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Abstract

This paper presents three reconfigurable computing ap-
proaches  for a Shape-Adaptive Template Matching (SA-TM)
method  to retrieve arbitrarily shaped objects within images
or video frames. SA-TM is an example of a truly object-ori-
ented type of multimedia video processing algorithm. A ge-
neric systolic array architecture is proposed as the basis for
comparing three designs: a static design where the configu-
ration does not change after compilation, a partially-dynam-
ic design where a static circuit can be reconfigured to use
different on-chip data, and a dynamic design which complete-
ly adapts to a particular computation. While the logic re-
sources required to implement the static and partially-
dynamic designs are constant and depend only on the size of
the search frame, the dynamic design is adapted to the size of
the template object, and hence requires much less area. The
execution time of the matching process greatly depends on
the number of frames the same object is matched at. For a
small number of frames, the dynamic and partially dynamic
designs suffer from high reconfiguration overhead. This
overhead is significantly reduced if the matching process is
repeated on a large number of consecutive frames.

1 Introduction

The development of multimedia technology and associat-
ed standards like MPEG-4 for coding of audio-visual objects
in multimedia applications [1] and MPEG-7 for description
and search of audio and visual multimedia content [2] leads
to new types of video processing algorithms and therefore
new challenges for their hardware implementation. Compre-
hensive acceptance of new multimedia services and applica-
tions depends on the availability of inexpensive, compact
hardware delivering the high performance required. In addi-
tion to very high processing demands, many multimedia
processing algorithms tend to be characterised by a decreas-
ing regularity and predictability of operations. Typical exam-
ples are algorithms to process arbitrarily shaped multimedia
objects: the computations to be performed need to be adapted
to the size and the shape of the object. This calls for architec-
tures with increased flexibility at run time[3].

In this paper, a shape-adaptive template matching (SA-
TM) method to retrieve arbitrarily shaped objects within im-
ages or video frames is proposed. The algorithm is truly ob-

ject-oriented as it uses only the object of interest as template,
not the background pixels, and it does not divide the template
into a number of square blocks in accordance with future gen-
eration multimedia techniques [10]. Software solutions
which could provide the flexibility to adapt to different tem-
plates are too slow to allow real-time processing at video
frame rate, whereas an ASIC implementation is impossible
due to the infinite number of sizes of template and search
frame. Hence, the use of a reconfigurable computing archi-
tecture like SONIC [9] is proposed to implement a fast and
flexible SA-TM design as shown in Figure 1.

The purpose of this paper is to investigate different strat-
egies of reconfigurable computing regarding their suitability
for implementing the SA-TM method as an example of a typ-
ical multimedia algorithm, on a reconfigurable computing ar-
chitecture. A static design, which can match templates, stored
in off-chip memory, of all possible shapes and sizes within a
video frame using the same FPGA configuration is presented
in this paper. A semi-static design which uses on-chip mem-
ory, available in most current FPGAs, to store the template is
also introduced. While the circuit to compute the algorithm is
static, the template can be updated by partly reconfiguring the
memory portions of the device. In addition, this paper
presents a dynamic design, where the configuration data is
completely adapted to the shape and size of the template ob-
ject used. A generic systolic array architecture provides the
basis for the implementation of the three reconfigurable SA-
TM designs of different flexibility which are then compared
regarding area usage and computation time, including possi-
ble reconfiguration and recompilation overheads.

It is shown that...
Section 2 provides background information on multime-

dia search and retrieval strategies and reconfigurable comput-
ing, as well as on previous work in this area. Section 3
describes the shape-adaptive template matching  method ap-
plied in this paper. A systolic array for SA-TM is proposed in
Section 4, which is used for a static, a semi-static and a dy-
namic realisation approach. These designs are presented in
Section 5. In Section 6 the implementations results for all
three designs are discussed. Finally, a conclusion follows in
Section 6.
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Figure 1   Reconfigurable Computing for SA-TM

2 Background

Multimedia search and retrieval has become an active re-
search field due to the increasing demand that accompany
many new practical applications, including large-scale multi-
media search engines on the World Wide Web, audio-visual
broadcast servers, and personal media servers for consumers.
More and more video data is generated every day. Amongst
this large amount of multimedia information, searching for
specific video sections or objects and retrieving them is a
very difficult task. The traditional approach of fast-forward-
ing of video and looking at the screen to find interesting in-
formation is very time-consuming and labour-intensive.
Ideally, video will be automatically annotated as a result of
machine interpretation of the semantic content of the video
data. However, given the state of the art in computer vision,
such sophisticated data abstractions may not be feasible in
practise. The computer may rather offer intelligent assistance
in the manual annotation of video or perform automatic anno-
tation with limited semantic interpretation [4].

Video object retrieval is concerned with how to return
similar video clips to a user given a visual object as query.
The recognition and retrieval can be feature-based or tem-
plate-based. Visual features of a visual multimedia object are
colour, texture, and shape. Colour is most frequently used for
feature-based retrieval, as the retrieval algorithms using col-
our are characterised by regular operations and data accesses.
Colour indexing and retrieval often involves the use of colour
histograms which record the number of pixels in an image for
each colour [4]. However, simple histograms do not take the
location of a pixel with a particular colour into account. Tem-
plate matching is a classical technique for locating the posi-
tion of a given small subimage inside a large image. It has

been a fundamental technique heavily used in the applica-
tions of pattern recognition, object detection, image registra-
tion, and image sequence coding. In general, the matching
process involves shifting a template image over a search area,
measuring the similarity between the template and the current
search area, and locating the best match position. Major sim-
ilarity measures which are widely used in template matching
are cross-correlation (CC) and the sum of absolute differenc-
es (SAD). The best match is located by finding the coordi-
nates (x,y) such that CC(x,y) is maximum or SAD(x,y) is
minimum [4]. Due to their regularity, template matching al-
gorithms are suitable for pipelined processing in a systolic ar-
ray. Various basic systolic array architectures with different
degrees of parallelism are presented  in [16]. However, tem-
plate matching entails great computational complexity for
large search areas and templates. 

Most practical video and image retrieval systems are soft-
ware based and use colour histograms to search for a query
image. Often, the query image has to be the same size as the
search image or video frame, although the user may only be
interested in a particular object within an image. The use of
background pixels, not belonging to the object of interest, can
therefore lead to unwanted results.

Reconfigurable computing, based on Field Programmable
Gate Arrays (FPGAs) as processing devices, has been identi-
fied to be well suited to deal with the requirements of provid-
ing flexible, high-speed processing, since it combines the
advantages of software and application-specific hardware. It
allows user-level programmability at a low level and facili-
tates general purpose computing due to its reconfigurability.
Thus, many applications can use the same hardware [5], [17].
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Dynamic or run-time reconfiguration of FPGAs is recog-
nised as an advanced application area within reconfigurable
computing. However, a lot of research still has to be done to
fully understand and evaluate RTR and quantify the trade-
offs of run-time reconfigurable devices and systems [17].
Currently only a small subset of available FPGAs are capable
of being reconfigured in this way, but there is a growing trend
in the industry to provide dynamically reconfigurable devices
with varying degrees of configuration flexibility [6]. Dynam-
ically reconfigurable devices are characterised by their ability
to continue to operate without interruption while sub-sections
of the array logic are being reconfigured. The authors of [7]
distinguish between two modes of configurability: static -
where the configuration data of the FPGA is loaded once, af-
ter which it does not change during execution of the task, and
dynamic - where the FPGA’s configuration may change at
any moment.

The most cited motivations for using dynamic reconfigu-
ration are the acceleration of algorithms that might otherwise
be implemented on general-purpose computers and the op-
portunity to increase effective logic capacity of programma-
ble devices by mapping only active logic to FPGA resources
at any given time. It is predicted in [8] that the importance of
dynamically reconfigurable logic will increase as FPGAs be-
come larger. This statement is based on the observation that
with more and more circuits present in a single chip, there is
a reduced probability of them all being required to operate at
the same time. Inactive circuits could be dynamically recon-
figured to allow more functions to be performed with smaller
devices. Three FPGA reconfiguration strategies (compile-
time, run-time, and partial run-time reconfiguration) are eval-
uated in [14], using a systolic array implementation of a sca-
lar quantiser on a Xilinx XC6200 FPGA. It is shown that
compile-time reconfiguration gives the best area-time prod-
uct for the application used, whereas the suitability of run-
time reconfiguration strongly depends on the number of
reconfigurations. However, it is concluded that the results are
application dependent and technology dependent. 

In [5], the suitability of using reconfigurable computing
for implementing computer vision algorithms of different
levels of regularity has been investigated. This includes a
systolic correlation that can be used for template matching.
However, the design presented here is not shape-adaptive,
and results are given only for relatively small and quadratic
masks (3×3) and images (512×512). Video is not considered.
Configurable computing solutions for automatic target recog-
nition are presented in [13]. Here the templates are binary and
have a size of 16×16 pixels, wheras the search image is
128×128. The templates are mapped onto the FPGA as sim-
ple adder trees, and the image pixels are shifted through and
added at positions where the template bit is ‘1’. Hence, the
FPGA configuration can be optimised to adapt to the template
characteristics. It is shown in [15] that dynamic reconfigura-
bility is well suited to adapt to shape-adaptive image and vid-

eo processing algorithms if the reconfiguration overhead can
be kept small. However, the example used in that paper con-
sisted only of a limited number of possible configurations
since only different object shapes within an 8×8 block were
considered.

3 Shape-Adaptive Template Matching

The aim is to find a template object of arbitrary shape and
size within a search image or video frame of any size using a
reconfigurable computing architecture, as shown in Figure 1.

The search image or frame consists of W×H pixels. The
template object consisting of p opaque pixels can have any
shape. It is given by its bounding box of size w×h, that is the
smallest rectangle surrounding the object as shown in Figure
2. Within this bounding box, each pixel contains one mask bit
which is ‘1’, if the pixel belongs to the object, or ‘0’ other-
wise, as defined in MPEG-4 [11].

Figure 2   Template object and search image

The template is shifted through every possible location of
the image that can contain the entire template, starting from
the top left corner, and compared to the respective subimage
of the same size. There are  of those
locations. Only pixels of the subimage that correspond to pix-
els belonging to the template object are taken into account.

Simulations of various correlation and histogram based
matching and image retrieval algorithms have been carried
out in software to find a suitable and easily implementable
similarity measure. The sum of absolute distances (SAD),
carried out on luminance pixel values, was then chosen due to
good matching results and because of its simple structure.

For all   possible positions (y,x) of
the template within the image, calculate

(1)

For the entire image,  absolute
distance calculations need to be computed and accumulated.
A match is found at a position (y,x) where SAD(y,x) is mini-
mum and also smaller than a certain threshold determined by
the user. However, in this paper only the calculation of the
SAD values is considered.
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Figure 3   Example 1 of SA Template Matching

4 Systolic Array for SA-TM

Since in practice video data are often streamed in a hori-
zontal raster-scan fashion (line after line), we assume that one
pixel of the search frame becomes available with each clock
cycle [9]. As every pixel value of the search image or video
frame is read only once, it would be useful to perform  in par-
allel all computations where this pixel value is required, so
that no input data need to be stored.

A simple example of an SA-TM process is shown in Fig-
ure 3. For various matching positions of the template on the
search image, the absolute difference (AD) computations to
be performed for that position and in which clock cycle, and
the SAD these ADs contribute to, are shown. In this example,
the pixel T(0,1) does not belong to the object, that is, it is
transparent. Therefore, this pixel value does not contribute to
the computations.

Considering that pixel I(0,0) is available in the first clock
cycle, pixel I(0,1) in the second cycle, and so on, if a line-by-
line raster scan fashion is used, some computations can be
carried out in parallel. In the first step, only I(0,0) is available,
and using T(0,0) the first AD contributing to SAD(0,0) can be
calculated. In the second cycle, I(0,1) becomes available and
the first AD for SAD(0,1) is computed using T(0,0). As T(0,1)
is transparent, no further computation can be carried out in
this cycle. In cycle 3, I(0,2) is used to perform two computa-
tions in parallel; |I(0,2) - T(0,0)| which contributes to
SAD(0,2), and |I(0,2) - T(0,2)| which yields the second AD for
SAD(0,0). In cycle 4, when I(0,3) becomes available, no con-
tribution to SAD(0,0) is calculated, as this image pixel is not
necessary for the computation of SAD(0,0). Not until cycle

 = 17 can all possible eight pixel of the template
object be used in parallel.

Figure 4   Signal Flow Graph (SFG) for SA-TM Example 1

Example 1 can be represented by the Signal Flow Graph
(SFG) shown in Figure 4 which is proposed as a general SFG
for SA-TM. The nodes marked <i,j> represent the absolute
distance (AD) computations |I(y,x) - T(i,j)|. The pixel values
I(y,x) are broadcasted sequentially to all of those processing
elements (PEs), that is, all possible AD computations for a
particular image pixel are carried out in parallel. Note that
some of those computations (for example, |I(0,0) - T(0,2)|) do
not contribute to any valid result. The AD results are added to
the intermediate sums coming from the left and the new sum
is registered and shifted out at the right of the PE. The delay
nodes <D> are used as shift registers and are required at trans-
parent pixels within the bounding box of the template objects
and at all  places where no AD contribution
for a particular SAD result is produced. For example, the in-
termediate sum |I(0,0 ) - T(0,0)| + |I(0,2) - T(0,2)| which is
computed in the third cycle in PE <0,2> needs to be at the left
input of PE <1,0> when I(1,0) is broadcasted to that node,
that is in cycle W + 1 = 8 when the first image or frame line

Example 1: 

w = 3, h = 3, p =8 W=7, H = 6

1. 2. 5. 6. 20.

Matching position: 

Template: Search image:
T(0,0)

I(0,0)

1.  |I(0,0) - T(0,0)| 2.  |I(0,1) - T(0,0)|
3.  |I(0,2) - T(0,2)|
8.  |I(1,0) - T(1,0)|

4.  |I(0,3) - T(0,2)|
9.  |I(1,1) - T(1,0)|

...
17. |I(2,2) - T(2,2)|

...
18.  |I(2,3) - T(2,2)|

5.  |I(0,4) - T(0,0)|

T(0,1) transparent

7.  |I(0,6) - T(0,2)|
12. |I(1,4) - T(1,0)|
...
21. |I(2,6) - T(2,2)|

8. |I(1,0) - T(0,0)|
10. |I(1,2) - T(0,2)|
15. |I(2,0) - T(1,0)|
...
24. |I(3,2) - T(3,2)|

26. |I(3,4) - T(0,0)|
28. |I(3,6) - T(0,2)|
33. |I(4,4) - T(1,0)|
...
42. |I(5,6) - T(2,2)|

-> SAD(0,0) -> SAD(0,1) -> SAD(0,4) -> SAD(1,0) -> SAD(3,4)

Computations: 

W h 1–( ) w+⋅

 0,0  0,2D

 1,0  1,1  1,2

 2,0  2,1  2,2

D D D D

D D D D

0

I(0,0)I(0,1)I(0,2)....

SAD(0,0) SAD(0,1)

W w–( ) h 1–( )⋅



has been completed. Note that if the pixel values of the search
frame can be streamed in a vertical fashion (column after col-
umn), registers can often be saved as in reality video frames
are more wide than high. 

In example 1, the first valid result (SAD(0,0)) is at the
output of node <2,2> after  = 17 cycles, fol-
lowed by SAD(0,1) after the next cycle. There will still be
invalid results at the output after each frame line, as certain
SAD positions (for example, SAD(0,5), SAD(0,6)) are not de-
fined because at that position the template can not cover the
subimage. For instance, in example 1, there are W × Η = 42
pixels in the search frame (and therefore 42 cycles are re-
quired to produce all results), but only 20 SAD values are pro-
duced as there are only 20 positions where the template fits
completely into the search frame. In the 42nd (and last) cycle,
when the last image pixel of that frame I(5,6) is broadcasted,
the 20th result SAD(3,4) is completed by adding |I(5,6) -
T(2,2)| to the intermediate sum in PE <2,2>.

Based on the SFG shown for example 1 we propose the
following generic systolic array adapted to the shape of the
template object. Each pixel belonging to the template object
is represented by a PE where the AD computation using the
value of that pixel is performed. The structure of a PE is
shown in Figure 5.

.

Figure 5   Structure of PE <i,j> for SA Template Matching

The word length of I(y,x) is c. The pixel values of the tem-
plate object T(i,j) have the same word length as I(y,x). The
values are constant for a particular PE and can be stored in
ROM within the PE as shown, or come from outside the PE.
The word width of Sum_in and Sum_out depend on the posi-
tion of the PE in the SFG. For the first PE, Sum_in is 0, there-
fore m can be 0. Variable n needs to be at least the maximum
of m and c, in case of the first PE that is c. Further along the
SFG, m and n will increase, as more bits are required to rep-
resent the intermediate sums. The maximum absolute dis-
tance (AD) for one PE is 2c-1, the maximum intermediate
sum of k of those ADs is  for one PE, which re-
quires  bits to be fully represented. The in-
termediate sum is then stored in a register.

The area of an PE consists of a constant part for the AD
module and a variable part which grows with the word length
n of the output and can therefore be calculated as:

APE(n) =  =  , (2)

where a and b are constants.
The logic resources required to implement p PEs can then

be calculated as

 . (3)

To calculate APE explicitely as a function of p the following
estimation is derived from (3):

 , (4)

which can be simplified further to

 . (5)

The sum term can be substituted as follows:

 , (6)

with  , (7)

resulting in

(8)

                           = (9)

                =  . (10)

Hence, (5) leads to

 . (11)
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All pixels within the template bounding box but not be-
longing to the object are registers used to delay the interme-
diate sums. PEs and registers are arranged according to the
shape of the template object. If a pixel belonging to the object
is followed by a pixel not belonging to the object in the same
line, the PE representing the object pixel is followed by a reg-
ister, and vice versa. After each line of PEs, additional W-w
registers are required for all but the last line of the template to
store the intermediate sums until a valid input for that sum be-
comes available.
The register area is composed of the registers used for the
w×h - p transparent pixels within the bounding box of the
template (AD

Reg1) and of the  registers used to
delay the intermediate sums outside the template area
(AD

Reg2). The size of an n bit register is n LCs.
As the exact value for AD

Reg1 depends on the position of
the transparent pixels withing the template bounding box, the
average word length of the PEs is used to determine the aver-
age register size which is then multiplied by the number of
transparent pixels:

 , (12)

which can be estimated as

 , (13)

using the same value for q as in (7).
AD

Reg2 can be estimated as

 , (14)

resulting in

 , (15)

with   .
To summarise, in an efficient systolic array solution for

the presented SFG for SA-TM, the following points need to
be satisfied in order to search for a w×h template with p pixels
belonging to the object of interest, in a W×H search frame:
• p PEs are required to implement the AD computations 

and summation of intermediate results
• the PEs are arranged in the same way as the opaque pix-

els of the template (pixels belonging to the object); the 
w×h - p gaps representing transparent pixels are filled 
with registers

• for horizontal raster-scan, after each, but the last, row of 
the PE array, W-w registers (D) are added in the compu-
tation flow to store the intermediate sums until the next 
search frame pixel contributing to a particular SAD 
becomes available

• the kth PE in the computation flow  requires a 

 bit adder

• the size of each register D is the same as the output size 
of the previous PE in the computation flow

5 Reconfigurable design strategies for SA-TM

The following design approaches for a systolic array for
SA Template Matching can be distinguished. As all PEs have
the same structure, apart from different word length, their
function can be changed to use a different number of pixel
values and/or a different similarity measurement in the future. 

5.1 Dynamic design

In this approach, the device is reconfigured for every pos-
sible template size and shape, and for every possible search
frame size. This generally inludes the re-compilation of the
design code, as there are an infinite number of solutions. As
the template can be part of the configuration data and word
lenghts can be optimised, an efficient systolic array solution
as described above can be achieved. A PE as shown in Figure
5 can be used with the template pixel value stored in on-chip
memory. As one input of the AD computation is constant, the
AD module can be substituted by a look-up table (LUT)
which stores the AD value for each value of the incoming
frame pixel I(y,x). In addition to the p PEs,

 registers are required.
The area AD for the dynamic design consists of the area

used by the PEs (AD
PE) and the area required for the registers

(AD
Reg1 + AD

Reg2):

 , (16)

and can be estimated using (11), (13) and (15), respectively.
The total execution time TD for the dynamic design to find

a template object in N video frames consists of the time TD-
computeN to calculate the SA-TM operations, the reconfigura-
tion time TD

reconf to update the FPGA configuration for a new
template, and the compilation time TD

compile which is re-
quired in most cases as the number of template objects and
therefore the number of different device configurations is un-
limited:

TD = TD
computeN + TD

reconf + TD
compile . (17)
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The execution time for N frames can be calculated as

 , (18)

where fD is the clock frequency the circuit can run at. As a
systolic array is pipelined by each PE, fD is determined by the
critical path through the slowest PE, if additional FPGA rout-
ing delays are neglected.

The reconfiguration time and compilation time depend on
the size of the circuit to be implemented. The reconfiguration
time is generally proportional to the number of resources to
be reconfigured, but also depends on the device used and the
reconfiguration strategy. Compilation time depends on the
hardware and software used to translate and map the code and
is hard to estimate.

5.2 Static Design

Due to long reconfiguration and recompilation overheads,
the dynamic design approach is expected to be useful only if
the same template object is searched for within a great
number of video frames of the same size. As an alternative, a
static design is proposed, where the configuration of the
FPGA is not changed when a new template is used. As the
number of different search frame sizes and template shapes
and sizes is unlimited, only a subset of all solutions can be im-
plemented.

If the size of the search frame is fixed, the following solu-
tion is possible. The PEs have to be modified, as shown in
Figure 6, so that the template pixel values T(i,j) come from
external memory, and a multiplexer controlled by a further
input signal sel needs to be added to select between perform-
ing an addition, if the respective pixel belongs to the template
object, or otherwise just delaying the signal. All delay ele-
ments D have to be substituted with those modified PEs. By
changing the memory content, different templates can be
searched for. The word length of the kth PE output is

, with  , in order to cover for
all possible template sizes.

Figure 6   PE structure for static design

The area AS for the static design which consists of WH
PEs is calculated using (2) as

 , (19)

and hence estimated according to (11) as 

 (20)

with  . (21)

The execution time TS for the static design to perform the
SA-TM algorithms on N frames can be calculated as

 . (22)

Advantages of this design are that no recompilation of the de-
sign code or reconfiguration of the device are necessary for a
constant search frame size as the template is stored off-chip.
However, the large, external RAM to store all possible WH
template pixels and mask bits are expected to make the design
slower and larger than an optimal design. In addition, for
large frame sizes the number of I/O pins required for all WH
template pixels is extremely large. Another disadvantage is
that in all cases when p < WH (template smaller than search
frame), area is wasted because some of the PE logic is un-
used.

5.3 Partially-dynamic design

Figure 7   PE structure forpartailly-dynamic design

To combine the advantages of the dynamic and the static
design, a third design is proposed. The difference to the static
design is that this design stores the template pixels and mask
bits in on-chip memory available on most FPGAs. To change
the template, only a  reconfiguration of the memory parts is
necessary, the rest of the circuit remains the same. As the
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template is dynamic while the circuit remains static, this de-
sign is called partially-dynamic. The structure of a PE for this
design is shown in Figure 7. Both template pixel value T(i,j)
and mask bit M(i,j) for that pixel are stored within the PE. If
M(i,j) is ‘1’, that is, if the pixel belongs to the template object,
the absolute distance of I(y,x) and T(i,j) is added to the incom-
ing intermediate sum sum_in. Otherwise, sum_in is shifted
through and registered.

As the partially-dynamic design, like the static one, con-
sists of WH PEs, the area can be estimated in the same way:

 , (23)

using qWH as in (21).
The total execution time TPD for the partially-dynamic

design to find a template object in N video frames consists of
the time TPD

computeN to calculate the SA-TM operations and
the reconfiguration time TPD

reconf to update the FPGA mem-
ory for a new template.

The execution time for N frames is calculated as

 , (24)

with fPD as the maximum clock rate the circuit can run at.
Considering a partially reconfigurable design is used, the

reconfiguration time to load the data for a new template into
memory can be calculated as

 , (25)

where tbit is the time to reconfigure 1 bit. Note that only the p
pixel values belonging to the object need to be loaded into
memory in addition to mask bits for all WH PEs, while any
possible old pixel values belonging to an old object but not
belonging to the new template object do not need to be
changed as their use will be disabled by the new mask bits.

6 FPGA Implementation and Results

The PEs for the three reconfigurable designs described
above have been implemented for c=8 (eight bit per pixel) us-
ing Synplicity Synplify and Xilinx ISE foundation software
targeting Virtex  XCV1000E devices. Table 1 shows the re-
sults for area in logic cells (LCs) and clock frequency in MHz
for PEs of different word length n for the dynamic (D), static
(S), and partially-dynamic (PD) designs. An LC contains a
look-up table with four inputs (4-LUT) and one flip-flop
(FF).

Table 1   Number of LCs (A) and clock frequency (f) for PEs 
with different word length n, for dynamic (D), static (S) and 
partially-dynamic (PD) design

Using the results shown in Table 1, the values a and b for
the area calculation of an PE, as in (2), and hence the area es-
timation for all PEs, can be determined for all three designs:
• dynamic design: aD = 1.5, bD = 1, 

hence  ,

and  , (26)

with   .
• static design: aS = 1.5, bS = 18, 

hence  ,

and  , (27)

with   .
• partially-dynamic design: aPD = 1.5, bPD = 5, 

hence  ,

and  , (28)

with   .

6.1 Results for Example 1

For example 1 (w = h = 3, p = 8, W = 7, H = 6) the follow-
ing results were obtained:

It can be seen from rows 1 and 2 in Table 2 that the calcu-
lated areas using the area estimations described in Section 5
are fairly accurate and are used in further examples, where a
compilation takes too much time or is impossible due to the
size of template and/or search frame. The reconfiguration
times to load the circuit for the dynamic design and to update

APD aPD p qWH 2
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--------- 1–=

TPD
reconf c p W H⋅+⋅( ) tbit⋅=

n AD[LCs] fD[MHz] AS[LCs] fS[MHz] APD[LCs] fPD[MHz]

8 14 79.9 30 42.1 17 82.8

9 15 74.0 32 41.3 19 75.4

10 17 70.5 33 40.5 20 72.0

11 18 73.4 35 42.1 22 66.2

12 19 71.3 36 37.2 23 66.5

15 23 66.4 41 34.9 28 58.8

16 25 58.8 42 34.5 29 55.0

29 42 41.6 62 22.4 49 37.5
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the memory of the dynamic design were calculated for a Xil-
inx Virtex 1000E device using a reconfiguration clock fre-
quency of 50 MHz and 8 bit per clock cycle, as described in
[18].

Table 2   Results for Example 1, for dynamic (D), static (S) and 
partially-dynamic design (PD)

6.2 Results for HDTV

For a more realistic example, the following parameters
are used, as in the HDTV (SMPTE 260M) video processing
format: W = 1920, H = 1080, frame rate 30 Hz. Area and ex-
ecution time were calculated according to the equations given
in Section 5, although in most cases the designs are too com-
plex to fit into a currently available FPGA.

Table 3 shows the number of logic cells required to imple-
ment the dynamic design for different template sizes, separat-
ed into PE resources, and resources to register intermediate
results, according to (11), (13), and (15), respectively. The
bounding boxes are considered quadratic with 80% of the
pixels belonging to the object to be mapped. It can be seen
that the number of LCs required grows with the size of the
template object. The largest share of resources are required
for the registers outside the template bounding box required
to delay intermediate results until valid input signals become
available. However, for all possible template object sizes and
shapes, the area for the dynamic design is smaller than the
area required for the static design AS = 124,380,674 LCs or
the partially-dynamic design APD = 97,423,874 LCs, which
are constant for all templates used.

Table 3   Area results [in LCs] for dynamic design using 
different template sizes and p=80% of wh

In Figure 8, the total area AD required to implement the
dynamic design for a templates of the same number of pixels
belonging to the object (p=32,000 = 80% of wh), but of dif-

ferent shapes, that is different proportions of w to h, is dia-
grammed. It can be seen that the smaller the quotient w/h, the
larger the number of logic cells needed to implement the de-
sign. This is due to the fact that templates with a small width,
but a large height require far more registers to store interme-
diate results. In fact, AD

PE and AD
REG1 are constant for all

cases. Note that the effect would be reversed if instead of a
horizontal raster-scan as vertical raster-scan fashion could be
used to stream in the video frame pixels.

Figure 8   Area [in LCs] for dynamic design using template objects 
with different shape for p=32,000 = 80% of wh

... the results below will be described tomorrow...

Figure 9   Execution time using a 10×10 pixel template (p=80%), 
for dynamic (D), static (S) and partially-dynamic design (PD)

Design D S PD

A measured [LCs] 223 1541 996

A calculated [LCs] 224 1544 998

f [Mhz) 73.40 32.32 58.63

Tcompute [ns] for 1 clock cycle 13.6 30.9

# cycles for N frames 42N 42N+41 42N+41

Treconf [µs] 517.9 n/a 55.1

w×h 10×10 20×20 50×50 100×100 200×200 500×500

AD
PE 1,690 7,714 55,930 247,714 1,086,850 7,606,789

AD
Reg1 268 1,232 8,988 39,952 175,808 1,234,464

AD
Reg2 246,390 590,900 1,714,790 3,732,820 7,776,120 17,697,460

AD 248,348 599,846 1,733,605 4,020,486 7,951,928 26,538,895
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Figure 10   Execution time using a 100×100 template (p=80%), for 
dynamic (D), static (S) and partially-dynamic design (PD)

Figure 11   Reconfiguration overhead in %, using a  10×10 template 
and a 100×100 template (p=80%), for dynamic (D) and partially-dy-

namic design (PD)

7 Conclusion

In this paper, ...
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