
BIST Based Interconnect Fault Location for
FPGAs

Nicola Campregher1, Peter Y.K. Cheung1, and Milan Vasilko2

1 Department of EEE, Imperial College, London, UK.
2 School of Design, Engineering and Computing, Bournemouth University, UK.

Abstract. This paper presents a novel approach to interconnect fault
location for FPGAs during power-on sequence. The method is based
on a concept known as fault grading which utilizes defect knowledge
during manufacturing test to classify faulty devices into different defect
groups. A Built-In Self-Test (BIST) method that can efficiently identify
the exact location of the interconnect fault is introduced. This procedure
forms the first step of a new interconnect defect tolerant scheme that
offers the possibility of using larger and more cost effective devices that
contain interconnect defects without compromising on performance or
configurability.

1 Introduction

The area occupied by wiring channel and interconnect configuration circuits
in an FPGA is significant, occupying 50 to 90 percent of the chip area [1].
With current trends aiming to reduce the area occupied by wire segments in
the routing channels, wire width and separation have been reduced. This has
in turn led to higher occurrences of wiring defects, such as breaks and shorts,
and manufacturing yield decrease [2]. As an alternative to increase once again
wire widths and separation, we propose a method to categorize devices exhibiting
similar functional defects, in order to provide a solution to tolerate such physical
defects and increase manufacturing yield.

Our work aims to take advantage of the deep knowledge manufacturers have
of the defects occurrences in their devices [11], while trying not to affect the
user’s load and device performance.

This paper will introduce a new method to categorize faulty devices, as well as
providing test procedures to locate device defects whenever needed. The Built-In-
Self-Test (BIST) requires a relatively small amount of configurations to efficiently
locate and identify a specific type of defect, determined by the defect grade of
the device. Our BIST architecture is easily scalable and can detect multiple
functional faults.

This paper will introduce a new approach to defect tolerance. In Section 2
a brief summary of the relevant work carried in this field is given. We go on to
provide essential background information in Section 3, and introduce the fault
grading concept in Section 4. Section 5 will introduce the testing procedure.
Section 6 provides some details of the implementation, and finally, in Section 7
we give a brief summary and describe future developments of the work.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 322–332, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

BIST Based Interconnect Fault Location for FPGAs 323

2 Previous Work

There are two main strategies to interconnect testing in FPGAs. One is the ap-
plication of BIST approach to interconnects [3,7,8,9]. The BIST technique pro-
posed by Stroud et al. [3] is a comparison based approach. Two WUTs (Wires
Under Test) receive identical test patterns and their outputs are compared by
ORAs (Output Response Analyzers). This approach however fails to detect mul-
tiple faults that have identical faulty behavior in the two WUTs groups. This
BIST technique is also aimed at dynamic faults, and can be used during device
operation. It provides complete fault coverage, however it requires an external
reconfiguration controller.

A similar concept has been proposed by Niamat et al [7]. Two sets of 4 wires
are applied with test vectors and their output compared. The ORA in this case
does not produce a pass/fail indication but a bit sequence. The output response
is then stored in a LUT and used at later stages to locate the position of the
fault.

A different implementation based on parity check was proposed by Sun et al
[10]. In this approach the outputs of the WUTs, connected in snake-like chains,
are checked for parity against the parity from the original test vectors at the
ORA to produce a pass/fail result. This approach however, due to the way par-
ity checking is done, has only 50% error detection efficiency and is very time
consuming. The authors in [8] presented a BIST scheme for cluster-based FPGA
architectures. Based on the concept of test transparency, they define configu-
rations which enable test access to high density logic clusters embedded within
each FPGA tile.

In general, the BIST approaches reported so far require many configurations
and are unsuitable if fast testing is needed. The other strategy is a more classical
approach not using BIST. Various researchers have proposed different models
[4,5,6], based on different assumptions. All these methods, albeit very fast and
compact, are limited in functionality by the number of I/O pins needed to access
the chip at various stages of the testing process. They are thus unsuitable to
applications requiring resource inexpensive testing.

3 Background

3.1 SRAM FPGA Architecture and Physical Layout

The target FPGA architecture is an island-style FPGA. As stated in previous
sections, our work is targeting problems that may arise as devices grow in size.
We are therefore targeting the latest top-end devices [12,13]. These have clear
architectural characteristics, such as hierarchical routing and multiple LUTs
in their configurable logic blocks. Because of their advanced development, the
switch matrices inside these elements are very complex. Unfortunately, not much
is known about the their structure and connectivity. We will therefore assume
a simple switch matrix block, where any incoming wire can connect to only one

324 N. Campregher, P.Y.K. Cheung, and M. Vasilko

other wire in all 3 directions. This simplified model, while sufficient to demon-
strate basic principles of our method, can easily be extended to cope with com-
plex switch matrices.

Furthermore, we make the assumption that the defect occurs into only one
type of interconnect resource and that all others are functionally faultless. This
in turns leads to the assumption that all wires of the same segment type lie on
the same physical layer. Furthermore, wires of the same type in the horizontal
and vertical channels do not lie in adjacent layers, thus eliminating the issue
of cross-connections between them. All these assumptions can easily be relaxed
without affecting the basic method described.

3.2 Fault Models

Our structural fault model only targets FPGA’s interconnect resources. The in-
terconnect structures of a typical FPGA include wires and programmable switch
matrices.

Typical faults affecting wirings are short and open faults. Switch Matrices
faults are limited to switches being stuck-off or stuck-on. Stuck-off faults are
treated in the same way as wire opens. Stuck-on faults, however, are more diffi-
cult to detect and diagnose. Stuck-on faults mean that two wires are permanently
connected via the switch matrix. In the presence of stuck-on faults the signal is
propagated through an unwanted resource and hence the fault location procedure
has to account for all possibilities. This means that all possible combinations of
switch matrix configuration have to explored. Figure 1 shows all the possible
fault occurrences.

CLB CLB CLB CLB

Length 2 Lines

Length 3 Lines

Stuck-
on

BridgeOpen Stuck-off

CLB CLB CLB CLB

Length 2 Lines

Length 3 Lines

Stuck-
on

BridgeOpen Stuck-off

Fig. 1. Fault Models

4 Fault Grading

Devices undergo a multitude of manufacturing tests at various stages of the
manufacturing process. Some degree of test is performed at the wafer level,

BIST Based Interconnect Fault Location for FPGAs 325

where defective devices are marked and discarded after cutting. Parametric tests
are performed on packaged devices; failing devices are once again discarded,
whereas devices that pass parametric tests are ”binned” into different speed
categories depending on how they performed during tests. Failed devices are
mainly discarded even though the total amount of resources affected by a physical
defect is minimal. Some of these devices can be used, albeit not in full capacity.
Manufacturers have already looked at ways to reuse faulty devices. One such
solution is offered by Xilinx with their Easypath devices[14]. Easypath devices
are tested only for the resources used for a specified design. This means that
devices do not have to pass all manufacturing tests, but only a limited number
of them. Customers are then offered with devices mapped exclusively for their
design, but at a reduced cost. They however lose the possibility to reconfigure
the devices for future upgrades.

Instead of using the Easypath approach, we propose that devices can be
categorized with respect to the functional fault they exhibit. Functional faults
are independent of physical faults, such as open vias or masking defects found
during manufacturing tests [11]. A specific functional fault only affects part of
the device, and if it can be avoided, the rest of the chip can be made to work with
only slightly altered characteristics. Our fault grading scheme aims to provide
fault categories for defective devices that have failed similar functional tests.

The concept of fault grading is very similar to that of speed grading: devices
will always exhibit different characteristics, and are therefore categorized accord-
ing to specific parameters. Devices are marked and designs compiled according to
those specific parameters. It is therefore possible to generate new categories, and
using this information defective devices can be used to implement the majority
of designs.

The fault grades contain information about the fault the device exhibits. The
amount of information the fault grades contain is a trade-off between what is
needed in order to avoid the fault and generalization of the defect. One extreme
is a fault grade that contains the exact location and type of fault. The other
extreme is a simple tag identifying a faulty device. A good compromise is a
fault grade that indicates what type of resource is affected. This leads to a
limited number of fault grades, that contain enough information to generate
test configurations to locate the fault in the device during power-on.

As an example, consider a Xilinx Virtex II PRO device and its general routing
matrix [12]. This device offers 4 different types of lines: direct connections, double
lines, hex lines, long lines. Four fault grades could be used to categorize fault on
the wire resources. Two grades could be used for switch matrices faults, one to
identify stuck-on faults and one for stuck-off faults. These grades are chosen with
a defect tolerance scheme in mind, and how to avoid certain defects with the
lowest overhead possible. Assuming that all other resources are unaffected, we
can efficiently test all the interconnects of the same type that could possibly be
faulty, during the power-on sequence, in order to provide an alternative design
to avoid the faulty resource.

326 N. Campregher, P.Y.K. Cheung, and M. Vasilko

5 Testing Strategy

We propose a BIST methodology to detect and diagnose a functional fault on
a known interconnect resource type. Our strategy consists of a point to point
analysis, where a wire is forced to a logical value at one end and observed at
the other. If the observed output is not equal to the input, a fault is present.
A BIST environment consists of the Test Vector Generator(TVG), the Wires
Under Test(WUT), and the Output Response Analyzer(ORA). TVGs select the
pattern of 0’s and 1’s to be applied on the WUTs, while the ORAs compare the
the WUTs response against a predefined sequence and issue a pass/fail signal
accordingly.

Considering the nature of modern FPGAs, where routing channels are con-
siderably large, it is feasible to group the Wires Under Test together and perform
an analysis at the ORA of all grouped wires.

TVGs and ORAs can be implemented using CLBs. As most modern devices
are made of large CLBs (comprising of multiple LUTs) we can implement a TVG
and a ORA using a single CLB. The TVG/ORA combinations are arranged in a
chain that spans the entire width or height of the device.When a fault is detected,
a ’fail’ signal is passed on through to the chain end. The propagation within the
chain is synchronized with a clock, so that an ORA in the N th position in the
chain will only be allowed to access the chain at the N th clock cycle. When a
’fail’ signal is detected at the end of chain, the position of the chain in the array
is found by the BIST controller using simple decoding logic. A diagram of such
a system is shown in Figure 2.

TVG
WUT TVG/

ORA

WUT TVG/
ORA

WUT

Fault
Chain

Fault
Chain

Fault
Chain

ORA

1st

Clock
Cycle

2nd

Clock
Cycle

Nth

Clock
Cycle

Test Selector

TVG = Test Vector Generator

WUT = Wires Under Test

ORA= Output Response Analyzer

TVG
WUT TVG/

ORA

WUT TVG/
ORA

WUT

Fault
Chain

Fault
Chain

Fault
Chain

ORA

1st

Clock
Cycle

2nd

Clock
Cycle

Nth

Clock
Cycle

Test Selector

TVG = Test Vector Generator

WUT = Wires Under Test

ORA= Output Response Analyzer

Fig. 2. Testing Strategy

5.1 WUTs Grouping

Taking into account that 4-input LUTs are the main building block in most
modern FPGA, the simplest ORA implementation is by using one such element.
The TVGs are implemented using multiple LUTs, one for each wire in the set
of WUTs. This allows complete independence of test vectors between wires in a
set of WUTs. As a compromise between TVGs and ORAs implementations, it

BIST Based Interconnect Fault Location for FPGAs 327

was decided to group the WUT in groups of 4. This arrangement would require
a single 4-input LUT for the ORA, whereas 4 4-input LUTs would be required
for the TVGs. Such quantities are not uncommon in readily available devices
[12]. The implementation can be altered to best fit any device with different
architectural characteristics. The resulting arrangement is shown in Figure 3.
The dotted lines in Figure 3 represent wires from the adjacent set of wires,
which have to be driven with opposite signals as the adjacent WUT to account
for bridging faults across assigned sets. Those wires are not considered at the
ORA but might nonetheless have an effect on the WUT in case of bridging faults.

TVG
TVG/
ORA

TVG/
ORA

ORA

Fig. 3. Grouped WUTs between ORAs and TVGs

5.2 TVG and ORA Operation

TVGs generate bit sequences to account for all possible faults that could develop
in the interconnect resource. They are implemented as simple look-up tables,
where the output is selected from the Test Selector input. The Test Selector
input is generated from the BIST controller, and is a global signal routed to
all TVGs. For wiring faults, four basic test vectors can detect any defective
occurrence. These, defined as the four basic vectors, are:

– 0000 Tests for stuck at 1 faults.
– 1111 Tests for stuck at 0 faults.
– 1010 No two adjacent wires are applied the same value. Tests for bridging

faults.
– 0101 Alternating 1’s and 0’s, in reverse order from the previous test vector.

Tests for bridging faults.

The basic test vectors can identify the set of WUTs that contains a fault. To
correctly identify the exact faulty wire within a given set of WUTs, extra test
vectors can be used. This second set of vectors is dependent upon the result of
four basic test vectors and is decided by the BIST controller. The function of
the second set of vectors is purely to improve the fault resolution.

The ORA function is to generate a pass/fail signal according to some prede-
fined parameters. The ORA is designed to fit in a single 4-input LUT and under
our scheme, it will issue a ’pass’ signal only if the four WUT have logical values
corresponding to the 4 basic test vectors. Under all other circumstances it will
issue a ’fail’ signal.

328 N. Campregher, P.Y.K. Cheung, and M. Vasilko

5.3 BIST Controller Operation

The BIST controller operation during test is shown in Figure 4. While the test
vectors are being propagated through the chains, the BIST controller checks the
end of all chains for any ’fail’ signal being issued. If such a signal is found, the
current counter value (representing how far along the chain the vectors have been
propagated) and the chain end identifier represent the coordinate of the ORA
that has detected the fault. The output from the BIST controller is a string of
four bits regarding which of the four basic test vectors has found a fault. If, for
instance, the string of results from the BIST controller is 1000, test vector 1 has
caused a fault. This means that the fault present in the system is a stuck-at-1
fault, as test vector 1 could not have caused or detected any other unexpected
behavior.

1. var ChainEnds: array of binary(0 to N-1) :=(all=0); //Chain Ends
2. var result: array of binary (0 to 3) := ‘0000’ //Test results
3. var counter, x_coord, y_coord: integer
4.
5. begin
6. for (j in 0 to 3)
7. case j is
8. when (0) – apply 0000 //Test vectors
9. when (1) – apply 1111
10. when (2) – apply 1010
11. when (3) – apply 0101
12. end case
13. counter := 0
14. for (x in 0 to M-1)
15. for (i in 0 to N-1)
16. if ChainsEnds(i) = 1 then //Fault found
17. result(j) = 1 //Fault recorded
18. x_coord := counter
19. y_coord := i
20. end if
21. end for
22. counter:=counter + 1
23. end for
24. end for
25. end

Fig. 4. BIST operation during test

From the inspection of the test results of the basic test vectors the BIST
controller can determine what type of fault is present in the system and apply
other test vectors to identify exactly which wire in the group of WUTs is faulty.
Note than any fault or combination of faults confined within the set of WUT
would cause at least two tests to fail. The only possible fault not confined within
the set of WUT is a bridge onto adjacent set of wires. This causes only one of
the bridging test vectors to fail. From the combination of failed tests the BIST
controller can reduce the fault resolution to 2 or 3 wires or pairs of wires in the
set of WUTs, as shown in Table 1. The second set of test vectors is designed
purely to increase the fault resolution by selection of any one of the already
selected wires. During propagation of the extra test vectors, the pass/fail signal
from the ORAs are used as selection between wires to identify the faulty one.

If, for example, the combined test results are 1010, the fault is limited between
Wire 2 or Wire 4 being stuck at 1. The next test vector, 1110, is then propagated.

BIST Based Interconnect Fault Location for FPGAs 329

Table 1. BIST selection

Test Vectors (Wire 1 - Wire 4)
(1) - 0000 (2) - 1111 (3) - 1010 (4) - 0101 Fault Next Vector

0 0 0 0 No Fault N/A
1 0 1 0 Wire 2 or Wire 4 s-a-1 1110
1 0 0 1 Wire 1 or Wire 3 s-a-1 0111
0 1 1 0 Wire 1 or Wire 3 s-a-0 1000
0 1 0 1 Wire 2 or Wire 4 s-a-0 0001
0 0 1 1 Bridge All previous 4
0 0 0 1 Bridge onto next set All previous 4
0 0 1 0 Bridge onto next set All previous 4

All others Multiple faults Composite

As by this point we have eliminated the possibility of any other fault, the ORA
inputs can only be 1110, if Wire 2 is s-a-1, or 1111, if Wire 4 is s-a-1. The first
option will result in a ’fail’ signal from the ORA, whereas the second option will
result in a ’pass’ signal. From the ORA response we can therefore increase our
fault resolution to identify precisely the faulty wire.

6 Implementation

We are proposing a BIST strategy to be used with prior knowledge of the faulty
resource. Our BIST strategy is a point to point one, where test vectors are applied
at one end to a set of WUTs and observed at the other. TVGs and ORAs are
arranged in rows, so that pass/fail results are propagated and read from only
one location for each row. The BIST controller decodes the outputs from the
end of the ORA chains to provide fault location. The WUTs are grouped in sets
in order to offer the highest degree of parallelism considering the architectural
and strategic constraints. The total number of configurations needed to complete
testing is dependent upon the total number of wires of the same type present
in the device. The configurations are grouped into phases, where configurations
belonging to the same phase aim to test different interconnects appertaining to
the same channel.

6.1 Number of Configurations

To fully test a routing channel all lines originating or terminating from a single
CLB have to be tested. If the architecture has L lines of a specific type originate
from any CLB in a channel, then the test of all lines in a channel will need �L/4�
number of configurations. Modern FPGAs rarely have more than 20 lines of any
type generating from any CLB in one channel [12], hence 5 configurations are
sufficient to test all lines in channel. These make up a test phase.

330 N. Campregher, P.Y.K. Cheung, and M. Vasilko

6.2 Wire Testing Phases

Considering an M × N array , with N CLBs in each horizontal channel and
N CLBs in each vertical channel, N + 1 vertical routing channels and M + 1
horizontal routing channels exist [1]. Testing of each horizontal or vertical routing
channel requires all the CLBs in a row or column, respectively. In the vertical
and horizontal direction, testing of all channels requires at least 2 phases, where
during the first N or M channels respectively are tested, and in the second
the channel left over is tested. The second phase of the vertical and horizontal
channels testing can be combined, as shown graphically in Figure 5. Three phases
are required to test all the lines of the same type in all channels. If �L/4� are
required for each phase, a total of 3 × �L/4� are needed for testing the whole
device.

TVG/
ORA

TVG/
ORA

W
U
T

W
U
T

W
U
T

WUT

WUT

W
U
T

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

(a) (b) (c)

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

TVG/
ORA

WUT

WUT

Fig. 5. Three configuration phases

6.3 Switch Matrix Testing Phases

To test for switch matrix faults the WUTs signals are routed trough switch
matrices. Stuck-off faults are dealt dealt with just like open faults. In the event
of stuck-on faults, bridges are created within the switch matrix configurations
for detection.

The switch matrix configurations needed to test for all stuck-on and stuck-off
faults ar shown in Figure 6. The diagram shows the routing inside the switch
matrix in order to cause bridging faults under all possible matrix combinations.
At the same time, the routing shown also explores all the possible connections
within the matrix itself. The testing scheme remains unchanged: if an ORA

TVG

ORA

TVG ORA

TVG

TVG

ORA

ORA

(i) (ii)

TVG

ORA

(iii)

TVG ORA

(iv)

TVGORA

TVG

Fig. 6. Switch Matrix fault diagnosis phases

BIST Based Interconnect Fault Location for FPGAs 331

detects an unexpected behavior, a ’fail’ signal is propagated through the end of
the chain. The only tweak to the original scheme is that two TVGs connected
to the same switch matrix produce opposite signals. In the case of stuck-on
switches, this causes a behavior identical to that of a bridging fault.

The diagnosis of stuck-off faults is straight forward, as ’fail’ signal from any
ORA can only be caused by one faulty connection in all routing configurations.
For stuck-on faults, however, a different analysis has to be performed. A per-
manent connection between two terminal will cause all the ORAs connected to
the faulty switch matrix to detect a fault. But any permanent connection will
only be detected during a specific number of routing configurations. From the
analysis of the result of the 4 test phases, the BIST controller can determine
the exact faulty connection. The faults and failures caused are summarized in
Table 2.

Table 2. Stuck-on faults resolution

Faulty Connection Routing configuration detected by
North-East ii,iii,iv
North-West i,iii,iv
South-East i,iii
South-West ii
North-South i,ii
East-West i,ii,iii

6.4 Case Study: Xilinx Virtex II Pro

This FPGA device allows TVG and ORAs to be implemented in a single CLB,
thanks to the high number of 4-input LUTs present. For simplicity purposes we
consider the case where a double line in the general routing matrix is faulty for a
XC2V20 device. The Virtex II Pro has 20 double lines originating from a CLB in
both vertical and horizontal channels. This leads to a total of 5 configurations per
test phase. Therefore a complete test would require 15 configurations. to fully test
all double lines available in the FPGA. Assuming a worst-case scenario of JTAG
download, each configurations requires 249ms, so the total time required for
reconfigurations is 3.74s. This time can be considerably reduced if a SelectMap
interface is used for download. In this case, total download time would be just
over 0.3s. The actual test time, in terms of clock cycles is in both cases much
smaller than the configuration download time and thus it would not affect total
testing time by a great amount.

7 Conclusions and Future Work

We have presented a new framework for FPGA testing for defect tolerance.
The concept of device fault grading has been introduced, together with simple,

332 N. Campregher, P.Y.K. Cheung, and M. Vasilko

effective testing procedures. Under our scheme it is possible to load testing con-
figurations to the FPGA with the specific aim of locating a fault whose nature
is already known. The testing is done completely on-chip.

This work provides manufacturers and users with a different approach to de-
fect tolerance. The development of this framework is based around the assump-
tion that defective devices will show similar functional faults spread around the
chip area. It is possible to categorize these defects with respect to their functional
faults. In the design process we can account for the fault to be found anywhere
around the chip and limit the usage of a faulty resource to a minimum. The exact
location of the fault can be found by loading the proposed test configurations
during the power-on sequence

The next step in our work will be to integrate the fault grading and fault
diagnostic into a complete defect tolerance framework, offering an alternative
design to the most common defect tolerance problems.

References

1. S.D.Brown, R.J.Francis, J.Rose, and Z.G.Vranesic, Field Programmable Gate Ar-
rays. Norwell, MA:Kluwer, 1992.

2. F. Hanchek, and S. Dutt, “Methodologies for tolerating cell and interconnect faults
in FPGAs,” Computers, IEEE Transactions on , Vol. 47(1), pp. 15-33, Jan. 1998.

3. C. Stroud, S.Wijesuriya, C.Hamilton, and M.Abramovici, “Built in self test of
FPGA interconnect,” Proc.Int. Test Conf., pp. 404-411, 1998.

4. M.Renovell, J.Figueras, and Y.Zorian, “Test of RAM-based FPGA: Methodology
and application to the interconnect structure,” in Proc. 15th IEEE Very Large
Scale Integration (VLSI) Test Symp., 1997, pp. 204-209.

5. M.Renovell, J.M.Portal, J.Figueras, and Y.Zorian, “Testing the interconnect of
RAM-based FPGAs,” IEEE Des. Test Comput., 1998, pp. 45-50.

6. H.Michinishi, T.Yokohira, T.Okamoto, T.Inoue, and H.Fujiwara, “Test method-
ology for interconnect structures of LUT-based FPGAs,” Proc. 5th Asian Test
Symp., pp. 68-74, 1996.

7. M.Y.Niamat, R.Nambiar, and M.M. Jamall, “A BIST Scheme for testing the in-
terconnect of SRAM based FPGAs,” Circuits and Systems, 2002. MWSCAS-2002.
The 2002 45th Midwest Symposium on, Vol. 2 pp. 41-44, 2002.

8. I.G. Harris and R. Tessier, “Testing and diagnosis of interconnect faults in cluster-
based FPGA architectures,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, Vol.21, pp.1337-1343, 2002.

9. J.Liu and S. Simmons, “BIST diagnosis of interconnects fault locations in
FPGA’s,” Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Cana-
dian Conference on, Vol. 1, pp.207-210, May 4-7, 2003.

10. X. Sun, S.Xu, J.Xum and P.Trouborst, “Design and implementation of a parity-
based BIST scheme for FPGA global interconnects”, CCECE, 2001.

11. Xilinx Inc., “The Reliability Report,” Sep. 2003.
12. Xilinx Inc., “Virtex II Pro Platform FPGA Handbook,” Oct. 2002.
13. Alter Corp., “Stratix II Device Handbook,” Feb.2004.
14. Xilinx Inc., “Virtex II Pro EasyPath Solutions,” 2003.

	Introduction
	Previous Work
	Background
	SRAM FPGA Architecture and Physical Layout
	Fault Models

	Fault Grading
	Testing Strategy
	WUTs Grouping
	TVG and ORA Operation
	BIST Controller Operation

	Implementation
	Number of Configurations
	Wire Testing Phases
	Switch Matrix Testing Phases
	Case Study: Xilinx Virtex II Pro

	Conclusions and Future Work

