FCCM'96
On the Viability of FPGA-based Integrated Coprocessors

Osama T. Albaharna, Peter Y. K. Cheung, and Thomas J. Clarke

Information Engineering Section
Department of Electrical and Electronic Engineering
Imperial College of Science, Technology and Medicine

Exhibition Road, London, SW7-2BT, UK

Abstract The adaptivecoprocessor model challengtee more

This paper examines the viability of using integrate%t","bl,iShed general purpose techniqtiest exploit fine-
programmable logic as a coprocessor to support a hdégin instructionlevel concurrency. We askinder what
CPU core. This adaptive coprocessor is compared todkchitectural conditions can the integration of a core
VLIW machine in term of both die area occupied an%PU and an FPGA-based coprocessor on a single die

performance. The parametric bounds necessary to jusﬁfgferffrm\}\?e é)osm_ble Ei/nflr\?vat'vetﬂf ,:’S'ng a d_/ery Lo’?ng
the adoption of anFPGA-based coprocessor arentruction Word engine () on that same die area"

established. An abstract Field Programmable Gate Array This paperaddressethis question througlfiour stages.
model is used to investigate the area and del®&rst, in Section 2the cost and performance bounds of
characteristics of arithmetic circuits implemented oboth computational models, théLIW and the FPGA

FPGA architectures to determiriee potential speedup ofcoprocessingare examinednd aset of critical parameters
FPGA-based coprocessors. is determined. Section 3 describése experimental

: . methodology used to establisthe characteristics of
Our analysisshowsthat integratedFPGA arrays are _
" yst W nteg Y ithmetic computation onFPGAs and Section 4

suitable as coprocessor platforms for realising algorith . th Its of this i tination. Skttion 5
that require only limited numbers of muItipIicationsurmm"rlses € results of this investigation. on 5,

instructions. Inherent FPGA characteristics aliit the V€ explore the implications of these results on the

data-path widths that can be supported efficiently for thegghievable cosind performance limits ofFPGA-based

applications. An FPGA-based adaptive coprocess%?processors' Finally, in Section 6 we apthly ideas and

require a large minimum die area before any advanta 8nc|u.:,|c:_ns Fresente:j Itn 3a:her _sect_|ton tqttygllt_:tal ;
over a VLIW machine of a comparable size can b omputational example 1o determine s suitabiity for
realised. PGA-based adaptive coprocessor implementation.

2. Computational Models

The everincreasing spare transistoapacityhasonly . tAn tadaptlve coprocesicl)r Ius%sh_smconthrealk;esta(;e o
been absorbed sar into a limited number of architectural €9/ 2t€ MOré programmanle 10githis can then base

. to implement largercustom circuits or exploit more
features. Integrated programmable lobasemerged as X)
one of thevery few novel architectural ideas with the CONCurrency. On the other hand, a VLIW machine will use

potential to exploit this abundant resource. this same d'e. area _to increase the ”“mbeﬁms and
execute morenstructions percycle. Inthis section, we
A custom coprocessorcan directly exploit the examine thecost and performance of implementing an
concurrency available in applications, algorithms, and coallgorithm on both computationahodels organised as in
segments. An FPGA-based coprocessor further adapt Figure 1.
to any demands for special-purpdssardware by mapping
an algorithm onto run-time configurable logic. Thege
versatile “adaptive” coprocessocan beused to augment I-cache
the instruction set of @ore CPU or as special purpos Coprocessor
custom computing engines. Real-time applications gan (FPGA or VLIW)
alsoswapmultiple functionsand subroutines directly onto 4_T _,
the reconfigurable hardware during execution [1]-[5].

1. Introduction

Core VP

D

D-cache

+

e.mail: a.osama@ic.ac.uk Figure 1. Target coprocessor system organisatior
http://ww.ee.ic.ac.uk/research/information/www/aosama/aosama.html 9) 9 P Y 9 ’

FPGA-based coprocessor organisation. To achieve a The minimum time toexecute the whole loop is
high coprocessorthroughput, we assume a pipelinethaxP(Nviw/AJtviw] = Perit-Nviw-tviw Where pe; is called
implementation of all algorithms. This means that thikee critical dependence ratio. Usirgpftware pipelining
performance of the FPGA-based coprocessor depend on[Theand otheradvanced compiler transformations, it is
cycletime of the pipelinetfqs), the number of iterations possible to overlapthe execution of several different
the circuit isused Niygq), the number of concurrerbpies iterations of thdoop. If ki iteration can be unrolled and
of the circuit mapped onto thEPGA (g, and the thenscheduled, the iteration intervigk is the time units

number ofcyclesneeded to filthe pipeline ¢" 4. The needed to execute an entire iteration of k unrolled loops. It

total number of cycles is then must satisfy both types oflata dependencies agll as
_ Nitpga _ ¢ il c resources dependencies. dlf is the number of operations
T tpga= f Xt tpgat Cipga™ ipga a resource of typemust be used ik, iterations we can
pga

estimate lower bounds othe iteration interval and the
The areacost isthe sum of the areder all arithmetic maximum VLIW performance as follows:
nodes in a design. We assume integer naddsloating- N i

— fill
point nodesare used. All other operatamodes are Toiw = K tiik X tviw *+ Cviw * Thiw
expressed as a percentaggy{) of the area. 18y is the viw
area of nodéypei andn'y,g, the number ofiodes of type tik 2 ma){tiik (resource3 i (dependen)ie
used inthe circuit, thecost of acircuit implemented on an i/ i A0
adaptive coprocessor can be expressed as, ti (resource} 2 maxg@k/ Nuiw[5
Acircuit = (1_ Cfpga) X kfpga tiik (dependenc)32 ma){ (6‘;/)\ c)]

int=i o _int=i fp-iy fp- Although theproblem of finding an optimal schedule
* %ﬂz_l (afpgax nfpga)+ fz_i(afpgax nfpga)% using software pipelining is NP-complete, ihas been
shownthat nearoptimal results camoften be obtained for
VLIW machine organisation. We assume theé/LIW loops with both intra- and inter-iteration data
utilises integerand floating-point ALU units ratherthan dependencies. Ihasalso been showhat hierarchical
single operation functional moduleand that they reduction allows softwargipelining to be applied to
constitute most of itarea. All other area isxpressed as acomplex loops containing conditional statements. Program
percentaged(;,) of the total area. I&; is the area of a restructuring usingoop transformations anaptimising
function node oftypei andn'y;, the number ohodes of data locality using spacetiling techniques caralso be
typei used, the cost of a VLIW machine is applied to increase both the fine-graand coarse-grain

- int-al int-al fp—al -al arallelism available in nested loops.
P = (L=) (i i)+ (allax)] P P
Comparative analysis. We can now compare the

&formance of both models, neglecting the pipeline fill
ycles, by determining the speedup:

In addition to available resources, the performance
VLIW machine is limited by two types of dependencies [6
The data dependencies within an iterateond theones c
betweeniterations. AVLIW program can beiewed as a SU= Tuiw _ Kiooa Xt X tu _ Kipga x Lk
dependencgraph, as in Figure 5, which must tepeated Tipga Kuiw toa Kuw A
Nyiw times. Data and iteration dependencies are The speedup is effected ke number of concurrent
represented by théold and dashed edges respectively(.:Opies ofthe circuit k) mapped onto thEPGA. Since
Since ourVLIW processor model usepiplined ALUs, h f bothm fggl h béh '
each node, or operation, in thgeaphtakes a single timet € areas o otimodels ave to € same, we can

) ' T . . determinekipga = Aviw / Acircuit IN term of the number of
unit to execute). The iteration distance, attached tQ/LIW inte é’? ALUs used as follows:
dashed edges, ishe number ofloop iterations after g o
issuance of Shat $ can begirexecution. The number of ‘ [(1+ Cvliw)/ (1+ Cfpga)] x(n'\?ﬁv'valwa x r{ﬁ\,'va'”)
time units it takes t@xecute a cyclavithin a dependency fpga ~ int—i o, _int=i fp—i fp-i
graph &), given maximum resources, is the sum of all imz_i (Q anpga)+ fpz_i(a QT nfpg"")
nodes alonghis cycle path. The number of iteration) intei

. . . . fp-i fp—i
it takes the pattern in a cycle to repeat executitheisum here i = Aipga , Qff = & fpga | andy = —Sviiw
of all iteration distances along thigycle’s dependency a{ﬂitv;alu a\tﬁv;alu a{ﬂit\,;alu

path. ThereforeNy;./A. repetitions of a givenyclewill be

executed requirindc X (Niw/Ac) cycles. The algorithm’s data andesource dependencies are

inherent characteristiahat limit the value of §/ky as

-2-

mentionedbefore. Using jt(resources), st(dependence), 2-input Universal Logic Module (ULM.2) capable of
and thespeedup equation wean determine the conditiongmplementing any of 16 2-inpuBoolean logic functions
for which aVLIW machine is virtually guaranteed to hav§B], look-up tableqLUT) of input sizes 3, 4, 5and 6, and
superior performance to an FPGA-based coprocessor: finally, the cell architectures of both the Altera FLEX-8000
[9] and the XilinxXC5000 [10] which include specialised
hardware tospeedup carry propagatioand wide gate
implementation. All cells also incorporat&itype flip-
Ogm O0qk OO flops (FF). The cells interconnection capabilities examined
JER0.0 fgﬂ\gluDDS XA Eq2) included extensive neighbour connections witil 3, and
BB“'W H Hwiw EB fpga 16 possible neighbourghannelled 2D arrays with 4-
neighbour connections, or channelled arrays Wuitly, or
partially, connected clusters of cefismilar to the Altera
FLEX-8000 and the Xilinx XC5000 array architectures.

P 5258 EQ(D)

k fpoga
O int
ma

We can furthersimplify the speedup equation, Eq(2),
and Eq(3) by considering integer arithmetoly, similar
overhead percentages, and substituking to get:

ti pint-alu 1 Of all these cell typeghe 3-inputLUT cell proved the

SU = —F- x = Eq(3) best overall forarithmetic circuit implementations. We
Kuiw ~ >iNfpga Qave* B elect to use iand a 2D channelled arraychitecture for
communication as the example cell throughihig paper.

int=i
P S QM x A XM X Ko Eq(4) A neighbour interconnectioanly array may also be used
o Muiiw andwill give similar numerical results. Thehosen cell is
int int int-i based on a look-up table desigimilar in functionality to
< XAXY. Eq(5 ;
Ak,.=1 Qave 2iNpea ac) other look-up table model proposals [11]. It incorporates 4-

nearest neighbour connections as a wtaly to reduce
delayandimprove routability. Figure 2 gives a conceptual
diagram of this cell. The routing channel widi, is

We refer toQ andA as the area andelay overheads,
respectively, of a particular circuit implementation
compared to an ALU'srea andlelay. Theyare inherent)
characteristics of the implementation platfo(RPGA in assumed to be the sarfer both the verticaland the

; L : : horizontal channels. F&UTs with 3, 4, 5, and 6 inputs,
this case)and limit its maximumachievable speedup. To o) !
X the average minimum channel widths necessarydiating
sense howmuch speedup an adaptive coprocessor can i
.) X : as been observed to beld, 11, and 12espectively [11].
deliver for a given fixed area and whether an algorithm f\ﬂf

o . . e therefore adopt a channel width of 9 this model cell

the necessarycriterion thatwould make it suitable for .
.) . . although the actual channel width shoyddobably be
adaptive coprocessamplementation, we need to estlmateszIi htlv higher
the minimumvalues ofQ and A for arithmetic circuits ghtly higher.

implemented on FPGA platforms.

3. Experimental Methodology p—"
To examine how efficiently FPGAs implement e ri)&
. S _ D Q
arithmetic circuits we need to eliminatechnology and 3
design variationsand create an “even level” for - or \fcllj’
comparison. Thisection describes hothis even playing T iﬁ}(
field is established. We first descritiee cell architecture Mux
that is used throughout this paper and detail our models| fq) ig;g‘oig Enable 10 4 neighbours
estimating the area and delay of any FPGA cEhen, our 3
choices forarithmetic test circuitsand implementation
procedureare explained. In altliscussion to follow, we —
consider only SRAMprogrammable FPGAs sincenly J/
they providethe flexible platform necessary for field re- w N
programmability. _'nggnectlon Switch Box__

3.1 FPGA cell architecture
. . . Figure 2. FPGA cell model with a 3-inputs look-up table as a functfon
We examined 15 different FPGA cell architectuttest generator, direct north, south, east, avest neighbour connections

span the range of current research emmhmercial arrays.| and global horizontal and vertical channel routing.
The function generators included a 2-inplAND gate, a

-3-

Limitations. We do not accounfor all the factors It has been show [12] that lRas to be great¢hanhalf
effecting the implementation and performance. the number of track$or 100% routing completion to be
Specifically, we leave issues such asternal access, possible. Additionally, only amall Fs value is needed to
programming, testability,clock and control signals achieve a 100% routing completion. In our model, we
distribution,clock skew,andpower consumption for futurechoose £ = 0.78V and k = 3. The routing pitch is
work. Of theglobal programming logi@and network we determined by a five-transist&RAM bit (a,,) and asingle
only include the cost of the communication channelpass-transistor PIRy) and is defined as

network and the number oSRAM configuration bits

within a cell aspart of the cost of the cell. These I pitch = O‘r[(amJ’ap):\/GEXr

limitations bias Q in favour of the FPGA-based

coprocessor model. The FPGA cell is modelled as a square diea having

the following characteristics:

. .) Acell = Atunct Ameni™ Aroute

The area of arFPGA cell is approximatedising a _ X(N +N n)
transistordensity coefficienimetric @) in pm?transistor. Atunc =0 f fgm™ Trl
This density coefficient is dependent dhe fabrication — Amem= (amﬂam)x(Nfchf Nrc
process technology, layout methodologynd thecircuit (.2 ‘
logic structure used. It is obtained by averadaygputarea Aroute = [(rpimh (W EN")] ¥ [Foren({ XOWh* YDW)]
per transistoover all cells available in a library oover where XOY= Awc+ Aem and X*(,me): ¥(pitch] \A)
samples or real designs. We assume a normalised functiog, . = (a N i) + (0 o2 BN reh+ A route
generator logic densitgoefficient of a;, a configuration
memory normalised densitgoefficient of a,, and a where,
routing pitch normalised density coefficientogf Ace = the area of an FPGA cell

Figure 3a is a representative modelhaf total cell area Aunc = logic area used for functlon_ gene_ratlon
showing also the routing pitcibetween the physical em = Memory area used _for conﬂguratlon .
channel tracks. We assume that the Routing Configuration~voue = the aréa of the routing channels within a cell
Memory (RCM) bits used fothe channels’ switch and “omm = the area of the cell used for communication
connection boxes are distributedbetween the channel ~ Nem = # Of transistors used for function generation
tracks as shown in Figure 2b. It is therefore reasonable to'\im = # Of transistors used for routing logic and
assumethat a,, equalsa,. Other similarmodels also MUXs
assume a distributed RCM1]. The number ofmemory fem
bits distributed within the channell(i.) depend on the Nrem
connection and switch boxes. The connection box
flexibility F¢ is defined aghe number of channel tracks
each input and output can be connected to. The switch box" ™
flexibility Fs is defined aghe number ofpossible tracks The total area of a circuit implementation depends on
each incoming track can be connected to. how the mapping fromlogic equations to FPGA cell

Figure 3. A representation of the totarea functions is performeénd how theyare placedonto the
of an FPGA(a) Area model showingthe | cell array. IfNe is the number oFPGA cells used to

. vertical and horizontal tracks(b) The ; o L .
Logic Block Routing Configuration Memory bits implement the circuits, the total circuit area is

RCM) are distributed between the =
((:hann)el tracks. SR Acircuit - Ncell X A\:ell .

3.2 Area measurement

= # of memory bits for LUTs and control

= # of mem. bits used for routing configuration
= # of transistors in a memory bit =5

Wh = # of routing tracks in each horizontal channel
= # of routing tracks in each vertical channel

roull 3.3 Delay measurement

P'?uhl 9 T Logicand its | i _ : :

h_w Configuration | : The delay of an FPGA cell is approximateding the
Memory method of “logical effort” proposed bfutherland and

Sproull [13] [14]. The method ibased on a simple RC
model for transistors and provide a first order
approximation of a circuit delay. It definesas the actual
Horizontal /- time, for a fabrication procest)at corresponds to delay
Tracks \: - unit. Thevalue oft can be measuregidom thefrequency
of oscillation of aring oscillator. For eacltype of logic
gate, the method assigdelay unit values based on the

(&) /0 Connection Box Switch Boxj

-4 -

topology of the circuit element, thdlifficulty that an The results will thereforprovide a lower bound on the
element has in drivingapacitive loadsand the parasitic costand performance of different implementations which
capacitance exhibited by the gate. Tdeday of an ideal is exactlywhat we are looking for.Different designs are
inverter thatdrives another identical inverter is the sum afompared based dheir implementatiorfficiency defined

a single unitdelay ¢) and the parasitidelay valueP;,. as the area timedelay productAT’, or cost*performance,
Typically, for 3u CMOS process,= 0.5ns andP;,, = 0.6, for that circuit. Thdess ‘AT’ is, the moreefficient is the
while for 0.5u CMOS process, = 0.1ns and®,, = 0.5. implementation.

All other gatedelaysare measured relative that of an

ideal inverter. We use these galiay toarrive atdelay 3.5 Choice of arithmetic circuits

value for each FPGA cell examined. Separate values ar
determined for each ceithput to output, theset-up time,
and thesynchronous clock to output delay for each c
type. These delays also incluttes effects ofinternal fan-
outs.

e\Ne mapped 10 different integer addition circuit designs
éﬁpresenting severaldelay and area optimisation
techniques. They includesderial, carry-ripple, carry-skip,
several one-level and two-levels carry-lookahead,
conditional-sum, carry-selecgnd pyramid adders. For
The delay of circuit implementation depends on thénteger multipliers, weonly considered 2's complement
longest depth ahatcircuit (Ngepi) after mapping onto the multipliers with 1-bitBooth recoding. We also mapped 6
array and the routinglelay between these levels. Sincdifferent multiplication circuit designs including serial,
each level mayequire different inpueind output signals, sequential, sequential with one-lexaid two-levels carry-
they may each have a different delay valughe routing save logic, parallel array, andbit systolic. For the
delay betweemeighbour cells is accounted for by thgequentialand array multipliersvhich require an adder,
explicit loading onthat cell's output. The routingdelay we tried all the integer addeakove todetermine th@nes
betweennon-neighbouring cells in a channelled array that producethe best ‘AT’ results. All integer circuits
more difficult to estimate specially without knowledge ofrere examined for bit widths varying from 4-bits to 64-
the exact placemenand routing information and thebits.
capacitive loading on each level duethhe programmable
routing switches alonthe path. The totadxecution time
of a circuit, inT units, can be determined as the sum of
delays along the longest path as follows:

For floating-point numbers we implemented a subset of
gﬂe 32-bit and 64-bit IEEE specification standard and
mapped both additioand multiplicationcircuits. Not all

options referred to in thestandard were included.
T :Ndzemh(di +d) Particularly, we assumed truncation is performed after

cireuit = £ \Hab = Hhroute, addition or multiplication ratherthan rounding to

eliminate one normalisation step. Ten mantissa adders
andsix mantissa multipliersvere tested corresponding to
the types ofnteger unitsabove. The exponent addetsed
were chosen toninimise the ‘AT’ value forthat design.
Finally, we also implemented a pipelined version of those
integer andfloating-point circuitsabovethat areactually
pipelineable without incurring any increase in area cost.

whered',;, is thedelay, inT units, betweeninput nodea
and output nodeb of a cell at circuit depthevel i, and
d'oue is the routingdelay, int units aswell, between the
output of the cell aleveli and the input of anotheell at
leveli+1. In this investigation, we wihssume',,. to be
zero. This assumption wibliasA in favor ofthe FPGA-
based coprocessor model.
Limitations. We did not include the control-path in either
3.4 Implementation Procedure the cost or performance calculationBurthermore, we did
_) not examine any division algorithms or combination
We determine the number célls needed to implementsnctions such as multiply-accumulate. We also restricted
a circuit (Neesy) and the depth of themplementation the jnvestigation by not consideringable-lookup

(Naepr) by a structure preserving direwand mappingrom techniques, distributed arithmetic, or the potential of other
the original circuit designs. Automated mapping angd,mber systems.

routing resultsvary significantlywith different tools and
for different optimisation criterionThey also significantly . . -
alter the overalhigh level organisation resulting in Iow4' Implementatlon EfflClency Gap

area utilisatioreven forregular circuits structures. We can In an earlierstudy[15], we demonstratethat there is a
also assumehat withimproved FPGA cell architecturesJarge implementatiorefficiency gap between FPGA and
mapping, placemengnd routingtechnologies, the routing VLSI platforms. We showethat asystemimplemented
structure is sufficient to completthe mappednetwork on FPGAs will require as much as 100 times more die area
interconnections and give a very high array utilisation. than acustom VLSI implementatioand would be about

-5-

10 times slower. Althougthis result indicateiow much By limiting pipelined integer circuits twnly those
worse an FPGAmplementation is compared to\A.SI pipelinable without additional area, multiplication is
implementation, the comparison is rabtectly applicable restricted to array multipliers which hatégh areacosts.
to our needbecausdhe FPGA platform is programmableSimilarly, floating-point multiplication is not able to make
while a VLSl adder or multiplier is not. A more suitableuse ofthe compactness of sequential multipliersd incurs
comparison would be between an FPGAaircuit a large are@ost as well. The effects ofthese restrictions
implementation and programmable VLSHevicelike an can be observed in Table The firstthing tonotice isthat
ALU. We have already defined, in Section2andA to pipelined integer addition implementatigive reasonably
be, respectivelythe ratios of the area amkblay results of efficient results everthough the area overhead is still
an FPGA-baseimplementation to those of alLU. The large. Of coursethis is an improvemenbver the non-
ALU parameters we ussrebased on estimates fthre area pipelined results, and is mostly due to kiwve cycletime of
and delay of complementary logic CMOS circuits whiclthe FPGA implementationsand, subsequentlythe low
represent upper bounds on VLSI implementatiost and delay overhead. This suggests that addition
performance. Therefor€ andA represent lower boundsimplementation on FPGAs should be pipelined.

while true areanddelay overhead could actually brich

: : e) Th d i is th ipeli i
higher. Wewill now comparethe efficiency of pipelined, e secondobservation isthat pipelined integer

and non-pipelinedi-PGA-basedarithmetic circuits tahat (r:nauslgptl;l(j? t;c:ﬂeegf:;gr;g)é I;C \t/)::;?igua:\r etg(?onsc:,n lf);)p!{?egio

of ALUS. times from a maximum of 4.1 times in the non-piplined
We select twapipelined integeiALUs, 32-bitand 64- case. Unlike additionhowever,this resultsuggestthat

bit, capable of addition, subtraction, multiplication, shift towultiplication is not suitable atall for FPGA

the left, arithmetic shift to theight, andfinally, logical implementation. If required, however, but with real-estate

AND, OR, and NOT operations. They use a fast arragt a premium, as in our case, multiplication should not be

multiplier to achieve small multiplicationlelays at the pipelined so as to save amea. Finally, th@verhead for

expense ohigh die area. Waealso selectwo pipelined floating-point is much largerthan that of integer

floating-point ALUs, 32-bit and 64-bit, capable of additiorimplementation. The large overhead magnitude raises

subtraction,and multiplicationwhich also use an arraydoubtregarding thausefulness of floating-point operations

multiplier as their mantissa multiplier/addeFor integer on FPGAs under any circumstances.

ALUs, we assum¢hat additiontakes a singleycle while

o . ial Arith ic. ial arith i li
multiplication needs 2ycles on a32-bit ALU, and 3 Serial Arithmetic. Serial arithmetic can delivéow area

: . i overheads for lowoperand width values.However, for
cycles on &4-bit ALU. Forthe floating-pointALUs, we larger widths,32-bits and 64-bits for examplethe area

%srs;rgder é’ite:ﬁ&m:_;;ar%iiﬁoéfihizéz'xgﬂzgg iisgt;?\?:r?i r(])verhead is stillconsiderablyhigh becausethe registers
i > in mulatinthe result have t incl in th
Table | whichshowsthe resultsfor both pipelined and used in accumulatinthe result have to be included in the

ivelined FPGA impl tati Note that cost. It is also evident from our resulisat the low
non-pipetine \ Impiementations. - Note - tha performance of serial designs matkeeir use on FPGAs
Multiplying Q andA in the tablemay not correspond to

unacceptable for high throughput computations.
the Q* A entry because all results have been rounded.

TABLE |
Characterising FPGA-based Arithmetic Circuit Implementations
32-bit ALU 64-bit ALU

Integer FP Integer FP
FPGA circuit bit widths 8 li6 | 24| 32] 32| 8| 16] 24| 32| 40l 49 54 64 32| 64
QxA |0.15/ 0.49 0.57 0.431.4]0.03] 0.11 0.13 0.1B 0.43 0.29 0.85 (4.19]17.3
pipelined | ADD | area @) |0.76] 2.5| 2.87 4.0}15.0]0.21| 0.69 0.7¢ 1.1 1.44 1.79 2.4 2]3.79]9.15
FPGA delay @) | 0.2] 0.2] 0.2| 0.2/ 2.1]0.16/ 0.1 0.16 0.1 0.16 0.16 0.16 0]1.63|1.89
circuits QxA |0.76] 3.0 6.42 11]108|0.17| 0.69 1.44 2.54 3.94 5.65 7.7 9]21.3| 106
Mult Q 3.87| 15.9 32.6 57.}51.5/1.05| 4.2 8.8 15.p 24|3 348 47.2 5{13.0/56.3
A 0.2 0.2] 0.2] 0.2 2.1]0.16/ 0.1 0.1 0.1p 0.16 0.16 0.16 0]1.63|1.89
QxA | 0.6] 2.1 353 5.6§119]0.14| 0.47 0.79 1.2F 1.4 2.02 2.41 2|15.9]67.2
non- ADD | area @) |0.32] 0.61 3.78 5.1}16.7]0.09| 0.17 1.02 1.4p 1.83 2.25 259 3]4.23]10.2
pipelined delay () | 1.88] 3.45 0.95 1.0}7.13|1.55/ 2.8§ 0.78 0.9 0.9 05 08 0]5.54]6.56
FPGA QxA |4.26] 16.9 35.8 63.]280|0.96| 3.64 8.04 14.p 220 316 42.7 5}55.1| 253
circuits | Mult Q 1.07| 2.07 3.08 4.0}14.2|0.29| 0.57 0.84 1.1 1.48 1.66 2.37 2|3.59|8.37
A 3.97| 7.81 11.6 15}19.7|3.28| 6.49 9.59 12.p 159 191 18.0 2{15.3|30.2

Summary. The results given herhighlight the main
problem with FPGA-basedarithmetic circuits. They
cannotcompetewith other programmabldevicessuch as
ALUs, at least athe circuitlevel. Pipeliningcan beused
to bring thecycle time of an FPGA implementatiotiose

requiring total node courEn'y,, 0 10, and areasonable
value of loopunrolling kiw=10. Although thismay seem
to be a large die area forsenall number of circuit function
nodes, already some data-path widths, blanked out in Table
I, will not fit onto an FPGA ofthis size. We examine

to thedelay of an ALU toreducethe delay overhead. But, three cases forthe algorithm. Allnodesare addition
the intractableproblem isthe area overhead. Considemperations, all are multiplication operatiomasd finally, 9
from Table I,that m arithmetic circuits otype and data are add and one is a multiply.

width i have die area equivalent to @xALUs. Serial and

Eigu;n?slg2)r(|t:r:seetlc0?a(;uéilrje(:§;?nemlernplsrrpoirr;cgﬁgreco;; dcompiledand run orthe VLIW machinecould be highly
b P sequential, data or iteration dependent, watily small

increasing thelelay overhead. Sinamn-chip real-estate is. In thiscase it is limited by

.. “instructionlevel parallelism.
valuableand the areaost of any FPGAmplementation is S ° b N

: . . .__the critical dependence ratipgf,) as shown imows 1 to 3
I high, FPGA t -offs shoul tim .
alreadyhigh, FPGA design trade-offs should be opti |se(§' Table Il. Sincepit, has to bevery small tofavour the

for area. Indeed, neither floating-point arithmetic n(%zrf)
integer multiplication have shown any implementatio LIW machlne,_ an _FI_DGA-base_d coprocessor can
attributes favourable to FPGA platforms. FRbe case of adequately exploit pipelining to achieve better performance

integer multiplication, thisvas also reported by a study Olj_ihan_aVLIW machine of an _e_quwalen_t silicon area. This
commercial FPGASs [16]. is evident, rows 1 to 3, faddition dominated applications

andthose with integer multiplication but small data-path
widths. TheFPGA, however, wouldtill not be able to
effectively deal with a floating-point algorithm.

Pipelined FPGA implementation. The algorithmonce

5. Viability of Adaptive Coprocessors

From the results of th@revious sectiorand the 5 Aternatively, the algorithmcould be highlyparallel
numbered equations in Section 2, wan evaluate the requiring large number of arithmetic functiorodes to
viability of the adaptivecoprocessor proposal. For clarityexploit the availableconcurrency as a custom FPGA
assume either integer or floating-point operati@mdy. cjrcuit. For thistype ofapplication,rows 4 to 6 showhat
Table Il examines the conditiomecessary for a VLIW the number ofcompiled VLIW instructions,before loop
coprocessomachine to have better performartt@n an ynrolling, that would guaranteeVLIW superiority is
FPGA-based coprocessor. It shave maximum number rejatively small particularly if a limited number of
of instructions that canun onthe VLIW machine while multipliers are used.This is an advantagi®r the FPGA
maintaining better performancethan an FPGA-based platform and suggesthat highly concurrent algorithms of
coprocessor for bothieration/data andesource dependent|jmited data-path widths, such asmeimage processing
algorithms. algorithms are suitedor piplined implementation on

We assume totatoprocessor diearea equivalent to FPGA arrays.

20M transistors (approximately 1@td300 integer 64-bit Non-pipelined FPGA implementation. Rows 7 to 9 and
and 32-bit ALUs respectively), ahypothetical algorithm 10 to 12 exhibit similar behaviour to rows 1 tau3d 4 to 5

TABLE II
Conditions determining the implementation viability of an FPGA-based Coprocessor
For Zn'pe = 10 and 32-bit ALU 64-bit ALU
kviw=10, a VLIW machine Integer FP Integer FP
is better if 8 | 16| 24| 321 32| 8| 16| 24] 32| 40| 49 s5d 64 32| 64
all+ | 1| 1] 1] 2] 8| 1] a2 2] 1] 2] 1] 1| 1]15]147] 1
pipelined | pe <| 9and1 | 1| 21| 1| a]20| 2| 1| 1| 1| 1| 1| 1| 2]18]|180] 2 |
FPGA a1 | 1 [1 | 1 | | :
circuits all + 2| 5| 6] 9]315] 1| 2| 2| 2| 3| 3| 4| 4]|159]1583 4
a< | 9andi] 3| 8] 12]190[392] 1| 2] 3] 5] 6] o 11 14[193[194 5 |
al* | o | o1 [N > | 7 | 1o [N A ¢
all+ | 1| 1] 1] 28| 2] 1] 1| 2| 2] 2| 3| 3]22]62] 7
non- per <| 9and1 | 1| 2| 10 20082 | 1| 2| 9| 17| 27| 39| 45 57 59 |280| 8
pipelined all * 2 | 5 10| 16| 72| 1| 4| 8| 13| 21| 30 40 54 51 |234] 9
FPGA all + 7 | 22| 33| 57|129) 2| 5| 8| 13| 17| 21 2§ 24235|670| 10
circuits | gy < | 9and1 | 16 | 60| 388 7893241 4 | 14| 97| 176 284 419 47p 61 638|302¢ 11
all* | 43 | 162| 358 6392799 10| 37| 81| 140 22p 318 427 5]550|252¢ 12

respectively. However, becausettod lower AXT efficiency FPGA-based coprocessor model (Figure 4) ovefLBNV

of non-pipelined FPGA circuit implementations, as shownodel (Figure 5are summarised ifiable 1ll. Weapply

in Table I, the resultaire biased in favour ofthe VLIW the static characteristic of FPGA implementations (Table I)
coprocessor. Indeed unletse mapped algorithm isto derive the best possible speedup ranges. We assyme
dominated by addition operations of small data-pai$120% and thatig. is negligible.

requirements, aRPGA-based coprocessorriet a suitable

:) The first group in Table IIl include Bows that show
implementation platform.

the number of operations for eatyipe of resourceequired
Summary. We have numerically demonstratb@t FPGA by the code segment kg, loops are unrolled. Theecond
arrays are suitable aprocessor platforms faealising group showthe number oALUs thatcould be available to
algorithms requiring a limited number of multiplierghe VLIW machinefor threepossible resourckmitations.
across a wideange of data-path widths particulabiglow First, assuming maximum required resour@esavailable.
32-bits. From Eq(4andEq(5) we cardeducethat as the Second, using.; integer ALUs and p.; floating-point
silicon area available increase, theunds for which the ALUs. Third, assumingonly oneinteger ALU and one
FPGA-based coprocessor is bettiean aVLIW machine floating-point ALU are available (minimum resources).
tighten in favour of the adaptivecoprocessor. The . : o
programmable arrayould be able tchandle algorithms . The third group givesthe area of thecustom circuit

with more multipliers while th&/LIW machine struggles implementation (FPGA-basecbprocessor) normalised to

to maintain a highresource utilisation. Finally, notbat

. S R1 ~ ad ; get b dd f
the parametric limits reported in thisctionregarding the R2 o) ! et base addiess of artay y
suitability of one algorithm or architecture over another gre RS - adr(z) + get base address of array z
. . . R4 -« n ; get number of iterations
indicative of general trend®r a broadrange of operand Flo g ; get floating number g
width valuesand arithmeticfunctionsand should not be P o ot b
interpreted as precise statements of comparison for [the st RS, RO o
g art: - k=
specific models and circuits investigated. F4 - M[10+R3] : variable z[10]
F5 - M[11+ R3] ; variable z[11]
F10 - M[R2] ; variable y[0]
6 Exam ple R6 « R3+12 ; base address for z[11] ;z[12]
. X . . S1 Itr: R7 « R6 + R5(k-1) ; base addr for var z[11 + k]; z[12 + K]
Consider the implementation of thellowing code | s2 F6— M[R7] + load floating var. z[11 + KJ; 212 + K]
fragment from a hydrodynamic simulation (Lsbp of the | s3 F7. F3*F5(k-1) St Z[11 + K]
Livermore Kernels): s4 F8.- F2*Fa(el) szl k-1
for (j = 0: j<n: j++ S5 FO. F8+F7 S(r*z[k+10]) + (t* Z[k+11])
il J il J
{ X[=a+ (Y[l * ((r* Z[i+10]) + (t* Z[j+11])))} s6 Fa. F(k1) Fa=z11+K]
i . . . S6x F5- F6 ;F5=2z[11+k+1]
Figure 4 shows a possible pipelined custom

implementation of thiscode segment. It requires three

S7

R8. R2 +R5(k-1)
F10.- M[R8]

; base address for variable y[k]

; load floating var. y[k]

floating-point multipliers,two floating-point adders, and| ° Fl1- F10(k-2)*F9 SV (e zlker20]) + (7 zfke1d])
three integer adders. Figuregﬁles the ComplledVLIW S10 R9< R1 + R5(k-1) : base address for variable x[K]
instructions (before schedulingand allocation) and their | & Mimo)L 12 ! sore oating var. k]
dependency graph. The speedup ranges gained by using an

S13

R5. R5(k-1) + 1

1.
51—>- st
1

s k++

S14 End: if (R4!=R5) PC- Itr ;branchtoitrifk <n
| Read Y| | Write X | s7 s7
A

j+10
v
S10 S10
n EIRESY
. 1
: FPGA-based 1
PCoprocessor t] : [S5]e—{ s3]« {S6xje—

Figure 4. Custom implementation of 1st Livermore Loop.

Figure 5. Dependence graph for the 1st Livermore Loop and
generic VLIW compilation.

that of anALU. There are threeases; both machines are TABLE I

32-bits, theVLIW is 64-bitsthe FPGA machine is 32-bhits, Implementation Results for 1st Livermore Loop
and both machinesare 64-bits. The minimum and Koo 11 21 21612
maximum valuesare obtained using the data Table |I. T 2 2 2 2 .
The fourth groupshowsthe minimum iteration intervals number of o add 2 7T 13 14 74
for the threeresource limitation cases. There is no operations fp mult 3| 6| 12 19 7¢
guarantee however that the compiler will be able to achievg (qy) brn-jmp 1 1 1] 1] 1
this goal. Finally, the fifth group is tlepeedup results for /0 3 6 | 12| 18] 75
different data-path widths. max # of VLIW | Max. Res. 12| 18] 30 42 156
Table 11l showsthat thebest speedup #.27 assuming | ALUS (Auw -20%) | o ALUs | 6 | 6 | 6 | 6 | 6
the VLIW machineonly hastwo ALUs (a floating-point Min. Res. 2| 2| 2| 2| 2
and an integer) and that tRd IW compiler does not Acircuit in # of 32-bit ALU min =84 & max = 196
utilise loopunrolling. Comparing Avcuit t0 Ajiw We see ALUs 64-bit | 32 min =22 & max =50
that even withksga = 1, the adaptiveoprocessor will use (Krpga= 1) ALU |64 min =50 & max = 194
enough area toallow the VLIW machine maximum [e o eotied>p= | 3 | 3 | 3 | 3| 3
resourcesgind to unrollabout 25 loopgper iteration. With 1S —pon] >= max[@/pon] = 31 5| ol 13| 51
these resources, the VLIWachine habetter performance Py P—— = 13 251 37| 151
than theadaptive coprocessor. In fattte only time that _
the FPGA may have any advantage is if no laspolling 32-bit SUlres=max] [1.44] 0.72| 03§ 024 0.0p
is done atall which is an unrealistic restriction on the | VLW ALUs | SUlres 5pes] | 1.44] 12| 1.08 1.04 0.9p
VLIW machine given the areassed bythe FPGA SUfres=min] | 3.36| 3.12] 3 | 2.9 2.9
implemented circuit. SU[max] | 32| 183 | 092 | 046 031 007
Finally, it is possible to dedudbat thiscodefragment, sa.bit SO 2; 1:2 10:3 f; (:2 ZZ
which is dominated by floating-point operations, is notj . . =t 1o [o | 1ol saol 1od
suitable for FPGA-based custom computing because thg o | 32 4‘27 3‘97 3‘81 3‘76 3‘68
VLIW is limited by pet = 3 which is still small compared : : - : :
to entries in Table Il for similar size circuits. Cafom | o] sm| 327 32

Integer arithmetic. The hydrodynamic simulation
example requires both integandfloating-point resources.
However, many algorithms needonly use integer

arithmetic. In Table IV we re-examine tlkedesegment
:Jesslrt]r?c?ntkectj\?\? rtoar:lgtg_rgﬁtlgio% 4bg:? ATSgh\';he”Sé thvge high.spee(.jupsare obtainedor the same data-path widths

X : . predicted in Table II.

adaptive coprocessanplementation can be as small as an
8-bit data-path. The firsbw givesthe area of theustom .
implementation of a single iteration. Tkecond row is /- Conclusions

the number o{:ustom_ iterations needed to make available We have investigatecand compared thecost and
enough aredor maximum VLIW resource needs. The
third row is the number of loops that can be unrolled by t
VLIW to expose asmuch concurrency as there asea.

Now, the speedup ranges obtairmed much highethan in
Table lll. The FPGA-based modetan maintainbetter
performance up to 24-bits compared to a 32-bit VLIW and
up to 48-bits compared to a 64-bit VLIW. Wanseethat

erformance of both VLIWand FPGA-based coprocessor
dels and the characteristics that determine the

TABLE IV
Implementation Results for 1st Livermore Loop Assuming Integer Operations Only
32-bit ALU 64-bit ALU
Integer Integer
FPGA bit widths 8 16 | 24| 32 8 16] 24] 3 4 4 5 6
Agpgain # of ALUS Kipga = 1) 15| 59| 1120 194 3| 13 3Q 52 80 113 1%2 191
MaxX Koga (Aviw[Max] DKipga X AcicurMin]) 11152 1) 11 1
max K (given max kga) 1| 7| 14| 25| 1| 3| 3| 6| 9| 14 29 2%
Speedup max VLIW resources| 15 | 2.14/ 1.07 0.4 94 12/5 6.25 3.13 2/08 1134 0.94 .75
using min VLIW resources | 30 | 4.29 2.14 1.7 188 2% 125 6.5 417 2,68 1.88 (1.5

suitability of one model ovethe other. We determined[7]
numerical limitsfor these parametetseyondwhich one
machinewould be more suitethan theother to aspecific
application domain.

We concludehat the inherentharacteristics dFPGAs
and arithmeticcircuits limit the algorithms suitable for
implementation on an integrated adapto@processor to
those with a limited number of multipliemnd with no
floating-point arithmetic. =~ When multipliers are an
essential part of the algorithmonly small data-path widths
can beexpected to produce any performam@@nsover a
VLIW machine. We alsaonclude that the criterion
favouring an FPGA-based coprocessor improve as L.hLS]
silicon area available increase. Furthermore, the
implementatiorefficiency gapbetweerthe FPGA platform [11]
and ALUs places ahigh minimumdie area requirement,
equivalent to tens oALU areasbefore any advantageous
conditions arise to induqeositive speedup in favour of the
FPGA-based integrated coprocessor.

[8]

[9]

References

[1] P. Athanas H. Silverman,“Processor
Reconfiguration Through Instruction-Set
Metamorphosis,TEEE ComputerVol. 26,No. 3, pp.
11-18, March 1993. [13]
J. P. Grayand T. A. Kean, Configurable Hardware:

A New Paradigmfor Computation,” in Advanced
Research invVLS| Ed. C. L. Seitz, MIT Press, pp.
279-295, Proc. of the 1989 Decennial Calte(,[fll4]
Conference, March 1989.

N. Hastie and R. Cliff, “The Implementation of
Hardware Subroutines on Field Programmable Gate
Arrays,” Proc. Custom Integrated Circuits Confip.
31.4.1-31.4.4, 1990.

Alberto Sangiovanni-Vincentelli, “Some Con- [15]
siderations on Field Programmable Gate Arrays and
Their Impact onSystemDesign,” Proc. of the 2nd

Int'l Workshop on Field-Programmbale Logic and
Applications FPL'92 (Lecture Notes in Computer
Science # 705, H. Grunbachand R.Hartenstein, [16]
Ed.), Vienna, pp. 26-34, August/September 1992.

S. Trimberger, “A Reprogrammable Gate Array and
Applications,”Proc. of the IEEEVol. 81,No. 7, pp.
1030-1041, July 1993.

David J. Lilja, “Exploiting the Parallelisrivailable

in Loops,” IEEE Computer Vol. 27, No. 2, pp. 12-

26, February 1994.

[12]
and

[2]

[3]

[4]

[5]

[6]

Monica Lam, “Software Pipelining: An Effective
Scheduling Technique f&fLIW Machines,"Proc. of
the ACM SIGPLAN'88 Conf. onProgramming
Language Design and Implementatigp. 318-328,
1988.

X. Chen and S. L.Hurst, “A Comparison of
Universal-Logic-Module Realizationsand Their
Application in the Synthesis of Combinatorial and
Sequential Logic Networks,/EEE Transactions on
Computers Vol. C-31, No. 2pp. 140-147 February
1982.

Altera Corporation, FLEX 8000 Handboqgk May
1994.

Xilinx Inc, XC5000 Logic Cell Array Family
Advanced Information (v2.0), February 1995.
JonathanRose, RobertFrancis, DavidLewis, and
Paul Chow, “Architecture of Field-Programmable
Gate Arrays: Théffect of Logic Block Functionality
on Area Efficiency,”|[EEE Journal of Solid-State
Circuits, Vol. 25, No. 5, pp. 1217-1225,0ctober
1990.

JonathanRose and Stephen Brown, “Flexibility of
Interconnection Structures for Field-Programmable
Gate Arrays,” IEEE Journal of Solid-State Circuijts
Vol. 26, No. 3, pp. 277-282, March 1991.

Ivan E. Sutherland anBobert F.Sproull, Logical
Effort: Designing Fast MOS Circuit$nternalReport
SSA #7893,Sutherland, Sproull, &Associatesinc.,
1990.

Ivan E. Sutherlanénd Robert F.Sproull, “Logical
Effort: Designing for Speed orthe Back of an
Envelope,” inAdvanced Research MLSI Proc. of
the 1991 University of California atSanta Cruz
ConferenceEd. by Carlo H. Sequin, pp 1-16, MIT
Press, 1991.

Osama T. Albaharna, Peter Y.K. Cheung, and
Thomas J. Clarke, “Area & Time Limitations of
FPGA-basedvirtual Hardware,”Proc. of the |IEEE
Int'l Conf. on Computer Design: VLSI in Computers
& ProcessorsICCD'94, pp. 184-189, October 1994.
Russell J. Petersoand Brad L.Hutchings, “An
Assessment of the Suitability of FPGA-Based Systems
for Use in Digital Signal Processing,Proc. of the
5nd Int'l Workshop on Field-Programmbale Logic
and Applications FPL'95 (Lecture Notes in
Computer Science # 975, Oxforghp. 293-302,
August/September 1995.

