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Extended Summary

Introduction

During the past 10 years a revive interest in asynchronous circuits has emerged as a mean to

overcome some of the design difficulties presented by the sub-micron and sub-nanosecond VLSI

technology available today. As the transistor feature size decreases, VLSI designers are now

incorporating millions of transistors within a single chip. This increase in density has also been

accompanied by a significant reduction of the switching speed at the gate level. All these

technological improvements do not come free and designers are now face with some very

difficult design issues. The interconnection delay is becoming a major problem, demanding

extensive post layout timing simulation and very complex schemes to distribute the global clock

signal. The limitations of the synchronous paradigm have been widely documented (see for

example [Sei84].) The most commonly referred disadvantages of synchronous circuits are: 1.

The maximum frequency of operation is limited by the worst case timing on the critical path and

by the worst case clock skew within the system; 2. There is a waste of power by the constant

toggle of the clock line in portions of the circuit which are not required at a given time, and 3.

Synchronous circuits exhibit little composability.

In contrast to these problems, asynchronous circuits could potentially exhibit an average or

best case delay, low power consumption, ease of global timing issues, better technology

migration potential and automatic adaptation to physical properties [Hauc95]. Several new

asynchronous techniques have been proposed. They, have been successfully applied to the

design of some fully asynchronous integrated circuits (see for example

[Furb95][Kess95][Will91]).  Although much research is still needed, the results are very

encouraging, with some designs having made significant improvements in speed and power

consumption.
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In this paper,  however,  we will focus on an additional metric, one which is constantly

mentioned as a potential advantage of asynchronous systems, but which is usually neglected on

the performance evaluation of a system. This fourth metric is commonly referred as the

“modularity” or “composability” principle [vBer93]. Analogous to software engineering, in

which object oriented programming allows easy “interconnection” and “reusability” of software

modules, hardware designers would like to be able to interconnect different, previously

designed, hardware modules without incurring long design cycles. Within the synchronous

paradigm the composability principle is difficult to meet, and many post-layout timing

verification and re-routing iterations are often required.

The asynchronous paradigm should, in principle, provide a great amount of composability

and, therefore, reduce considerably the design time of a VLSI system. However, if conventional

delay insensitive techniques are blindly applied to a large system, the final circuit will normally

consume a prohibitively large amount of silicon area. This penalty arises primarily from the

difficulty of providing dedicated data paths for all the interconnected modules. A popular

technique to alleviate this problem is to use one or more common buses. By doing this, a single

set of wires is used to interconnect several blocks within the architecture. This approach offers

the benefit of increasing the complexity of the system linearly with each new module added to

the system. Synchronous architectures will normally use tri-state logic to form the bus.

However, the use of tri-sate logic is not straightforward when implementing quasi delay

insensitive circuits and designers have avoided them altogether [Nany94] or used very wide

distributed OR gates [Mart89]. Specifically, two major obstacles are apparent when trying to use

tri-sate logic within an asynchronous circuit: violation of the isochronic fork assumption and the

non-deterministic behaviour of “floating” logic (the former problem is identified in [Nany94],

while the latter is reported in [Cho92]).

Design of a Dual-Rail Quasi Delay-Insensitive Bus

In this section we present the design of a system bus for an asynchronous architecture which

overcomes the problems described above. Because there is no global clock, each transaction on

the bus should be self-timed. That is, a handshake protocol should be established between the

sender and the receiver. A bus typically has many branches, with each of them varying

considerably in length and capacitance. Therefore, the propagation delay from any two pairs of

nodes in the bus also varies considerably. To compensate for these differences, a common

solution is to use a delay insensitive code on the bus [Verh88]. Of all the possible codes the most

popular is the so called Dual-Rail Return-to-Zero. In this code, two wires are used for every bit

in the bus. The two wires encode the value of the corresponding bit, where the value 01 denotes

a binary zero and 10 denotes a binary one. The code 00 is used as a spacer and should always be

present between two bit values. By using this code, a destination port will always know when

there is a valid word on the bus no matter how long it takes the signal to propagate from the
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sender. Also, “nearby” nodes can latch the bus value as soon as it arrives and, therefore, do not

have to pay the worst case propagation time for the entire bus (as is required in a synchronous

circuit).

The biggest problem for the implementation of a dual rail bus has to do with the

relinquishing of the bus. Once a receiver acknowledges the transaction, the corresponding

sender, should stop driving the bus so that the control unit can select a new pair of nodes for the

next transaction. When the control unit turns over the bus from one sender to another, three main

issues should be considered. First, enough control logic should be incorporated to avoid two

nodes from simultaneously driving the bus, and therefore producing a charge sharing problem

(this problem was identified in [Cho92]). Second, when the bus is not driven by any node,

provision must be taken to guarantee that the charge in the bus is retained, otherwise, the delay

insensitivity of the code would be lost. Finally, before a new cycle starts, it should be guaranteed

that all the branches in the bus have gone back to zero as to avoid the subsequent selected

destination node from erroneously latching the data from the previous cycle

We have designed all the required modules to build a quasi-delay insensitive dual rail bus

[Mol96]. To illustrate the principle of operation we offer figure 1 as an example of a one bit bus.
In the example two read registers (R0 and R1) and two write registers (W0 and W1) are shown.
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Figure 1. Example of a one bit quasi-delay insensitive bus. The input and output
registers are explicitly shown for clarity but are not part of the bus circuitry (see text)
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Signals rdi and rai are the read and read acknowledge signals respectively for port Ri, while wrj

and waj, are the write and write acknowledge handshake signals for the write port Wj. All these

signals are fed into the control unit (not shown in the figure).

A typical bus cycle between source node Ri and destination node Wj is as follows (see also

figure 2): The control unit activates signals rdi and wrj concurrently. When register Ri has valid

data, it will pull up the required bus wire. This value will propagate along the bus and, because
of the delay insensitive code used, register Wj will detect the arrival of valid information. After

latching the new value, register Wj will acknowledge the cycle through signal awj. However,

before starting the return to zero phase, register Ri must wait for the whole bus to be stable. This

is done with a Joint operation [Suth89] (provided by the C-element) of all the fork acknowledges
(af) coming from all the destination ports. After this, port Ri will activate the pull-down and will

start the return to zero phase. Again, port Ri will wait for all destinations port to signal that the

bus has return to zero. At this point Ri stops driving the pull down on the bus and the control

unit is signalled to indicate that it is now safe to initiate a new transaction.

rdi

rai

wrj

waj

aw

af

DATA VALID

Read Port 
Control Signals

Write Port 
Control Signals

Global Bus 
Control Signals

Figure 2. Timing diagram for a transaction between
output port Ri and input port Wj (see text)

Notice how in between two transactions, the bus is not driven. To prevent the bus from

loosing its charge, and therefore violating the delay insensitive code, weak inverters are provided

on every bus line to conserve the charge [Cho92].

Extension to an N-bit bus is achieve by the replication of the components shown in figure 1.

It is common practice to use a single acknowledge signal for an N-bit bus (instead of N signals).

In general, completion trees should be provided to merge the completion of all bits within a

single signal. However, in many cases a single bit in the bus can be used to signal the completion

of the whole word [Meng89]. Also, but beyond the scope of this paper, the circuitry of the
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register can be reduced by applying an extension to the isochronic fork assumption as proposed

in [vBer95].

Conclusions

Traditionally designers of asynchronous circuits have avoided the use of tri-state buses due

to the undesirable effects of the heavily loaded lines and the use of “floating” logic. In this

paper, however, we have shown that it is possible, within some reasonable timing assumptions,

to design a quasi-delay insensitive bus structure.

The solution presented in this paper offers the benefit of exploiting the composability

principle of asynchronous circuits. Modules can easily be added and removed from a system

with very little additional design effort. Also, the complexity of the circuit grows linearly with

each new module added to the architecture.
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