multiplexer network is strongly equivalent to finding
good variable ordering for BDDs. Since reduced
ordered BDD (ROBDD) has been shown to be an effi-
cient representation of Boolean functions for logic syn-
thesis and verification purposes [12], it is employed in
our algorithm. The first step of our synthesis algorithm
is to minimise the size of the ROBDD, and then the
ROBDD is mapped to Boolean networks based on
XC6200’s function units.

Definition 1: An OBDD is a rooted directed graph G =
(V, E). The vertex set ¥ is composed of two kinds of
vertex, nonterminal and terminal. Each nonterminal
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vertex has as attributes a pointer index(v) € {1, 2, ...,
n} to an input variable in the set {x;, x,, ..., X}, and
two children low(v), high(v) € V. A terminal vertex v
has as an attribute a value value(v) € B (B € {0, 1}).
The edge set E is composed of negative edges and posi-
tive edges.

Definition 2: BDD size, |BDD), is given by its number
of nonterminal nodes. For a certain variable ordering,
BDD size can be reduced with following three rules:

Deletion rule (R1): The node v with label x; can be
deleted, if and only if the two successors low(v) and
high(v) of v represent the same subfunction of f, i.e. the
subfunction represented as v does not depend essen-
tially on x;.

Merging rule (R2): Nodes v and w with label x; can be
shared, if and only if they represented the same sub-
function of f.

Complement rule (R3): For nodes v and w with label x;
can be replaced with v, if and only if v/ = w'.

Definition 3: A BDD is called a reduced ordered binary
decision diagram (ROBDD), if no reductions can be
achieved using the above rules.

Among the above rules, R3 is particular suitable for
XC6200 synthesis. Unlike other multiplexer-based
FPGAs such as Actel, the complement multiplexer
inputs can be fully exploited without using any addi-
tional logic cell as an inverter [4]. R3 is used very fre-
quently to minimise near linear functions.

2.2 \Variable ordering

Definition 4: For any Boolean function f(x|, x,, ..., X,),
the decision variable ordering (from the root to the ter-
minals of the data structure) can be defined with a vec-
tor Order[n] = {X},, X,y ... Xi,}. For a certain Order(n],
the size of the ROBDD, BDD_Size(), is the number of
the nonterminal vertex in the data structure. Our goal
is to find a good variable ordering Order[n] = {xy,, X,
<y Xy} for a given function f(x;, x,, ..., X,), such that
BDD_Size() is minimised.

ROBDD size is extremely sensitive to the choice of
the variable ordering. The existing methods of finding a
good variable ordering can be classified into three cate-
gories: heuristic methods [14-16], exact methods [13,
17] and methods based on genetic algorithms (GA)
[18-22]. Previous research has indicated that GA meth-
ods can produce better results with reasonable CPU
time for most of the benchmark circuits. In this paper,
a novel GA reported elsewhere [22], which uses
dynamic parameters, is employed to search for near
optimal variable ordering. The pseudocode of the
dynamic GA is included in the Appendix (Section 8).
Details of the algorithm can be found in [21, 22].

2.3 Mapping BDD to Boolean network based
on XC6200 function units

Most of the functions described in the pseudocode have
been discussed in [18, 21, 22]. The function
BDD 2 Network() is the new contribution described in
this paper. It maps the ROBDD produced with the GA
to a Boolean network specifically for XC6200 FPGA
cell architecture. The relationship between a ROBDD
and the Boolean function which it represents can be
described as follows:

Corollary 1: An OBDD with root v denotes a Boolean
function f,: B* — B such that:
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(a) If v is a terminal vertex with value(v) = 1, then f, =
1.

(b) If v is a terminal vertex with value(v) = 0, then f, =
0.
(¢) If v is a nonterminal vertex and index(v) = i, then f,
= x’if low(v) +_)'Ci.fhigh(v)a where f low(v) = flaw(v) if edge(v, '
low(v)) is positive, and fiou) = iowey i edge(v, low(v))
is negative. ) can be defined in a similar way.
According to corollary 1, a BDD vertex v can be
mapped to a Boolean node based on XC6200 FPGA
architecture as follows (note that po is primary out-
puts):
NodeMapping(v)
{
if (v is a root of the BDD and the edge (po, v) is
negative) {
if (edge(v, low(v)) is negative) f i = Siowey
else f Xindex(v) f low(v)>
if (edge(v, high(v)) is negative) fxmdex(v) = fhighv)
else .f:Yjp,dex(v) =f high(v)>
1 else {
if (edge(v, low(v)) is negative) fy iy = S lowtoys
else f, Xindex(s) flow(v);
if (edge(v, high(v)) is negative) f sy = f hightvs
else f: Xindextyy = high(v)
}
fv = xlindex(v) f X index(v) + xindex(v)ﬂcindex(v);
}
Node Mapping(v) is the function that is called repeat-
edly in BDD 2 Network() to map the BDD to the
Boolean network. For example, a BDD vertex with
root v as shown in Fig. 2a can be mapped to a Boolean
node, and implemented with a single XC6200 FPGA
unit as shown in Fig. 2b. The computational complex-
ity of BDD 2 Network() is O(BDD|), which is the
complexity of traversing the BDD. The mapping algo-
rithm above is designed specifically for the XC6200
FPGA:s. For a given root node v, Node_Mapping() not
only collapses the ancestor negative edges, it also
absorbs the descendant negative edges.
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Fig.2 Realisation of BDD vertex with XC6200 unit

3 Synthesis procedures for XC6200 FPGAs

After mapping the minimised ROBDD to a Boolean
network, every node can be mapped to a single
XC6200 FPGA unit. However, the timing performance
of the network often needs further optimisation.
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To describe our algorithm, the following Boolean
function is used as an example throughout:

f(21, 22,73, %4, 75) = 2125 + 7123 + 112425 (1)
After variable ordering using GA, the ROBDD repre-
sentation of eqn. ! is as shown in Fig. 3a. Using the
function BDD 2 Network(), the ROBDD representa-
tion of flx;, X5, X3, X4, Xxs) is mapped to XC6200 units
as shown in Fig. 3. To improve the timing perform-
ance of this circuit, the following network refinements
were introduced.

X3 X3 Xg XgX4 X1 X3 X1 X2

BDD_2_network XC_binding level_reduce
a b c d
Fig.3 Performance refine based on XC6200 FPGAs

3.1 Library binding

XC Binding() maps all multiplexers with a constant
input to an equivalent two input gate from XC6200’s
basic function library. This results in more efficient
routing when using the current version of Xilinx tools.
The result of XC Binding() is shown in Fig. 3c.

3.2 Level reduction
Fig. 3¢ shows that x; has been factorised. Factorisation
can often reduce the size of the Boolean network at the
expense of increased levels of logic. The level reduction
algorithm, Level Reduce(), locates nodes on the criti-
cal path that are in factorised form. The factored varia-
bles are then distributed. Using the distributive
property, the circuit in Fig. 3¢ can be improved to that
in Fig. 3d, with the logic level reduced by one at the
expense of two extra logic cells. If a node is located on
the critical path but not in a factorised form, it is col-
lapsed and checked for the following conditions: (i) if it
is composed of a single cube, (ii) if it is composed of
single literal cubes, or (iii) if it is composed of cubes of
disjoint support. Nodes which satisfy one of the above
conditions are decomposed with AND-OR decomposi-
tion [23]. This produces an AND-OR tree structure
which has fewer levels of logic. As will be seen later,
for circuits such as the benchmark misex2, the function
Level Reduce() can decrease the levels of the critical
path from 11 to seven, while increasing the number of
XC6200 cells by only 12%. This algorithm can be used
iteratively until no improvement is found. After level
reduction, the Boolean network is verified against the
input circuit using SIS’s verification routines.

The entire synthesis procedure for XC6200 FPGA as
shown in Fig. 4 is collected into XC6200_Syn as an
add-on package to SIS.
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Fig.4 Schematic diagram of XC6200 synthesis procedure

4 Results

The numerous steps described in the previous Section
were combined together as XC6200 Syn, a XC6200
FPGA logic synthesis add-on package to Berkeley’s
SIS environment. Since no other synthesis results on
XC6200 have been published, the performance of
XC6200_Syn is compared to that of SIS (without our
package) and Synopsys. All 39 LGSynth93 benchmark
circuits were tested. For 24 of them, XC6200_Syn
yielded better results than both SIS and Synopsys. To
understand better the types of circuit to which
XC6200_Syn is more suited, all LGSynth93 benchmark
circuits were divided into three categories according to
the concepts of circuit density as defined below.

Definition 6: The density of a circuit is defined as fol-
lows:
|BDD)|
= 2
1% 0 @)
where |BDD| is the ROBDD size of the circuit. i and o
are the number of the inputs and outputs of the circuit.

Definition 7: A circuit is:

(a) a simple circuit if [BDD| < 80;

(b) a high density circuit if p 2 0.7 and |BDD| > 80;
(¢) a low density circuit if p < 0.7 and |BDD| > 80.

Table 1 shows the results for all simple circuits in the
LGSynth93 benchmarks. Column U indicates the
number of XC6200 units used, L is the level of logic on
the critical path, D shows the estimated critical path
delay of the mapped circuit, and CPU is the CPU time
running on a SUN Sparc 10 workstation. From
Table 1 it can be seen that XC6200_Syn uses fewer or
the same number of logic cells and/or levels of logic
than Synopsys and SIS in all circuits except cordic,
rd84 and t481. For very simple circuits such as conl
and xor5, XC6200_Syn performs identically to Synop-
sis.

The density p in definition 6 indicates the relative
complexity of a circuit. For high density circuits as
defined here, XC6200 Syn performs better; for low
density circuits, XC6200_Syn always performs worse
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Table 1: Comparison of results for small benchmarks

Circuits XC6200_Syn SIS Synopsys
i o] U L D CPU U L D CPU U L D

Sxpl 7 10 40 6 27.8 3.4 73 18 78.9 125 69 8 363

9sym 9 1 23 8 35.2 8.7 169 15 77.9 64.8 30 8 333

b12 15 9 53 8 378 315 54 7 29.6 6.5 57 6 24.0

clip 9 5 73 8 389 157 100 19 883 271 79 10 435

coni 7 2 12 4 148 0.7 12 4 16.6 2.7 12 4 148

cordic 22 2 47 22 984 2316 40 9 341 20253 49 8 305

inc 7 9 68 6 27.8 6.9 82 19 916 15.8 90 8 317

misex1 8 7 32 5 213 25 36 12 56.8 6.1 46 6 25.0

rd53 5 3 15 4 185 3.7 22 7 287 4.2 12 5 213

rd73 7 3 29 6 28.7 4.4 40 12 537 13.7 20 7 296

rd84 8 4 40 7 333 14.0 88 19 877 37.3 26 7 305

sqrt8 8 4 31 7 29.6 2.7 49 12 55.0 5.8 37 8 314

squard b 8 30 4 185 5.1 46 10 48.4 5.4 40 7 259

1481 16 1 19 15 69.6 41.9 15 4 14.8 331 19 5 19.4

xorb 5 1 4 3 11.1 1.2 4 4 17.6 0.9 4 3 1.1
Table 2: Comparison of results for large benchmark circuits
Circuits XC6200_Syn SIS Synopsys

i o] p U L D CPU U L D CPU U L D

alud 14 8 5.03 555 13 69.1 399.4 183 20 921 13233 761 17 86.6
apex4 9 19 520 885 83.0 390.9 1919 123 776.3 34155 1918 15 92.3
bw 28 0.70 95 4 41.2 10.3 123 22 119.8 32.2 138 7 42.6
duke2 22 29 0.62 333 17 86.7 78.4 320 20 1104 97.7 294 7 53.4
ex1010 10 10 105 1042 9 109.7 409.4 2379 17 78.5 4409.6 1925 16 102.2
exbp 8 63 047 240 7 47.1 90.1 274 16 78.4 280.6 289 7 53.7
misex2 25 18 0.18 90 7 315 7.8 81 8 35.2 1.1 82 8 33.3
misex3 14 14 243 474 13 74.9 582.4 522 23 108.1 887.1 686 16 79.3
misex3¢c 14 14 195 372 13 67.4 147.9 389 51 2235 993.3 461 15 60.1
sao2 10 4 200 78 9 58.3 7.8 99 21 88.1 24.7 114 12 47.2
seq 41 35 0.88 1259 21 119.4 3367.3 1399 28 1469 17485 1321 19 107.1
table3 14 14 3.83 747 13 99.4 142.4 693 87 463.8 13141 891 12 88.5
tableb 17 15 2.61 666 16 100.3 151.7 703 25 1312 11625 782 17 78.6

than either Synopsys or SIS except with ex5p. The test
results for all the high density benchmark circuits and
three of the low density circuits, ex35p, duke2, and
misex2 are listed in Table 2. For example, for apex4,
which has a density of 5.18, XC6200_Syn is considera-
bly better than both Synopsys and SIS. On the other
hand, for misex2 and duke2, with densities of 0.18 and
0.52, respectively, XC6200 Syn performs worse than
Synopsys. Another 11 benchmarks with the property
similar to misex2 and duke2 are omitted from Table 2.

It is obvious from Table 2 that XC6200_Syn is suita-
ble for synthesising high density circuits where the
product i*o is small. This is because XC6200_Syn rep-
resents Boolean networks as BDDs, and the optimisa-
tion procedure relics heavily on the ability of the
algorithm to find an optimal variable order. This
becomes increasingly difficult as i*o product is large. In
contrast, both SIS and Synopsys use an algorithm
which is independent of the number of input and out-
put nodes, but yields good results as long as the
number of prime implicants is reasonably small. Note
also that XC6200 Syn is considerably better than SIS
on timing performance. This is because SIS initially
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performs multilevel minimisation, then performs IF-
THEN-ELSE decomposition one node at a time. For
complex functions, this may result in a very long path.
The results here also show that the number of logic lev-
els only provides a rough estimate on timing. Delay in
a mapped circuit includes fanout and routing delays
which are not reflected in the levels of logic.

Finally, all benchmark circuits reported in [4] were
tested and XC6200 Syn was found to use 39.5% fewer
cells with one per cent improvement in the total levels
of logic.

5 Conclusions

XC6200 Syn, an additional package to Berkeley’s SIS
environment for XC6200 FPGA logic synthesis, is pro-
posed in this paper. Since Boolean functions are repre-
sented as BDDs, memory usage is more efficient and
the quality of synthesis is no longer limited by the
number of prime implicants. A genetic algorithm is
employed to solve the NP-complete problem of BDD
variable ordering. This enables a near optimal result to
be obtained within reasonable CPU time. Finally, by
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combining logic synthesis with technology mapping,
and by exploiting the inherent architecture of the
XC6200 function unit, our algorithm yields better
results in terms of size and delay when compared with
SIS and Synopsys for the category of the LGSynth93
benchmark circuits where the i*o product is small. This
suggests that, for the best results, one might need to
choose different synthesis algorithm depending on cer-
tain properties of the circuits.
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8 Appendix: Pseudocode of the dynamic GA
algorithm for variable ordering

Dynamic_Genetic _Algorithm(benchmark) {
for(K1 =0, KI < MAX POPULATION) {
Random_Order();
BDD Size();
Initial Roulette Wheel Selection();
¥
while( Generation_Remaining) {
Crossover( );
Mutation();
BDD Size();
random_number = rand( ) %100,

if(random_number < HYBRID_RATE) Heu-
ristic_Parent_Selection( ),

else Roulette Wheel Parent Selection();
if(improvement found in new generation) {
decrease Population_Size by 6,;
decrease Mutation Rate by L,
increase Generation_Remaining by ¥,
1 else
increase Population_Size by &;
increase Mutation Rate by L,
decrease Generation Remaining by v,
}
if ( Population Size) > MAX POPULATION)
decrease Generation_Remaining by 15,
Population Size = max(MIN_POPULA-
TION, min(Population_Size, MAX POPU-
LATION));
Mutation_Rate = max (MIN_RATE, min(-
Mutation_Rate, MAX RATE));
t
Copy Best_Ordering();
BDD 2 Network();
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