
FLEXIBLE RECONFIGURABLE MULTIPLIER BLOCKS SUITABLE FOR
ENHANCING THE ARCHITECTURE OF FPGAs

Simon D. Haynes*, Antonio B. Ferrari**, Peter Y. K. Cheung*

*Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road,
London, SW7 2AZ, England
Fax: (+44 0171 581 4419)

** Departamento de Electrónica e Telecomunicações, Universidade de Aveiro,
3810 Aveiro, Portugal

email: s.d.haynes@ic.ac.uk - ferrari@inesca.pt - p.cheung@ic.ac.uk

Abstract
A new architecture is proposed for configurable blocks
which can be used to dynamically construct multipliers. An
array of these blocks are capable of being configured to
perform any 8m by 8n bits signed/unsigned binary
multiplication. The new design is based on the radix-4
overlapped multiple-bit scanning algorithm. This yields
excellent multiplication times, at the same time allowing
multiply accumulate (MAC) operations, without
modification. The new design is compared to our previous
scheme, and shown to be both faster and require fewer
transistors.

Introduction
As the complexity of field-programmable gate arrays
(FPGAs) relentlessly increases, FPGAs are beginning to be
used in application domains requiring intensive arithmetic
operations, such as signal processing. Whilst manufacturers
have begun to address this requirement by providing FPGAs
with some resources dedicated to improving addition (1), the
use of FPGAs for multiplication (particularly non-constant
multiplication) results in slow and expensive solutions (2).
Hence the embedding of dedicated multiplier blocks into the
FPGA structure appears an attractive proposition, capable of
offering good performance with an efficient use of silicon
area. To keep the FPGA structure application-generic, these
new blocks should be able to handle both signed and
unsigned multiplication and to accommodate the different
operand word lengths typical of the various application
domains.
Typically 8-bit data formats are used in graphics and video
processing, 16-bit in audio applications and to keep full
precision when processing 8-bit data, whereas 32-bits are
used for some 3D graphics algorithms. Hence an 8X8
multiplier is a sensible choice for the basic block.
Here we propose a design based on the radix-4 overlapped
multiple-bit scanning algorithm, capable of being easily
cascaded to create multipliers of size 8n by 8m. It is able to
perform both unsigned, and signed two’s complement

multiplication. This new scheme is referred to as the
Modified Flexible Array Block (MFAB) scheme in this
paper.

Previous Designs
Hwang has suggested constructing Universal Multiplication
Networks using small (4 bit) Programmable Additive
Multiply (PAM) modules (3). Whilst simple in design, these
networks have the drawback of slow multiplication times,
and a non-scaleable connection pattern. We previously
suggested a 4 bit flexible block which could be cascaded to
perform any 4m by 4n signed/unsigned two’s complement
multiplication (4), using a modified version of the Baugh-
Wooley algorithm (5). These blocks are hereafter referred to
as FABs. These have considerable improvements over the
PAM schemes, such as a scaleable interconnect and faster
multiplication times, which makes them more suitable
candidates for inclusion within an FPGA structure. However,
they still have slow multiplication times when compared to
fixed operand schemes, such as the Wallace tree approach
(6)

New Design
We propose the design shown in Fig. 1 for the modified
flexible 8x8 multiplier block. The MFAB block is based on
the radix-4 overlapped multiple-bit scanning algorithm (7).
The blocks consists of four key parts : i) The multiplier
decoder block, at the top of each column which each take
two bits of the multiplicand and generate the necessary
control signals for the column (i.e. whether to add -2,-1,0,1,
or 2 times the multiplicand). ii) The main array of 8 by 4
units which performs the bit reduction, and is used to form
part of the larger bit reduction array required when the
blocks are cascaded. iii) The extra units which are required
if the block is on the edge of a larger array (i.e. it uses the
MSB of the multiplier or multiplicand); these are necessary
for the blocks to be able to cope with both signed and
unsigned multiplication. iv) The adders which produce the
final output. The top adder is used when the block uses the
LSB of the multiplicand, and the adder to the right of the

array is used when the block utilises the MSB of the
multiplicand. Each block is configured using the six
configuration bits Ma, Mb, Cl, Cr, Ct, and Cb as shown in

Table 1. Fig. 2 shows how 4 MFAB blocks can be used to
construct a 16x16 two’s complement signed multiplier.

BIt Reduction Array (8x4 Full Adders)

S
ig

n
C

or
re

ct
(8

 F
ul

l A
dd

er
s)

Σ

A1:0 A3:2 A5:4 A7:6

Σ

LEFT16:0 RIGHT16:0

BOTTOM17:0

TOP17:0 Q7:0

Q15:8

TR2:0

BL2:0

A7:0

B7:0

Σ7:0

Column control signals

Extra Bit Reduction Row + Sign
Extend (2x4 Full Adders)

 Fig. 1 Simplified schematic diagram for an 8x8 MFAB which performs the basic operation Q=A*B+Σ

(1,0,1,0,1,0)

LEFT16:
0

RIGHT16:
0

BOTTOM17:0BL2:0

TR2:0

A7:0

B7:0

Σ7:0

TOP17:0

Q15:8

Q7:0

(0,0,0,1,0,1)

LEFT16:
0

RIGHT16:
0

BOTTOM17:0BL2:0

TR2:0

A7:0

B7:0

Σ7:0

TOP17:0

Q15:8

Q7:0

(0,1,0,1,1,0)

LEFT16:
0

RIGHT16:
0

BOTTOM17:0BL2:0

TR2:0

A7:0

B7:0

Σ7:0

TOP17:0

Q15:8

Q7:0

(1,1,1,0,1,0)

LEFT16:
0

RIGHT16:
0

BOTTOM17:0BL2:0

TR2:0

A7:0

B7:0

Σ7:0

TOP17:0

Q15:8

Q7:0

B7:0

A7:0 A15:8

B7:0

A15:8

B15:8B15:8

A7:0

7:0 15:8

23:16

31:24

Q31:0

(Ma,Mb,Cl,Cr,Ct,Cb)

Fig. 2 Signed two’s complement 16x16 multiplier constructed from four 8 bit MFABs

TABLE 1
CONFIGURATION SETTINGS FOR THE MODIFIED FLEXIBLE

MULTIPLIER BLOCK

Comparison with existing designs
The modified flexible array block (MFAB), is compared to
8x8 PAMs, as described by Hwang, in terms of speed, and
estimated transistor count. It is also compared to our
previously reported scheme, referred to here as FABs. In
order to give a fair comparison 8x8 FABs, and PAMs have
been used. In the case of both the FABs & MFABs carry-
select adder schemes have been used to implement the final
column adders, to yield improved multiplication times.

TABLE 2
APPROXIMATE NUMBER OF TRANSISTORS REQUIRED FOR

VARIOUS MULTIPLIER SCHEMES

Table 2 shows that, in terms of the numbers of transistors
required, the MFAB is more costly (≈30%) than the PAM
reconfigurable scheme, this is largely due to the expensive
carry-select adder scheme used in the final column.
However, it is less costly then the FAB scheme (≈-7%).

TABLE 3
APPROXIMATE FULL ADDER DELAYS OF VARIOUS MULTIPLIER

SCHEMES

Table 3 shows the total delay, in terms of full adders, for the
PAM, MFAB, and FAB schemes when 8x8 blocks are used
to construct multipliers of varying sizes. The speed of the
MFAB is much better than the PAM reconfigurable array
(286% faster, for a 32x32 multiplier), and enjoys a
considerable improvement over the FAB scheme (52%
faster).

Another very important figure of merit for the blocks is the
number of reconfigurable connections required by each
scheme, shown in Table 4.

TABLE 4
COMPARISON OF THE NUMBER OF RECONFIGURABLE

CONNECTIONS REQUIRED BY EACH SCHEME

It has been reported that the reconfigurable interconnection
structure a typical FPGA takes up ≈90% of the silicon die
area of the device (8). Indeed, this is the main reason why
the MFAB provides significant saving in silicon area over
the conventional FPGA implementation. It is therefore of
paramount importance that the number of reconfigurable
interconnections is kept to an absolute minimum. For both
the MFAB and FAB schemes the majority of the
interconnect for each block connects to the adjacent blocks
in a regular and scaleable way, which means that dedicated
interconnect can be utilised. This leaves only the actual data
inputs and outputs to be routed to the reconfigurable
interconnect (32 in the case of the FAB and 40 in the case of
the MFAB, since it has an additional summing input). The
PAM scheme requires 48 reconfigurable interconnects for an
8x8 block.
The MFABs also have provision for an extra summing input
(labelled as Σ7:0 in Fig. 1), which is not available without
additional circuitry using the FABs. This enables simple
implementation of multiply-accumulate operations (MACs),
and FIR filters.

Comparison with conventional FPGA structures
Here the MFAB scheme is compared to multipliers
implemented using Altera’s FLEX10K, and Xilinx’s 4000
series FPGAs, in terms of total silicon die area required.
An estimate of transistor count has been chosen as the best
metric for comparing the relative die area for each scheme.
We believe this to be a reasonable assumption because most
modern processes have a large number of metal layers,
making fixed routing less of a bottle neck. In order to give a
fair comparison, the number of transistors given in this
section includes any required for the configuration SRAM,
and reconfigurable routing required by the cells.
For both conventional FPGA architectures and the MFAB
scheme the amount of hardware required to implement an n
x n bit multiplier is approximately proportional to n2, for
n>8 and n a multiple of 8.
A Xilinx 4000 FPGA requires, on average, 1.14*n2 CLBs
(Configurable Logic Blocks) to implement an n x n bit
multiplier (73 CLBs are required for an 8x8 multiplier (10)).
For the Xilinx 4000 part we estimate each Cell (CLBs in this
instance) requires approximately 4000 transistors. This
figure includes all transistors required for configuration,
routing, and CLB logic.

From extensive experimentation, we have found

Bit Meaning
Ma High if A7 is the MSB of a signed number.
Mb High if B7 is the MSB of a signed number.
Cl High if A0 is not the LSB of the multiplicand A
Cr High if A7 is not the MSB of the multiplicand A
Cb High if B7 is not the MSB of the multiplier B
Ct High if B0 is not the LSB of the multiplier B

Multiplier Size 8 x 8 16 x 16 32 x 32 64 x 64
Hwang’s PAMs 1 840 7 360 29 440 117 760
FAB (8x8) 2 558 10 232 40 928 163 712
MFAB (8x8) 2 380 9 520 38 080 152 320

Multiplier Size 8 x 8 16 x 16 32 x 32 64 x 64
Hwang’s PAMs (8x8) 16 48 112 240
FAB (8x8) 14 24 44 84
MFAB (8x8) 11 17 29 53

Scheme Number of reconfigurable connections
required for a 8x8 reconfigurable block

Hwang’s PAMs 48
FAB (8x8) 32
MFAB (8x8) 40

that the Altera Flex10K part requires, on average, 0.26*n2

LABs (Logic Array Blocks) to implement an n x n
multiplier. We have estimated that each LAB requires about
13700 transistors, for configuration, routing, and cell logic.
(The LAB a courser grain cell than the CLB)
Using the MFAB scheme, each 8x8 Cell requires
approximately 7000 Transistors (2600 for the basic MFAB +
4400 for the reconfigurable routing), with 0.01563 MFABs
being required per bit2

Table 5 shows that the MFAB scheme requires about 30
times less die area than either the FLEX10k, or Xilinx 4000
FPGA.
This saving is largely due to the reductions in the
reconfigurable interconnect required, which normally
dominates the die area of a typical FPGA.

TABLE 5
COMPARISON OF THE DIE AREA REQUIRED FOR IMPLEMENTING

MULTIPLIERS USING CONVENTIONAL FPGAS AND THE MFAB
SCHEME

(all figures include transistors for logic, configuration, and
signal routing)

Block Size
This idea is easily extended to arbitrary block sizes.
Although a design for a 8x8 block is given here, it would be
trivial to extend the design to create any n by m block. The
estimated transistor counts for the FAB and MFAB schemes
if n by n blocks are used is given by:

MFAB n ntran = + +16 154 5 1202 . (1)

FAB n ntran = + +29 63 1982 (2)

(Assuming that a fast carry-select adder scheme is used in
the final column in both cases)

This demonstrates that the MFAB scheme uses less
transistors than the FAB scheme for n>7, and that the saving
from using MFAB blocks becomes larger the greater the size
of the blocks used. Of course the larger the block size the
more inefficiencies will result for some multiplier sizes. (e.g.
a 4x4 multiplier implemented in a 32x32 block is more
inefficient than the same multiplier being implemented in a
8x8 block)

Integration into a conventional FPGA structure
We suggest using dedicated connections between the
flexible blocks for the left, right, top, and bottom
connections. The large number of metal layers now used in
modern VLSI processes means that this can be done with
little cost. Only the three inputs A7:0, B7:0, and Σ7:0, if
used, with the output Q15:0 need to be routed to the

reconfigurable interconnect, giving a total of 40
reconfigurable connections for each MFAB block.
Since the saving in silicon area has been estimated to be so
significant (≈30 times), even if only 4% of the MFABs are
used in the FPGA, there will be a net saving in silicon area
when compared to the conventional FPGA architecture.

Conclusion
We have proposed a design for a new reconfigurable flexible
multiplier considerably faster than existing reconfigurable
multipliers reported previously in the literature, and using
less transistors than the original FAB scheme. Our new
scheme keeps the number of reconfigurable interconnections
required by each block to an absolute minimum (40 per 8x8
block). The new design also features an additional summing
input that allows for multiply accumulate operations, not
present in the FABs. We estimate that this design is
approximately 30 times more efficient in terms of silicon
area than using a conventional FPGA structure to implement
the equivalent multiplier. Such a design should free
substantial amounts of the general resources of an FPGA
when used for applications requiring multiplications.

References
(1) Altera Corporation, “Ripple-carry adders in FLEX 8000 devices”,

Application Brief 118, May 1994, ver. 2
(2) O.T. Albaharna, P.Y.K. Cheung, and T.J. Clarke, “On the viability

of FPGA-based integrated coprocessors”, IEEE Symposium on
FPGAs for Custom Computing Machines, April 17th - 19th 1996

(3) K. Hwang, “ Computer arithmetic Principles, Architecture, and
Design”, (John Wiley & Sons, 1979, 1st edn.), pp. 194-197

(4) S.D. haynes, and P.Y.K. Cheung., “Configurable multiplier blocks
for use within an FPGA” IEE Electronics Letters, 1998, Vol. 3,
No. 1,pp. 638-639

(5) A.R. Baugh, and B.A. Wooley, “A two’s complement parallel
array multiplication algorithm”, IEEE Trans. Computers, Vol. C-
22,No. 1-2, December 1973, pp. 1045-10471

(6) C.S. Wallace, “A suggestion for fast multipliers’, IEEE Trans.
Electronic Computers, Vol. EC-13, February 1964, pp. 14-17

(7) L.P. Rubinfield. “A Proof of the Modified Booth Algorithm for
Multiplication”, IEEE Transactions on Computers, October 1975,
pp 1014-1015

(8) A. Dehon, “Reconfigurable Architectures for General-purpose
Computing”, M.I.T. A.I Technical Report No. 1586, October
1996, p 7

(10) Xilinx, “The Programmable Logic Data Book”, Version 1.02,
Chapter 4, June 1, 1996, p. 7

Implementation Trans. Per
Cell

Cells
Per Bit2

Trans.
Per Bit2

Relative
Area

Altera Flex10K 13 700 0.26 3 562 33
Xilinx 4000 4 000 1.14 4 560 42
MFABs 6 892 0.01563 108 1

