
A Hardware Gaussian Noise Generator for Channel Code Evaluation

Dong-U Lee and Wayne Luk
Department of Computing

Imperial College
London

United Kingdom
{dong.lee, wl}@ic.ac.uk

John Villasenor
Electrical Engineering Department

University of California
Los Angeles

USA
villa@icsl.ucla.edu

Peter Y.K. Cheung
Department of EEE

Imperial College
London

United Kingdom
p.cheung@ic.ac.uk

Abstract

Hardware simulation of channel codes offers the
potential of improving code evaluation speed by orders
of magnitude over workstation- or PC-based simula-
tion. We describe a hardware-based Gaussian noise
generator used as a key component in a hardware sim-
ulation system, for exploring channel code behavior at
very low bit error rates (BERs) in the range of 10−9

to 10−10. The main novelty is the design and use of
non-uniform piecewise linear approximations in com-
puting trigonometric and logarithmic functions. The
parameters of the approximation are chosen carefully
to enable rapid computation of coefficients from the
inputs, while still retaining extremely high fidelity to
the modelled functions. The output of the noise gen-
erator accurately models a true Gaussian PDF even
at very high σ values. Its properties are explored us-
ing: (a) several different statistical tests, including the
chi-square test and the Kolmogorov-Smirnov test, and
(b) an application for decoding of low density parity
check (LDPC) codes. An implementation at 133MHz
on a Xilinx Virtex-II XC2V4000-6 FPGA produces 133
million samples per second, which is 40 times faster
than a 2.13GHz PC; another implementation on a Xil-
inx Spartan-IIE XC2S300E-7 FPGA at 62MHz is ca-
pable of a 20 times speedup. The performance can be
improved by exploiting parallelism: an XC2V4000-6
FPGA with three parallel instances of the noise gen-
erator at 126MHz can run 100 times faster than a
2.13GHz PC. We illustrate the deterioration of clock
speed with the increase in the number of instances.

1 Introduction

Numerical methods for Gaussian random number
generation have a long history in mathematics and
communications. As described in [1] and the ref-
erences cited therein, most methods involve initially
generating samples of a uniform random variable and
then applying the Box-Muller algorithm to obtain sam-
ples drawn from a unit-variance, zero-mean Gaussian
PDF fX(x) = (1/

√
2π) e−x2/2. In the overwhelm-

ing majority of cases, this occurs in environments such
as computer-based simulation where functions such as
sine, cosine, and square roots are easily performed,
and where there is sufficient precision so that finite-
word length effects are negligible.

There has been far less attention focused on effi-
cient hardware implementation of Gaussian noise gen-
erators, as the noise in real hardware systems is of
course supplied by the environment and does not typi-
cally need to be generated internally. Recent advances
in coding, however, have made the case for hardware-
based simulation of channel codes much more com-
pelling, and provide strong motivation to examine the
Gaussian noise generation problem in the framework
of limited word length, and limited computational and
memory resources. For example, low density parity
check (LDPC) codes are currently the focus of inten-
sive interest in the coding community due to their abil-
ity to approach the Shannon bound very closely and
with only moderate decoding complexity [2]. Com-
puter simulations to examine LDPC code behavior can
be time consuming, particularly when the behavior at
low bit error rates (BERs) in the error floor region is

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

being studied. Hardware-based simulation [3] offers
the potential of speeding up code evaluation by several
orders of magnitude, but is feasible only if suitably fast
and high-quality noise generators can be implemented
in hardware alongside the channel decoder.

The principal contribution of this paper is a hard-
ware Gaussian noise generator that offers quality suit-
able for simulations involving very large numbers of
noise samples. The noise generator is simple, occu-
pying approximately 10% of the resources on a Xil-
inx Virtex-II XC2V4000-6 device [4], while produc-
ing over 133 million samples per second. In contrast
with previous work, we focus specific attention on the
accuracy of the noise samples in the high σ regions of
the PDF, which are particularly important in achiev-
ing accurate results during large simulations. The key
novelties of our work include:

• a hardware architecture which involves the use
of non-uniform piecewise linear approximations
in computing trigonometric and logarithmic func-
tions;

• exploration of hardware implementations of the
proposed architecture targeting both advanced
high-speed FPGAs and low-cost FPGAs;

• evaluation of the proposed approach using several
different statistical tests, including the chi-square
test and the Kolmogorov-Smirnov test, as well as
through application to decoding of low density
parity check (LDPC) codes.

The rest of this paper is organized as follows.
Section 2 covers background material and previous
work. Section 3 briefly reviews the Box-Muller algo-
rithm, and discusses how each of its steps can be han-
dled in a hardware architecture. Section 4 describes
technology-specific implementation of the hardware
architecture. Section 5 discusses evaluation and re-
sults, and Section 6 offers conclusions and future
work.

2 Background

Previous work on Gaussian noise generation can be
divided into two types: the generation of Gaussian
noise using a combination of analog components, and
the generation of pseudo random noise using purely

digital components. The first method tends to be prac-
tical only in highly restricted circumstances, and suf-
fers from its own problems with noise accuracy. The
second method is often more desirable, because of its
flexibility. In addition, when simulating communica-
tion systems we may wish to use pseudo random noise
so that we can adopt the same noise for different sys-
tems. Also, if the system fails we may wish to know
which noise samples cause the system to fail.

Digital methods for generating random Gaussian
variables are almost always based on transformations
or operations on uniform random variables. There are
four well-known methods [5]: the Ziggurrat method,
the polar method, the use of the central limit theorem,
and the Box-Muller method. The Ziggurrat method is
not considered here because it can produce large errors
in the tail areas of the distribution. The polar method,
while popular in software implementations, contains a
conditional loop such that the output rate is not con-
stant, making it less amenable to a hardware simula-
tion environment. The central limit theorem can, in
principle, be used to produce Gaussian samples, if a
suitable number of samples are involved. In practice
however, approaching a Gaussian PDF to a high accu-
racy using the central limit theorem alone would re-
quire an impractically large number of samples. Our
choice for hardware implementation is based on the
Box-Muller algorithm, which generates random Gaus-
sian variables by transforming two uniform random
variables over [0,1). Properly implemented, it offers
predictable output rate and, in combination with the
central limit theorem, extremely good Gaussian mod-
elling.

There is very little previous work on digital hard-
ware Gaussian noise generators. The most relevant
publications are probably [6], [7] and [8], which dis-
cuss designs targeting Field-Programmable Gate Ar-
rays (FPGAs). We present a design with significantly
improved efficiency, which also passes statistical tests
widely used for testing normality. In addition, pre-
vious work produces noise samples that are targeted
primarily for the output region below about 4σ, and
therefore does not specifically address the high σ val-
ues of 4σ to 6σ and beyond; these are critical in the
large simulations motivating our work.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

3 Architecture

This section provides an overview of the Box-
Muller method and the associated four-stage hardware
architecture. The implementation of this architecture
in FPGA technology will be presented in Section 4.

The Box-Muller method [9] is conceptually
straightforward. Given two realizations u1 and u2 of a
uniform random variable over the interval [0,1), and a
set of intermediate functions f , g1 and g2 such that

f(u1) =
√
− ln(u1) (1)

g1(u2) =
√

2 sin(2π u2) (2)

g2(u2) =
√

2 cos(2π u2) (3)

the products
x1 = f(u1) g1(u2) (4)

x2 = f(u1) g2(u2) (5)

then provide two samples of a Gaussian distribution
N(0, 1).

The above equations lead to an architecture that has
four stages.

1. A shift register-based uniform random number
generator,

2. implementation of the functions f , g1, g2 and the
subsequent multiplications,

3. a sample accumulation step that exploits the cen-
tral limit theorem to overcome quantization and
approximation errors, and

4. a simple multiplexor-based circuit to support gen-
eration of one result per clock cycle.

A similar basic approach has been taken in other hard-
ware Gaussian noise implementations [6]; what dis-
tinguishes our work is the detail of the functional im-
plementation developed to deal with: (a) Gaussian
noise with high σ values, and (b) evaluations using
commonly-used statistical tests.

In the following, each of the four stages in our ar-
chitecture is described in detail.

The first stage. This stage involves generation of the
uniformly distributed realizations u1 and u2. The im-
plementation of this stage is straightforward, and can

u
1

LFSRs

g
1
(u

2
)f(u

1
) g

2
(u

2
)

ACC(2)

u
2

u
2

50

32 18 18

x
1

x
2

32 32

x

ACC(2)

y

MUX

32

Stage 1

Stage 2

Stage 3

Stage 4

x

Figure 1. Gaussian noise generator architec-
ture.

be accomplished using well-known techniques based
on Linear Feedback Shift Registers (LFSRs) [10]. To
ensure maximum randomness, we use an independent
shift register for each bit of u1 and u2. The resources
needed are related to the periodicity desired in the shift
registers. Since n-bit LFSRs with irreducible polyno-
mials can produce random numbers with periodicity of
2n − 1, hardware required will be proportional to the
number of bits of precision needed in u1 and u2.

The necessary precisions of u1 and u2 are related to
the maximum values that the full system will produce.
Since g1 and g2 are bounded by [−√

2,
√

2], the max-
imum output is determined by f , which in turn takes
on its largest values when u1 is smallest. For example,
when 16 bits are used for u1, the maximum possible
Gaussian sample has an absolute value of 4.7σ.

The second stage. This stage involves the most in-
teresting challenges: efficient implementation of the
functions f , g1 and g2. Direct computation of the
logarithm and trigonometric functions leads to pro-
hibitively long computation times. A look-up table
would allow outputs to be obtained in only a few clock

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

u

f(
u)

Figure 2. The f function. The asterisks indi-
cate the boundaries of the linear approxima-
tions.

cycles, but this leads to prohibitively large memory re-
quirements. For example, a look-up table for f(u1)
with sufficient resolution for u1 would require 232 en-
tries.

Instead we use a two-step process based on non-
uniform piecewise linear approximation. The best-fit
straight line, in a least squares sense, to each segment
is found. A look-up table is used to store the gradient
and the y-intercept for each line segment, and the func-
tions can then be evaluated using a multiplier and an
adder to calculate the linear approximation [12]. The
key idea is to construct the piecewise linear approx-
imation such that: (a) the segment lengths used in a
given region depends on the local linearity, with more
segments deployed for regions of higher non-linearity;
and (b) the boundaries between segments are chosen
such that the task of identifying which segment to use
for a given input can be rapidly performed.

We first consider the f function (Figure 2). The
greatest non-linearities of this function occur in the re-
gions close to zero and one. To be consistent with the
change in linearity, we use line segment boundaries
at locations 2n−32 for 0 < u ≤ 0.5, and 1 − 2−n

for 0.5 < u ≤ 1, where 0 ≤ n < 32. The re-
sulting boundaries are shown by the asterisks in Fig-
ure 2. A cascade of AND gates and OR gates can
be used to produce the address of the appropriate co-
efficients. Since the largest gradient (for the steepest
linear segment given the above partitioning) is of the
order of 108, large multipliers would be required. To

0 0.25 0.5 0.75 1
−1

0

1

u

g(
u) Region 0 Region 2Region 1 Region 3

cos(u)

sin(u)

Figure 3. The g functions. Only the thick line
is approximated; see Figure 4. The most sig-
nificant 2 bits of u2 are used to choose which
of the four regions to use; the remaining bits
select a location within Region 0.

0 0.0625 0.125 0.1875 0.25
0

1

u

g 1(u
)

Figure 4. Approximation for the g functions
which corresponds to the thick line in Fig-
ure 3. The asterisks indicate the boundaries
of the linear approximations.

overcome this problem, we use scaling factors of mul-
tiples of two to reduce the magnitude of the gradient,
essentially trading precision for range. This is appro-
priate since the larger the gradient, the less important
precision becomes. The use of scaling factors pro-
vides variable precision for both the gradient and the
y-intercept. Hence for each approximation four coef-
ficients are stored: the gradient, the gradient scaling
factor, the y-intercept, and the y-intercept scaling fac-
tor.

The computation of g1 and g2 is carried out in a sim-
ilar way. Given the symmetry of the sine and cosine
functions, the axis can be considered in four regions
related by symmetry, labelled 0 to 3 in Figure 3. The

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

look-up table for g1 and g2 then only needs to hold co-
efficients corresponding to the input range [0,1/4]. We
use the most significant 2 bits of u2 to select a random
region and the least significant 16 bits to select within
the region. The outputs are generated using the sym-
metry by applying appropriate shifts and sign changes.
Within a single region, the specific axis partitioning
technique for f is unsuitable for g1 and g2 because the
non-linearities of the functions are different. However,
as before we consider both the local linearity of the
curve and the computational concerns with respect to
choosing specific segment boundary locations, leading
to the approximations shown in Figure 4.

The third stage. This stage involves a sample accu-
mulation step that exploits the central limit theorem to
overcome quantization and approximation errors. As
is well known, given a sequence of realizations of in-
dependent and identically distributed random variables
x1, x2, ..., xn with unit variance and zero mean, the
distribution of

x1 + x2 + ... + xn√
n

tends to be normally distributed as n → ∞. We find
that n = 2 is sufficient, so we use an accumulator
(the ACC(2) component shown in Figure 1) that sums
two successive inputs to produce an output every other
cycle. The central limit theorem calls for a division
by

√
2, which is potentially problematic in hardware.

Fortunately, since computation of g1 and g2 involves
a multiplication by

√
2 (Equations (2) and (3)), this

multiplication is in effect cancelled by the subsequent
division, so it can be dispensed with in both places in
the implementation. This optimization also alters the
range of g as implemented to [-1,1].

The fourth stage. This stage involves a multiplexor-
based circuit to select one of the two ACC(2) compo-
nent outputs in alternate clock cycles. The multiplexor
is controlled by a circuit that toggles its output. This
enables producing an output every clock cycle, rather
than two outputs every other cycle.

Four further remarks about this architecture will be
made. First, it is possible to speed up the output rate
further by having multiple noise generators running in
parallel, provided that the LFSRs are initialized with
different random seeds. Second, the periodicity can be

increased my using larger LFSRs and higher σ values
can be obtained using more bits for u1, both with very
little increase in complexity.

Third, in addition to channel code evaluation, our
noise generator can be used in various applications
involving system-level characterization, such as dig-
ital watermarking [13] and oscilloscope testing [14].
Fourth, for applications requiring a large dynamic
range, floating-point arithmetic can be used for the
components in our architecture.

4 Implementation

This section presents implementations of the four-
stage architecture using FPGA technology.

We use 32 bits for u1, allowing a maximum output
of 6.7σ. Higher values of σ can be supported by in-
creasing the number of bits for u1; for instance 46 bits
would yield a maximum output of 8σ. For u2, 18 bits
are found to be sufficient without loss of performance.
This is because the trigonometric functions in g1 and
g2 can be computed over [0,1/4] instead of [0,1], with
symmetry used to derive the remainder of the [0,1] in-
terval. The combination of 32 bits for u1 and 18 bits
for u2 means that 50 shift registers are needed. We
choose to target a period of about 1018 for the noise
generator, which exceeds by several orders of magni-
tude even the most ambitious simulation size that can
be contemplated with current hardware. Since 1018 is
approximately 260, we use 60-bit LFSRs.

The 50 60-bit LFSRs can be implemented in con-
figurable hardware using surprisingly few resources.
Recent-generation reconfigurable hardware has a large
amount of user-configurable elements. For instance
the Xilinx Virtex-II XC2V4000-6 has 23040 user-
configurable elements known as slices. The SRL16
primitive in Xilinx Virtex FPGAs enables a lookup ta-
ble to be configured as a 16-bit shift register; so a 64-
bit shift register using SRL16s instead of flipflops will
use two slices instead of 32 [11]. Given that one 60-bit
LFSR can be packed into two slices, so we just need
100 slices for the 50 LFSRs.

It could also be argued that application of the central
limit theorem should be unnecessary if f , g1 and g2 are
implemented with sufficient accuracy. However, there
is hardware tradeoff involved in increasing the accu-
racy of these functions. We have found that applica-

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

0 2 4 6 8 10 12 14 16
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Number of Bits

M
ax

im
um

 A
bs

ol
ut

e
E

rr
or

Figure 5. Variation of function approximation
error with number of bits for the gradient of
the f function.

tion of the central limit theorem once (by summing two
values as described above) results in a net reduction in
complexity when the corresponding looser tolerances
in the piecewise linear approximations are exploited.

Having a larger number of terms in the central limit
theorem step would further simplify the linear approx-
imations, but would slow the execution speed due to
the need for accumulating more terms. For instance,
when 17 approximations are used for f and 6 for g,
eight values need to be summed in order to pass the
statistical tests. When 59 approximations are used for
f and 21 for g, without summing, the statistical tests
fail after around 700 million samples. Therefore, we
sum two samples to pass the tests.

Multipliers take significant amount of resources
on FPGAs, therefore the coefficients for the gradient
should be as small as possible. Tests are carried out to
find the optimum number of bits for the gradient co-
efficients, that provide least absolute error with small
number of bits. Figure 5 shows how the error varies
with the number of bits used for the gradient of the
function f . The figure indicates that 6 bits are found
to be sufficient.

Table 1 shows the number of bits used for each pa-
rameters in the look-up tables. Note that g1 and g2

share the same look-up table. 59 approximations are
used for f , and 21 for g. The total lookup table has a
size of 3504 bits for the function evaluator.

Several FPGA implementations have been devel-
oped, using the Handel-C hardware compiler from

Table 1. The number of bits used for each pa-
rameter of the f and g functions.

function gradient g-scale y-intercept y-scale

f 6 5 32 5

g 8 4 16 4

Celoxica [15]. We have mapped and tested the de-
sign onto a hardware platform with a Xilinx Virtex-
II XC2V4000-6 device. This design occupies 2514
slices, eight block multipliers and two block RAMs,
which takes up around 10% of the device. Stage two,
which is the function evaluator, takes up 2137 slices
or 85% of the slices used. A pipelined version of our
design operates at 133 MHz, and hence our design pro-
duces 133 million Gaussian noise samples per second.

We have also implemented our design on a low-
cost Xilinx Spartan-IIE XC2S300E-7 FPGA. This de-
sign runs at 62 MHz and has 2829 slices and 8 block
RAMs, which requires over 90% of this device. This
implementation can produce 133 million samples in
around 2 seconds.

It is possible to increase the performance by exploit-
ing parallelism. We have experimented with placing
multiple instances of our noise generator in an FPGA,
and find that there is a small reduction in clock speed
probably due to the fan-out of the clock tree. For
instance, a design with three instances of our noise
generator takes up around 30% of the resources in an
XC2V4000-6 device; it runs at 126 MHz, producing
378 million noise samples per second.

In the next section, the performance of the hardware
designs presented above will be compared with those
of software implementations.

5 Evaluation and Results

This section describes the statistical tests that we
use to analyze the properties of the generated Gaussian
noise.

We use two well-known goodness-of-fit tests to
check the normality of the random variables: the chi-
square (χ2) test and the Kolmogorov-Smirnov (K-S)
test [1].

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

The χ2 test involves quantizing the x axis into k
bins, determining the actual and expected number of
samples appearing in each bin, and using the results to
derive a single number that serves as an overall quality
metric. Let n be the number of observations, pi be the
probability that each observation fall into the category
i and Yi be the number of observations that actually do
fall into category i. The χ2 statistic is

χ2 =
k∑

i=1

(Yi − npi)2

npi
(6)

This test, which is essentially a comparison between
an experimentally determined histogram and the ideal
PDF, is sensitive not only to the quality of the noise
generator itself, but also to the number and size of the
k bins used on the x axis. For example, a noise gener-
ator that models the true PDF very accurately for low
absolute values of x but fails for large x could yield a
good χ2 result if the examined regions are too closely
centered around the origin. It is precisely for these
high |x| regions where a noise generator is critically
important, and most likely to be flawed.

Consider a simulation involving generation of 1012

noise samples, conducted with the goal of exploring
performance for a channel decoder in the range of
BERs from 10−9 to 10−10. In samples drawn from
a true unit-variance Gaussian PDF, we would expect
that approximately half a million samples from the set
of 1012 would have absolute value greater than x = 5.
These high σ noise values are precisely the ones likely
to cause problems in decoding, so a hardware imple-
mentation that fails to faithfully produce them appro-
priately risks creating incorrect and deceptively opti-
mistic results in simulation. To counter this, we ex-
tended the tests to specifically examine the expected
versus actual production of high σ values.

While the χ2 test deals with quantized aspects of
a design, the K-S test deals with continuous proper-
ties. Given a hypothesized distribution function with-
out discontinuities, the K-S test compares a CDF to
the empirical distribution function of the samples. It is
defined as the maximum value of the absolute differ-
ence D between two cumulative distributions. Thus,
for comparing a data set Y (x) to a known CDF F (x),
the K-S statistic is

D = max−∞<x<∞ | Y (x) − F (x) | (7)

The χ2 and K-S statistics are used to compute the
p-values [16] for our outputs. The p-value is a proba-
bility. A sample set with a small p-value means that it
is less likely to follow the target distribution. The gen-
eral convention is to reject the null hypothesis – that
the samples are normally distributed – if the p-value is
less than 0.05.

Figures 6, 7, and 8 illustrate the effect on the PDF
of different implementation choices. Figure 6 shows
the PDF obtained when 17 and 9 linear approxima-
tions are used for f and g1 respectively. The figure (as
well as the others in this section) is based on a simula-
tion of four million Gaussian random variables. There
are distinct error regions visible in the PDF, which oc-
cur when there are large errors in the multiplication of
f and g1. These distinct errors cause the various sta-
tistical tests to fail. Increasing the number of linear
approximations to 59 and 21 respectively leads to the
PDF shown in Figure 7. It is clear that the error regions
have decreased significantly. However, this still fails
the statistical tests when the sample size is sufficiently
large. When the further enhancement of summing two
successive samples as discussed earlier is added, the
PDF of Figure 8 results.

This implementation passes the statistical tests even
with extremely large numbers of samples. For the χ2

test, we use 700 bins for the x axis over the range [-
7,7]. The p-values calculated are around 0.5, which
are well above 0.05, indicating that the generated noise
samples are indeed normally distributed. The p-values
for the K-S test are also well above 0.05. In order to
explore the possibility of temporal statistical depen-
dencies between the Gaussian variables [17], we gen-
erate scatter plots showing pairs yi and yi+1. An ex-
ample based on 10000 Gaussian variables is shown in
Figure 9, which displays no obvious correlations.

We have used our noise generator in LDPC decod-
ing experiments. To obtain a benchmark, we per-
formed LDPC decoding using a full precision (64-
bit floating point representation) software implemen-
tation of belief propagation in which the noise sam-
ples are also of full precision. We then performed de-
coding using the LDPC algorithm but with noise sam-
ples created using the design presented in this paper.
Over many simulations, we have found no distinguish-
able difference in code performance, even in the high
Eb/N0 regions where the error floor in BER is as low

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

P
D

F
(x

)

Figure 6. PDF of the generated noise with 17
approximations for f , 6 for g.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

P
D

F
(x

)

Figure 7. PDF of the generated noise with 59
approximations for f , 21 for g.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

y

P
D

F
(y

)

Figure 8. PDF of the generated noise with 59
approximations for f , 21 for g with two accu-
mulated samples.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
i

y i+
1

Figure 9. Scatter plot of two successive ac-
cumulative noise samples for a population of
10000.

as 10−9.
Our hardware implementations, described in Sec-

tion 4, have been compared to several software imple-
mentations based on the polar method. The results are
shown in Table 2. It can be seen that our hardware
designs are faster than software implementations by
40–100 times, depending on the device used and the
resource utilization.

Figure 10 shows how the number of noise generator
instances affects the output rate. While ideally the out-
put rate would scale linearly with the number of noise
generator instances, in practice the output rate grows
slower than expected, because the clock speed of the
design deteriorates as the number of noise generators
increases. This deterioration is probably due to the in-
crease in clock fan-out and loading.

6 Conclusion

We have presented a hardware-based Gaussian
noise generator designed to facilitate channel code
simulations implemented in hardware which involve
very large numbers of samples. A key aspect of the de-
sign is the use of non-uniform piecewise linear approx-
imations in computing trigonometric and logarithmic
functions, with the boundaries between each approx-
imation chosen carefully to enable rapid computation
of coefficients from the inputs.

Our noise generator design is simple, occupying ap-
proximately 10% of a Xilinx Virtex-II XC2V4000-6
FPGA and 90% of a Xilinx Spartan-IIE XC2S300E-7,
and can produce 133 million samples per second. Sta-

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

Table 2. Performance comparison: time for
producing 133 million samples per second.
All the PCs are equipped with 512MB DDR
RAM. The XC2V4000-6 FPGA belongs to the
Xilinx Virtex-II family, while the XC2S300E-7
belongs to the Xilinx Spartan-IIE family.

platform time (sec)

XC2V4000-6 FPGA, 126MHz, 30% usage 0.4

XC2V4000-6 FPGA, 133MHz, 10% usage 1

XC2S300E-7 FPGA, 62MHz, 90% usage 2

AMD Athlon XP PC, 2.13GHz 40

AMD Athlon PC, 1.4GHz 45

Intel Pentium 4 PC, 2.0GHz 56

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

Number of Instances

M
ill

io
n

S
am

pl
es

 /
S

ec
on

d

Figure 10. Variation of output rate against the
number of noise generator instances. The
dotted line shows the linear relationship be-
tween the output rate and the number of in-
stances, if the clock speed does not deterio-
rate with the increasing number of instances.

tistical tests as well as application in LDPC decoding
have been used to confirm the quality of the noise sam-
ples. Ongoing and future work includes the implemen-
tation of hardware noise generators for different chan-
nels such as Rayleigh, Ricean and Nakagami-m [18]
channels, and automating the design of the circuits for
piecewise linear approximation to speed up the pro-
duction of a wide variety of hardware noise generators.

Acknowledgment

The authors thank Altaf Abdul Gaffar, Jun Jiang,
Shay Ping Seng and Tao Tian for their assistance. The
support of Celoxica Limited, Xilinx Inc., the U.K.
Engineering and Physical Sciences Research Council
(Grant number GR/N 66599 and GR/R 31409), and the
U.S. Office of Naval Research is gratefully acknowl-
edged.

References

[1] D.E. Knuth, “Seminumerical algorithms”, The
Art of Computer Programming, Volume 2, Third
Edition, Addison-Wesley, 1997.

[2] D.J.C. MacKay, “Good error-correcting codes
based on very sparse matrices”, IEEE Trans. In-
formation Theory, March 1999.

[3] B. Levine, R.R. Taylor and H. Schmit, “Im-
plementation of near Shannon Limit error-
correcting codes using reconfigurable hardware”,
Proc. IEEE Symp. on Field-Prog. Cust. Comput.
Mach., pp. 217–226, 2000.

[4] Xilinx Inc., Virtex-II User Guide v1.5, 2002.

[5] M.F. Schollmeyer and W.H. Tranter, “Noise gen-
erators for the simulation of digital communica-
tion systems”, Proc. 24th Ann. Simulation Symp.,
pp. 264–275, 1991.

[6] J.L. Danger et al., “Efficient FPGA implemen-
tation of Gaussian noise generator for commu-
nication channel emulation”, Proc. 7th IEEE
Int. Conf. on Elect., Circ. and Syst. (ICECS2́K),
2000.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

[7] A. Ghazel et al., “Design and performance analy-
sis of a high speed AWGN communication chan-
nel emulator”, Proc. IEEE Pacific Rim Conf.
on Commun. Comput. and Sig. Proc., Vol. 2,
pp. 374–377, 2001.

[8] “Additive White Gaussian Noise (AWGN) Core
v1.0”, Xilinx Product Specification, October
2002.

[9] G.E.P. Box and M.E. Muller, “A note on the gen-
eration of random normal deviates”, Ann. Math.
Statist., Vol. 29, pp. 610–611, 1958.

[10] P.P. Chu and R.E. Jones, “Design techniques of
FPGA based random number generator”, Proc.
Military and Aerospace Applications of Prog.
Devices and Tech. Conf., 1999.

[11] A. Miller and M. Gulotta, “PN generators us-
ing the SRL macro”, Xilinx Application Note
XAPP211 (v1.1), January 2001.

[12] O. Mencer et al., “Parameterized function eval-
uation for FPGAs”, Field-Programmable Logic
and Applications, LNCS 2147, pp. 544–554,
2001.

[13] J.J. Eggers, J.K. Su and B. Girod, “Robustness
of a blind image watermarking scheme”, Proc.
IEEE Int. Conf. on Image Processing, Vol. 3,
pp. 17–20, 2000.

[14] J. Vedral and J. Holub, “Oscilloscope testing by
means of stochastic signal”, Measurement Sci-
ence Review, Vol. 1, No. 1, 2001.

[15] Celoxica Limited, Handel-C Language Refer-
ence Manual, version 3.1, document number
RM-1003-3.0, 2002.

[16] W.J. Conover, Practical Nonparametric Statis-
tics, John Wiley and Sons, 1971.

[17] B.D. Ripley, Stochastic Simulation, Wiley, 1987.

[18] K.W. Yip and T.S. Ng, “A simulation model
for Nakagami-m fading channels, m<1”, IEEE
Trans. on Comm. Vol. 48, No. 2, pp. 214–221,
2000.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

