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Abstract. This paper presents a new data representation known as Dual FiXed-
point (DFX), which employs a single bit exponent to select two different fixed-
point scalings. DFX provides a compromise between conventional fixed-point
and floating-point representations. It has the implementation complexity similar
to that of a fixed-point system together with the improved dynamic range offered
by a floating-point system. The benefit of using DFX over both fixed-point and
floating-point is demonstrated with an IIR filter implementation on a Xilinx Virtex
II FPGA.

1 Introduction

Most arithmetic operations implemented on FPGAs use fixed-point arithmetic represen-
tations. For applications where a large dynamic range is required, fixed-point representa-
tion may result in implementations with very wide bit-width . In contrast, floating-point
representation has a much larger dynamic range than fixed-point for a given bit-width,
but arithmetic circuits for floating-point numbers are considerably larger and slower
than their fixed-point counterparts. In this paper, a new representation known as Dual
FiXed-point (DFX) is introduced. It combines the simplicity of a fixed-point system with
the wider dynamic range offered by a floating point system. Using a single bit expo-
nent which selects two different fixed-point representations, it allows dynamic scaling
of signals throughout the system.

The original contributions of this paper are: 1) to propose the new Dual FiXed-
point (DFX) system; 2) to present the design of basic arithmetic operators using DFX;
3) to demonstrate the use of DFX through the implementation of an IIR filter on a FPGA;
4) to compare DFX with conventional fixed-point and floating-point implementations in
terms of area, accuracy and speed.

The paper is organised as follows. Section 2 compares fixed-point and floating-point
number systems. The new DFX number system is described in Section 3. Section 4 shows
the design of the basic arithmetic functions using DFX and compares their size and speed
to those using fixed-point and floating-point. The implementation and performance of
an IIR filter in all three number formats are given in Section 5. Section 6 concludes the
paper and suggest future work.
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2 Floating-Point Versus Fixed-Point

In fixed-point arithmetic, all numbers are represented by integers, fractions or a com-
bination of both. This is done by partitioning a binary word of n digits into two sets:
q digits in the integral part and p digits in the fractional part, satisfying p + q = n. In
two’s complement fixed-point notation, the value of an n-tuple with radix point between
q most significant digits and p least significant digits is

X = −xq−1 · 2q−1 +
q−2∑

i=−p

xi2i (1)

The position of the radix point determines the range of the fixed-point number.
Throughout this paper the word-length and the radix point of a fixed-point number is
denoted as n p.

Floating-point representation allows designers to attain a large dynamic range with-
out having to scale the signals. Generally, a floating-point number F is represented by
the pair (M ,E) having the value

F = M · βE (2)

where M is the significand (or mantissa), E is the exponent and β is the base of the
exponent. Typically for digital systems β = 2.

For all practical systems it is possible to choose a word-length long enough to reduce
the finite precision effects to a negligible level, it is often desirable to use as few bits as
possible while achieving user-defined output error conditions in order to optimize area,
power or speed. Recent work in mulitple word-length optimisation for fixed-point and
floating-point systems can be found in Constantinides [1] and Gaffar [2] respectively.
Often, fixed-point designs out-perform floating-point designs in overall system-wide cost
including area, power and speed [3] as long as its inputs are properly scaled with the
appropriate bit-width [4]. However when signals have a large dynamic range, floating-
point designs prevail due to its large dynamic range as compared to fixed-point.

Some work has been done attempting to combine the best of the two number formats.
Horrocks and Bull [5] used a pseudo floating-point structure for FIR filters while [6] uses
a floating-point representation for design parameters. Both methods show good output
performance with low complexity but since they inherently run on fixed-point, they do
not possess the large dynamic range capability of floating-point. Block floating-point
approach [7], commonly used in FFT analysis, provides most of the advantages asso-
ciated with floating-point realizations with an implementation complexity approaching
that of fixed-point. However, block floating-point only scales a block of data; it lacks
the dynamic scaling property offered by the proposal in this paper.

3 Dual FiXed-Point

The proposed n-bit Dual FiXed-point (DFX) format consists of an exponent bit E, and
n−1 bits of a signed significand X , as shown in Figure 1. The exponent selects between
two scalings for the significand X , giving two possible ranges for the number. The lower
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n - 1 bits

Exponent E Signed Significand X

1 bit

Fig. 1. DFX Format

number range is referred to as Num0 while the higher number range is referred to as
Num1.

In order to achieve two different scalings, we define two radix points p0 and p1 such
that the radix point of Num0 and Num1 are p0 and p1 bits from the least significant
bit respectively, and p0 > p1.

The value of this DFX number is given by

D =
{

X · 2−p0 if E = 0
X · 2−p1 if E = 1 (3)

A boundary value, B, is needed to decide the best scaling to use and hence the value
of E. E is determined as follows,

E =
{

0 if −B ≤ D < B
1 if D < −B or D ≥ B

(4)

0 B = 2n-p0-2 2n-p1-2

Num0 Range

Num1 Range

-B = -2n-p0-2-2n-p1-2

Fig. 2. Num0 and Num1 range in a DFX Number

In order to simplify the design of the arithmetic units, the boundary value is de-
fined as the next incremental value after the maximum positive number of Num0,
i.e. B = 2n−p0−2 (−2 because of the exponent and sign bits). The range and precision
of Num0 and Num1 are illustrated in Figure 2. To completely define a DFX number, we
need n, the size of the DFX number, p0 and p1, the radix points. The notation used in
this paper is DFX n p0 p1.

Dynamic range is defined by the ratio between the largest and the smallest absolute
number in the data format. The smallest absolute value of a DFX number is 2−p0 while
the largest absolute value is 2n−p1−2, hence the dynamic range of a DFP number is given
as

Dynamic range = 20 log10(2
n+p0−p1−2) dB (5)

Having two possible scaling for a number gives DFX better range capability than
fixed-point as shown in Table 1.
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Table 1. Dynamic Range comparisons

Number System
Dual FiXed-

point
Dual FiXed-

point
Fixed Point Floating Point

Format 32_30_0 32_16_4 32-bit 32-bit IEEE

Dynamic Ranges 260 ˜  361dB 246 ˜  276dB 231 ˜  187dB 2254 ˜  1529dB

E = 0   if -B Input < B
1 if Input < -B or Input B

Fixed-Point 
Input E

nin _pin

n-1

nin

p0

pin

Bits of interest
for detection

Input

Num0

(a) (b)

Fig. 3. (a)DFX Range Detector Module and (b) Input Bits the range detector is interested in

4 Dual FiXed-Point Circuits

Arithmetic modules in DFX have been designed in VHDL and mapped onto a Xilinx
Virtex II (XC2V80-6fg256) in order to evaluate their area and speed.

4.1 DFX Range Detector

The function of the DFX Range Detector, shown in Figure 3(a), is to generate the
exponent bit, E, which selects the range used in the DFX number. The input to this
module is a fixed-point number with the format nin pin (nin being the input word-
length and pin being the position of its radix point). The boundary chosen allows this
operation to be simplified down to a logic operation given by (6). If the input is in the
Num0 range, all the bits above the boundary will be 0’s (when it is a positive input) or
1’s (when it is a negative input) since the input is a two’s complement number. The bits
of interest for detection are shown in Figure 3(b).

E = dnin−1 · dnin−2 · . . . · dnin−(n−p0−2)−pin

+ dnin−1 · dnin−2 · . . . · dnin−(n−p0−2)−pin

(6)

4.2 DFX Adder

The DFX Adder module adds together two DFX numbers (see Figure 4(a)). Similar to
a floating-point adder, DFX inputs may have to be scaled in order to align the radix
points before adding. But unlike floating-point, the number of bits to shift is known a
priori. Therefore only multiplexers instead of barrel shifters are necessary to perform the
necessary scaling. As a result the DFX Adder is expected to be both smaller and faster
than the equivalent floating-point adder. Note that ">>" and "<<" are the shift operators
which requires only wire routing and mod 2n−1 simply extracts the least significant (n-1)
bits.

The Adder Control Block determines the shifting of the inputs via the A sel and
B sel signals. If the input exponents are different, i.e. one input is Num0 and the other
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Fig. 4. (a) DFX Adder Module and (b) Rescaler Block

is Num1, the Num0 number will be shifted up to the Num1 range. If both exponents
are the same, there will be no shifting.

The adder is a full precision adder and its result sum is fed into the Rescaler Block
whose scaling is provided by the signal S sel. The adder’s resulting scale is always
Num1 unless both the inputs are Num0. The output signals of the Adder Control Block
are given below in Figure 4.

The Rescaler Block (Figure 4(b) first detects the range of sum with two range
detectors that are aligned to the two possible scales. The Num0 Range Detector assumes
the its input is a Num0 number producing the signal det N0 while the other assumes
a Num1 input producing the signal det N1.

No shifting is needed if the adder’s result remains in the same range. If the result
changes from a Num0 to a Num1, Sum has to be shifted p0 − p1 bits to the right and
sign extended. The result will however be shifted p0 −p1 bits to the left and zero padded
if the result changes from a Num1 to a Num0 number. The combinational logic of the
internal signals and the exponent bit are given below. Finally, the multiplexer truncates
the output to give (n − 1) bits for the significand.

no change = (S sel · det N0) + (S sel · det N1)

shift r = S sel · det N0

shift l = S sel · det N1

Exponent bit = (S sel · det N0) + (S sel · det N1)

(7)

Table 2 shows the size and speed comparison of a 32-bit adder implemented in all
three number formats. It can be seen that while DFX is about 4 times larger and slower
than an equivalent fixed-point adder, it is also almost 4 times smaller and faster than the
floating-point circuit.

4.3 DFX Multipliers

Two versions of the multiplier have been designed. The DFX-H Multiplier takes one
DFX input and one fixed-point input, while the DFX-F Multiplier performs a full multi-
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Table 2. Size and latency delay comparison table of 32-bit adders

Adder Type Size (Slices) Latency (ns)

Fixed-Point 17 2.5
DFX 64 10.28

Floating-Point 
(IEEE)

255 34.48

Rescaler 
Block

X

Aexp

A

M m bits

(n-1) bits

n'_p0'_p1'
Q

P
n_p0_p1

m_pm

n_p0_p1

0 0 m

1 1 m

n' = m + n -1
p = p + p
p ' = p + p

'

(a)

(n'-1)_p0' 
Range Detector

(n'-1)_p1' 
Range Detector

P

(n'-1) bits

>> pm
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mod 2n-1>> pm+(p0-p1)

0

1

0

1

0

1
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Q
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0

1
(n'-1) bits

(b)

Fig. 5. (a) DFX-H Multiplier module and (b) Rescaler Block

plication between two DFX inputs. Due to space constraints, only the DFX-H multiplier
is described here.

Figure 5(a) shows the DFX-H Multiplier forming the product between a DFX input
A and a fixed-point input M . This is particularly useful in applications such as filtering
where one of the operands is a constant. Unlike the DFX Adder, a DFX-H Multiplier
does not require aligning the radix points at the inputs to the binary multiplier. However,
the product P needs to be properly scaled and converted into DFX format.

Consider the multiplication of a DFX n p0 p1 number with a FX m pm number,
as shown in Figure 5(a), giving a product P which is in DFX n′ p′

0 p′
1 format, where

n′ = m+n−1, p′
0 = p0 +pm and p′

1 = p1 +pm. The product P needs to be converted
back to a DFX n p0 p1 formatted number.

Figure 5(b) show the circuit for the DFX-F Rescaler Block. The range detectors are
aligned to the radix points of p′

0 and p′
1 respectively. Further optimization could be done

assuming the multiplier M is a constant value.
Table 4 shows the size and speed comparison of 32-bit multipliers implemented in

all three number formats. The optimized DFX-H Multiplier is about 1.2 times larger
and slower than an equivalent fixed-point multiplier. However it is also about 1.2 times
smaller and faster than a floating-point multiplier. The DFX-F Multiplier is comparable
with its floating-point counterpart and it is about 1.5 times larger and slower than fixed-
point.

4.4 DFX Encoder and Decoder

In order to utilize this number system, a method is needed to convert a number from a
known type to DFX. Currently modules exists to encode and decode to and from two’s
complement fixed-point. The size and latency of the 32-bit DFX modules are given
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Fig. 6. IIR Filter signal flow diagram

Table 3. DFX Encoder and Decoder size and latency delay table

Module Size (Slices) Latency (ns)

Encoder 17.5 7.8
Decoder 10 5.8

Table 4. Multiplier size and latency delay comparison table

Multiplier Type Size (Slices) Latency (ns)

Fixed-point 43 13.946
DFX-H 58 17.308
DFX-F 76 19.149

Floating-point 73 20.683

in Table 3. The values for the decoder are approximate because the decoder is usually
absorbed into adjacent blocks by logic optimization.

5 Example and Results

The effectiveness of using DFX as an alternative computation method to floating-point
is demonstrated by using a Direct Form I implementation of a 2nd order notch IIR filter
with the notch at 0.15 of the Nyquist frequency as shown in Figure 6. The filter has five
coefficients, three of it in the forward path and two in the feedback path. 32-bit versions
of the filter were implemented with DFX (designs D1 and D2), fixed-point (X1, X2
and X3) and floating-point (P1 and P2) formats for comparison and the result is given in
Table 7. The DFX Multiplier FX is used in the design since the coefficients are constants.

The target chip for the IIR design is a Xilinx Virtex II XC2V500-6fg456. Comparing
the formats with the same bit-width, i.e. 32-bit, DFX designs fall between fixed-point
design X1, the smallest and fastest, and floating-point design P1, the largest and slowest.
Designs X3 and P2 are about the same size with DFX designs with design X3 being the
fastest of the four.

In order to exercise the dynamic range capability of DFX, a set of input data with the
frequency distribution as shown in Figure 8(a) and an appropriate spectrum was created.
The output SNR, average relative error and maximum relative error of different filter
types are shown in Table 5. The error is with reference to double precision floating-point
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Filter 
Type

Design Format
Size 

(Slices)
Latency 

(ns)

D1 32_18_6 584 52.29
D2 32_9_6 580 51.28
X1 32_7 255 24.26
X2 33_8 272 24.18
X3 43_18 572 31.51
P1 32bit M23 E8 1459 127.39
P2 17bit M10 E6 586 88.183

DFX

Floating 
Point

Fixed 
Point
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P2
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Fig. 7. IIR filters size and latency comparison
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Fig. 8. (a) The frequency distribution of the input and (b) the frequency response relative error for
the filter in Fig. 6

Table 5. The error results for the IIR Filter in Fig. 6

Filter 
Type

Design Format SNR (dB)
Av Relative 
Error (dB)

Max Relative 
Error (dB)

D1 32_18_6 333.88 -82.89 -41.02
D2 32_9_6 347.25 -29.63 13.07
X1 32_7 330.53 -18.20 24.14
X2 33_8 344.09 -23.95 17.77
X3 43_18 482.21 -84.75 -44.21
P1 32bit M23 E8 299.13 -85.90 -29.88
P2 17bit M10 E6 115.42 -7.24 48.25

DFX

Fixed 
Point

Floating 
Point

results taken to be the expected results. Relative error is calculated as a ratio of the
difference error over the reference result.

According to Table 5 floating-point design P1 performs pretty well in terms of relative
error (the lower the value the better) but poorly in terms of output SNR. DFX designs out-
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performs floating-point designs because the DFX design a more precise number number
format (i.e. the signifand of design D1 has 31-bits, compared to 24-bits in design P1).

Fixed-point designs show improvement in terms of output SNR and relative error as
its word-length increases. In terms of output SNR, DFX design D2 may beat fixed-point
design X1, but by increasing the bit-width by one, design X2 is able to out perform
design D2. However, design D1 shows good average relative error performance which
can only be match by designs X3 and P1. Being a floating-point design, design P1 is
notably larger than D1 and fixed-point design X3 is similar in size to D1.

Figure 8(b) shows the relative error of the frequency response measured against the
maximum output range of designs with similar word-length. It shows that the floating-
point performance is poor overall especially at the notch frequency. The DFX imple-
mentation performs similarly to fixed-point but, notably, DFX performs better than
fixed-point at the notch frequency.

6 Conclusion and Future Work

This paper demonstrates that by only providing two possible scalings, as in DFX, reduces
the design complexity to give smaller and faster designs as compared to floating-point.
By choosing the right scaling, DFX can have similar performance to fixed-point while
capable of handling a wider dynamic range.

Future work will include the exploration of multiple word-length designs using DFX
and the optimization of DFX design for area, accuracy and speed.
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