
FCCM’96

On the Viability of FPGA-based Integrated Coprocessors
Osama T. Albaharna† , Peter Y. K. Cheung, and Thomas J. Clarke

Information Engineering Section
Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine
Exhibition Road, London, SW7-2BT, UK

†

e.mail: a.osama@ic.ac.uk
http://www.ee.ic.ac.uk/research/information/www/aosama/aosama.html

Abstract
This paper examines the viability of using integrated

programmable logic as a coprocessor to support a host
CPU core. This adaptive coprocessor is compared to a
VLIW machine in term of both die area occupied and
performance. The parametric bounds necessary to justify
the adoption of an FPGA-based coprocessor are
established. An abstract Field Programmable Gate Array
model is used to investigate the area and delay
characteristics of arithmetic circuits implemented on
FPGA architectures to determine the potential speedup of
FPGA-based coprocessors.

Our analysis shows that integrated FPGA arrays are
suitable as coprocessor platforms for realising algorithms
that require only limited numbers of multiplication
instructions. Inherent FPGA characteristics also limit the
data-path widths that can be supported efficiently for these
applications. An FPGA-based adaptive coprocessor
require a large minimum die area before any advantage
over a VLIW machine of a comparable size can be
realised.

1. Introduction
The ever increasing spare transistor capacity has only

been absorbed so far into a limited number of architectural
features. Integrated programmable logic has emerged as
one of the very few novel architectural ideas with the
potential to exploit this abundant resource.

A custom coprocessor can directly exploit the
concurrency available in applications, algorithms, and code
segments. An FPGA-based coprocessor can further adapt
to any demands for special-purpose hardware by mapping
an algorithm onto run-time configurable logic. These
versatile “adaptive” coprocessors can be used to augment
the instruction set of a core CPU or as special purpose
custom computing engines. Real-time applications can
also swap multiple functions and subroutines directly onto
the reconfigurable hardware during execution [1]-[5].

The adaptive coprocessor model challenges the more
established general purpose techniques that exploit fine-
grain instruction level concurrency. We ask, Under what
architectural conditions can the integration of a core
CPU and an FPGA-based coprocessor on a single die
outperform the possible alternative of using a Very Long
Instruction Word engine (VLIW) on that same die area?

This paper addresses this question through four stages.
First, in Section 2, the cost and performance bounds of
both computational models, the VLIW and the FPGA
coprocessing, are examined and a set of critical parameters
is determined. Section 3 describes the experimental
methodology used to establish the characteristics of
arithmetic computation on FPGAs and Section 4
summarises the results of this investigation. In Section 5,
we explore the implications of these results on the
achievable cost and performance limits of FPGA-based
coprocessors. Finally, in Section 6 we apply the ideas and
conclusions presented in earlier section to a typical
computational example to determine its suitability for
FPGA-based adaptive coprocessor implementation.

2. Computational Models
An adaptive coprocessor uses silicon real-estate to

integrate more programmable logic. This can then be used
to implement larger custom circuits or exploit more
concurrency. On the other hand, a VLIW machine will use
this same die area to increase the number of ALUs and
execute more instructions per cycle. In this section, we
examine the cost and performance of implementing an
algorithm on both computational models organised as in
Figure 1.

Figure 1. Target coprocessor system organisation.

Coprocessor
(FPGA or VLIW)

I-cache

D-cache

Core υυP

-- 2 -

FPGA-based coprocessor organisation. To achieve a
high coprocessor throughput, we assume a pipelined
implementation of all algorithms. This means that the
performance of the FPGA-based coprocessor depend on the
cycle time of the pipeline (tcfpga), the number of iterations
the circuit is used (Nfpga), the number of concurrent copies
of the circuit mapped onto the FPGA (kfpga), and the
number of cycles needed to fill the pipeline (cfill

fpga). The
total number of cycles is then

fpga
fpga

fpga
fpga
c

fpga
fill

fpga
cT

N
k

t c t= × + ×

The area cost is the sum of the areas for all arithmetic
nodes in a design. We assume integer nodes and floating-
point nodes are used. All other operator nodes are
expressed as a percentage (cfpga) of the area. If ai

fpgs is the
area of node type i and ni

fpga the number of nodes of type i
used in the circuit, the cost of a circuit implemented on an
adaptive coprocessor can be expressed as,

()
() ()

circuit fpga fpga

fpga
i

fpga
i

i
fpga
fp i

fpga
fp i

fp i

A c k

a n a n

= − ×

× × + ×












− −

−

− −

−
∑ ∑

1

int int

int

VLIW machine organisation. We assume the VLIW
utilises integer and floating-point ALU units rather than
single operation functional modules and that they
constitute most of its area. All other area is expressed as a
percentage (cvliw) of the total area. If ai

vliw is the area of a
function node of type i and ni

vliw the number of nodes of
type i used, the cost of a VLIW machine is

() () ()[]vliw vliw vliw
alu

vliw
alu

vliw
fp alu

vliw
fp aluA c a n a n= − × × + ×− − − −1 int int

In addition to available resources, the performance of a
VLIW machine is limited by two types of dependencies [6].
The data dependencies within an iteration and the ones
between iterations. A VLIW program can be viewed as a
dependence graph, as in Figure 5, which must be repeated
Nvliw times. Data and iteration dependencies are
represented by the bold and dashed edges respectively.
Since our VLIW processor model uses piplined ALUs,
each node, or operation, in the graph takes a single time
unit to execute (tcvliw). The iteration distance, attached to
dashed edges, is the number of loop iterations after
issuance of Si that Sj can begin execution. The number of
time units it takes to execute a cycle within a dependency
graph (δc), given maximum resources, is the sum of all
nodes along this cycle path. The number of iterations (λc)
it takes the pattern in a cycle to repeat execution is the sum
of all iteration distances along this cycle’s dependency
path. Therefore Nvliw/λc repetitions of a given cycle will be
executed requiring δc x (Nvliw/λc) cycles.

The minimum time to execute the whole loop is
max[δc(Nvliw/λc)t

c
vliw] = ρcrit.Nvliw.tcvliw where ρcrit is called

the critical dependence ratio. Using software pipelining
[7] and other advanced compiler transformations, it is
possible to overlap the execution of several different
iterations of the loop. If kvliw iteration can be unrolled and
then scheduled, the iteration interval tiik is the time units
needed to execute an entire iteration of k unrolled loops. It
must satisfy both types of data dependencies as well as
resources dependencies. If qi

k is the number of operations
a resource of type i must be used in kvliw iterations we can
estimate lower bounds on the iteration interval and the
maximum VLIW performance as follows:

() ()[]
()  

() ()[]

vliw
vliw

vliw
iik vliw

c
vliw
fill

vliw
c

iik iik iik

iik k

i
vliw
i

iik c c

T N
k

t t c t

t t t

t q n

t

resources dependence

resources

dependence

= × × + ×

≥

≥ 





≥

max ,

max

max δ λ

Although the problem of finding an optimal schedule
using software pipelining is NP-complete, it has been
shown that near optimal results can often be obtained for
loops with both intra- and inter-iteration data
dependencies. It has also been shown that hierarchical
reduction allows software pipelining to be applied to
complex loops containing conditional statements. Program
restructuring using loop transformations and optimising
data locality using space tiling techniques can also be
applied to increase both the fine-grain and coarse-grain
parallelism available in nested loops.

Comparative analysis. We can now compare the
performance of both models, neglecting the pipeline fill
cycles, by determining the speedup:

SU T

T

k

k
t

t

t

k

k

tvliw

fpga

fpga

vliw
iik

vliw
c

fpga
c

fpga

vliw

iik= = × × = ×
∆

The speedup is effected by the number of concurrent
copies of the circuit (kfpga) mapped onto the FPGA. Since
the areas of both models have to be the same, we can
determine kfpga = Avliw / Acircuit in term of the number of
VLIW integer ALUs used as follows:

() ()[] ()
() ()fpga

vliw fpga vliw
alu

vliw
fp alu

i
fpga

i

i

fp i
fpga
fp i

fp i

k
c c n n

n n
=

+ + × + ×

× + × ×

− −

− −

−

− −

−
∑ ∑

1 1 int

int int

int

α

αΩ Ω

where , and , int
int

int int
−

−

−
−

−

−

−

−= = =i fpga
i

vliw
alu

fp i fpga
fp i

vliw
fp alu

vliw
fp i

vliw
alu

a
a

a
a

a
a

Ω Ω α

The algorithm’s data and resource dependencies are
inherent characteristics that limit the value of tiik/kvliw as

-- 3 -

mentioned before. Using tiik(resources), tiik(dependence),
and the speedup equation we can determine the conditions
for which a VLIW machine is virtually guaranteed to have
superior performance to an FPGA-based coprocessor:

crit
vliw

fpga

k
k

ρ ≤ × ∆ Eq(1)

max ,
int

int
k

vliw
alu

vliw

fp

vliw
fp alu

vliw

fpga

q

n

q

n
k
k− −







































≤ × ∆ Eq(2)

We can further simplify the speedup equation, Eq(2),
and Eq(3) by considering integer arithmetic only, similar
overhead percentages, and substituting kfpga to get:

SU iik

vliw

vliw
alu

fpga
i

i ave

t
k

n
n

= × ×
×

−

−∑

int

int int

1

Ω ∆
Eq(3)

crit ave
fpga

i
i

vliw
alu vliw

n
n

kρ ≤ × × ×
−

−
∑int

int

intΩ ∆ Eq(4)

vliwkq nave fpga
i

i=
−≤ × × ∑1

int int intΩ ∆ Eq(5)

We refer to Ω and ∆ as the area and delay overheads,
respectively, of a particular circuit implementation
compared to an ALU’s area and delay. They are inherent
characteristics of the implementation platform (FPGA in
this case) and limit its maximum achievable speedup. To
sense how much speedup an adaptive coprocessor can
deliver for a given fixed area and whether an algorithm has
the necessary criterion that would make it suitable for
adaptive coprocessor implementation, we need to estimate
the minimum values of Ω and ∆ for arithmetic circuits
implemented on FPGA platforms.

3. Experimental Methodology
To examine how efficiently FPGAs implement

arithmetic circuits we need to eliminate technology and
design variations and create an “even level” for
comparison. This section describes how this even playing
field is established. We first describe the cell architecture
that is used throughout this paper and detail our models for
estimating the area and delay of any FPGA cell. Then, our
choices for arithmetic test circuits and implementation
procedure are explained. In all discussion to follow, we
consider only SRAM programmable FPGAs since only
they provide the flexible platform necessary for field re-
programmability.

3.1 FPGA cell architecture

We examined 15 different FPGA cell architectures that
span the range of current research and commercial arrays.
The function generators included a 2-input NAND gate, a

2-input Universal Logic Module (ULM.2) capable of
implementing any of 16 2-input Boolean logic functions
[8], look-up tables (LUT) of input sizes 3, 4, 5, and 6, and
finally, the cell architectures of both the Altera FLEX-8000
[9] and the Xilinx XC5000 [10] which include specialised
hardware to speedup carry propagation and wide gate
implementation. All cells also incorporated D-type flip-
flops (FF). The cells interconnection capabilities examined
included extensive neighbour connections with 8, 12, and
16 possible neighbours, channelled 2D arrays with 4-
neighbour connections, or channelled arrays with fully, or
partially, connected clusters of cells similar to the Altera
FLEX-8000 and the Xilinx XC5000 array architectures.

Of all these cell types, the 3-input LUT cell proved the
best overall for arithmetic circuit implementations. We
elect to use it and a 2D channelled array architecture for
communication as the example cell throughout this paper.
A neighbour interconnection only array may also be used
and will give similar numerical results. The chosen cell is
based on a look-up table design similar in functionality to
other look-up table model proposals [11]. It incorporates 4-
nearest neighbour connections as a vital way to reduce
delay and improve routability. Figure 2 gives a conceptual
diagram of this cell. The routing channel width, W, is
assumed to be the same for both the vertical and the
horizontal channels. For LUTs with 3, 4, 5, and 6 inputs,
the average minimum channel widths necessary for routing
has been observed to be 9, 11, 11, and 12 respectively [11].
We therefore adopt a channel width of 9 for this model cell
although the actual channel width should probably be
slightly higher.

Switch Box

3

Connection
Box

2x1
mux

2x1
mux

Vdd

Enable

D Q

clr

3-inputs
Look-up

Table

3

Mux
BoxFrom 4

neighbours
To 4 neighbours

W

Figure 2. FPGA cell model with a 3-inputs look-up table as a function
generator, direct north, south, east, and west neighbour connections,
and global horizontal and vertical channel routing.

-- 4 -

Limitations. We do not account for all the factors
effecting the implementation and performance.
Specifically, we leave issues such as external access,
programming, testability, clock and control signals
distribution, clock skew, and power consumption for future
work. Of the global programming logic and network we
only include the cost of the communication channel
network and the number of SRAM configuration bits
within a cell as part of the cost of the cell. These
limitations bias Ω in favour of the FPGA-based
coprocessor model.

3.2 Area measurement
The area of an FPGA cell is approximated using a

transistor density coefficient metric (α) in µm2/transistor.
This density coefficient is dependent on the fabrication
process technology, layout methodology, and the circuit
logic structure used. It is obtained by averaging layout area
per transistor over all cells available in a library or over
samples or real designs. We assume a normalised function
generator logic density coefficient of αf, a configuration
memory normalised density coefficient of αm, and a
routing pitch normalised density coefficient of αr.

Figure 3a is a representative model of the total cell area
showing also the routing pitch between the physical
channel tracks. We assume that the Routing Configuration
Memory (RCM) bits used for the channels’ switch and
connection boxes are distributed between the channel
tracks as shown in Figure 2b. It is therefore reasonable to
assume that αm equals αr. Other similar models also
assume a distributed RCM [11]. The number of memory
bits distributed within the channels (Nswitch) depend on the
connection and switch boxes. The connection box
flexibility FC is defined as the number of channel tracks
each input and output can be connected to. The switch box
flexibility FS is defined as the number of possible tracks
each incoming track can be connected to.

It has been show [12] that FC has to be greater than half
the number of tracks for 100% routing completion to be
possible. Additionally, only a small FS value is needed to
achieve a 100% routing completion. In our model, we
choose FC = 0.75W and FS = 3. The routing pitch is
determined by a five-transistor SRAM bit (am) and a single
pass-transistor PIP (ap) and is defined as

()pitch r m p rr a a= ⋅ + = ⋅α α6

The FPGA cell is modelled as a square die area having
the following characteristics:

()
() ()
()[] ()[]

() ()
() ()

cell func mem route

func f fgm rlm

mem m m fcm rcm

route pitch h v pitch h v

where X Y A A and X r W Y r W

comm f rlm m m rcm route

A A A A

A N N

A a N N

A r W W r X W Y W

A N a N A

func mem pitch h pitch v

= + +
= × +

= ⋅ × +

= ⋅ ⋅ + ⋅ ⋅ + ⋅
⋅ ⋅

= ⋅ + ⋅ ⋅ +
⋅ = + + = +

α

α

α α

2

where,
Acell = the area of an FPGA cell
Afunc = logic area used for function generation
Amem = memory area used for configuration
Aroute = the area of the routing channels within a cell
Acomm = the area of the cell used for communication
Nfgm = # of transistors used for function generation
Nrlm = # of transistors used for routing logic and

muxs
Nfcm = # of memory bits for LUTs and control
Nrcm = # of mem. bits used for routing configuration
am = # of transistors in a memory bit = 5
Wh = # of routing tracks in each horizontal channel
Wv = # of routing tracks in each vertical channel

The total area of a circuit implementation depends on
how the mapping from logic equations to FPGA cell
functions is performed and how they are placed onto the
cell array. If Ncell is the number of FPGA cells used to
implement the circuits, the total circuit area is

circuit cell cellA N A= × .

3.3 Delay measurement

The delay of an FPGA cell is approximated using the
method of “logical effort” proposed by Sutherland and
Sproull [13] [14]. The method is based on a simple RC
model for transistors and provide a first order
approximation of a circuit delay. It defines τ as the actual
time, for a fabrication process, that corresponds to a delay
unit. The value of τ can be measured from the frequency
of oscillation of a ring oscillator. For each type of logic
gate, the method assigns delay unit values based on the

(a)

(b)

Routing
Pitch

M

M

Logic Block

I/O

M

Horizontal
Tracks

I/O Connection Box Switch Box

Afgm + Afcm

+ Arlm

Logic and its
Configuration

Memory

Figure 3. A representation of the total area
of an FPGA. (a) Area model showing the
vertical and horizontal tracks. (b) The
Routing Configuration Memory bits
(RCM) are distributed between the
channel tracks.

-- 5 -

topology of the circuit element, the difficulty that an
element has in driving capacitive loads, and the parasitic
capacitance exhibited by the gate. The delay of an ideal
inverter that drives another identical inverter is the sum of
a single unit delay (τ) and the parasitic delay value Pinv.
Typically, for 3u CMOS process, τ = 0.5ns and Pinv = 0.6τ,
while for 0.5u CMOS process, τ = 0.1ns and Pinv = 0.5τ.
All other gate delays are measured relative to that of an
ideal inverter. We use these gate delay to arrive at delay
value for each FPGA cell examined. Separate values are
determined for each cell input to output, the set-up time,
and the synchronous clock to output delay for each cell
type. These delays also include the effects of internal fan-
outs.

The delay of circuit implementation depends on the
longest depth of that circuit (Ndepth) after mapping onto the
array and the routing delay between these levels. Since
each level may require different input and output signals,
they may each have a different delay value. The routing
delay between neighbour cells is accounted for by the
explicit loading on that cell’s output. The routing delay
between non-neighbouring cells in a channelled array is
more difficult to estimate specially without knowledge of
the exact placement and routing information and the
capacitive loading on each level due to the programmable
routing switches along the path. The total execution time
of a circuit, in τ units, can be determined as the sum of all
delays along the longest path as follows:

()circuit ab
i

route
i

i

N

T d d
depth

= +
=
∑

1

where di
ab is the delay, in τ units, between input node a

and output node b of a cell at circuit depth level i, and
di

route is the routing delay, in τ units as well, between the
output of the cell at level i and the input of another cell at
level i+1 . In this investigation, we will assume di

route to be
zero. This assumption will bias ∆ in favor of the FPGA-
based coprocessor model.

3.4 Implementation Procedure

We determine the number of cells needed to implement
a circuit (Ncells) and the depth of the implementation
(Ndepth) by a structure preserving direct hand mapping from
the original circuit designs. Automated mapping and
routing results vary significantly with different tools and
for different optimisation criterion. They also significantly
alter the overall high level organisation resulting in low
area utilisation even for regular circuits structures. We can
also assume that with improved FPGA cell architectures,
mapping, placement, and routing technologies, the routing
structure is sufficient to complete the mapped network
interconnections and give a very high array utilisation.

The results will therefore provide a lower bound on the
cost and performance of different implementations which
is exactly what we are looking for. Different designs are
compared based on their implementation efficiency defined
as the area times delay product ‘AT’, or cost*performance,
for that circuit. The less ‘AT’ is, the more efficient is the
implementation.

3.5 Choice of arithmetic circuits

We mapped 10 different integer addition circuit designs
representing several delay and area optimisation
techniques. They included, serial, carry-ripple, carry-skip,
several one-level and two-levels carry-lookahead,
conditional-sum, carry-select, and pyramid adders. For
integer multipliers, we only considered 2’s complement
multipliers with 1-bit Booth recoding. We also mapped 6
different multiplication circuit designs including serial,
sequential, sequential with one-level and two-levels carry-
save logic, parallel array, and bit systolic. For the
sequential and array multipliers which require an adder,
we tried all the integer adders above to determine the ones
that produce the best ‘AT’ results. All integer circuits
were examined for bit widths varying from 4-bits to 64-
bits.

For floating-point numbers we implemented a subset of
the 32-bit and 64-bit IEEE specification standard and
mapped both addition and multiplication circuits. Not all
options referred to in the standard were included.
Particularly, we assumed truncation is performed after
addition or multiplication rather than rounding to
eliminate one normalisation step. Ten mantissa adders
and six mantissa multipliers were tested corresponding to
the types of integer units above. The exponent adders used
were chosen to minimise the ‘AT’ value for that design.
Finally, we also implemented a pipelined version of those
integer and floating-point circuits above that are actually
pipelineable without incurring any increase in area cost.

Limitations. We did not include the control-path in either
the cost or performance calculations. Furthermore, we did
not examine any division algorithms or combination
functions such as multiply-accumulate. We also restricted
the investigation by not considering table-lookup
techniques, distributed arithmetic, or the potential of other
number systems.

4. Implementation Efficiency Gap
In an earlier study [15], we demonstrated that there is a

large implementation efficiency gap between FPGA and
VLSI platforms. We showed that a system implemented
on FPGAs will require as much as 100 times more die area
than a custom VLSI implementation and would be about

-- 6 -

10 times slower. Although this result indicates how much
worse an FPGA implementation is compared to a VLSI
implementation, the comparison is not directly applicable
to our needs because the FPGA platform is programmable
while a VLSI adder or multiplier is not. A more suitable
comparison would be between an FPGA circuit
implementation and a programmable VLSI device like an
ALU. We have already defined, in Section 2, Ω and ∆ to
be, respectively, the ratios of the area and delay results of
an FPGA-based implementation to those of an ALU. The
ALU parameters we use are based on estimates for the area
and delay of complementary logic CMOS circuits which
represent upper bounds on VLSI implementation cost and
performance. Therefore, Ω and ∆ represent lower bounds
while true area and delay overhead could actually be much
higher. We will now compare the efficiency of pipelined,
and non-pipelined, FPGA-based arithmetic circuits to that
of ALUs.

We select two pipelined integer ALUs, 32-bit and 64-
bit, capable of addition, subtraction, multiplication, shift to
the left, arithmetic shift to the right, and finally, logical
AND, OR, and NOT operations. They use a fast array
multiplier to achieve small multiplication delays at the
expense of high die area. We also select two pipelined
floating-point ALUs, 32-bit and 64-bit, capable of addition,
subtraction, and multiplication which also use an array
multiplier as their mantissa multiplier/adder. For integer
ALUs, we assume that addition takes a single cycle while
multiplication needs 2 cycles on a 32-bit ALU, and 3
cycles on a 64-bit ALU. For the floating-point ALUs, we
assume 4 execute stages for a 32-bit FP ALU and 6 stages
for a 64-bit ALU. The result of the comparison is given in
Table I which shows the results for both pipelined and
non-pipelined FPGA implementations. Note that
Multiplying Ω and ∆ in the table may not correspond to
the Ω*∆ entry because all results have been rounded.

By limiting pipelined integer circuits to only those
pipelinable without additional area, multiplication is
restricted to array multipliers which have high area costs.
Similarly, floating-point multiplication is not able to make
use of the compactness of sequential multipliers and incurs
a large area cost as well. The effects of these restrictions
can be observed in Table I. The first thing to notice is that
pipelined integer addition implementation give reasonably
efficient results even though the area overhead is still
large. Of course, this is an improvement over the non-
pipelined results, and is mostly due to the low cycle time of
the FPGA implementations and, subsequently, the low
delay overhead. This suggests that addition
implementation on FPGAs should be pipelined.

The second observation is that pipelined integer
multiplication efficiency is better than the non-piplined
case but at the expense of very high area cost, up to 60
times from a maximum of 4.1 times in the non-piplined
case. Unlike addition, however, this result suggest that
multiplication is not suitable at all for FPGA
implementation. If required, however, but with real-estate
at a premium, as in our case, multiplication should not be
pipelined so as to save on area. Finally, the overhead for
floating-point is much larger than that of integer
implementation. The large overhead magnitude raises
doubt regarding the usefulness of floating-point operations
on FPGAs under any circumstances.

Serial Arithmetic. Serial arithmetic can deliver low area
overheads for low operand width values. However, for
larger widths, 32-bits and 64-bits for example, the area
overhead is still considerably high because the registers
used in accumulating the result have to be included in the
cost. It is also evident from our results that the low
performance of serial designs make their use on FPGAs
unacceptable for high throughput computations.

TABLE I
Characterising FPGA-based Arithmetic Circuit Implementations

32-bit ALU 64-bit ALU
Integer FP Integer FP

FPGA circuit bit widths 8 16 24 32 32 8 16 24 32 40 48 56 64 32 64
ΩΩ x ∆∆ 0.15 0.49 0.57 0.8 31.4 0.03 0.11 0.13 0.18 0.23 0.29 0.35 0.44.19 17.3

pipelined ADD area (ΩΩ) 0.76 2.5 2.87 4.0515.0 0.21 0.68 0.78 1.1 1.44 1.79 2.14 2.463.79 9.15

FPGA delay (∆∆) 0.2 0.2 0.2 0.2 2.1 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.161.63 1.89

circuits ΩΩ x ∆∆ 0.76 3.05 6.42 11.3108 0.17 0.69 1.44 2.54 3.94 5.65 7.67 9.6821.3 106

Mult ΩΩ 3.87 15.5 32.6 57.351.5 1.05 4.22 8.88 15.6 24.3 34.8 47.2 59.613.0 56.3

∆∆ 0.2 0.2 0.2 0.2 2.1 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.161.63 1.89

ΩΩ x ∆∆ 0.6 2.1 3.53 5.65 119 0.14 0.47 0.79 1.27 1.64 2.02 2.41 2.7615.9 67.2

non- ADD area (ΩΩ) 0.32 0.61 3.73 5.1916.7 0.09 0.17 1.02 1.42 1.83 2.25 2.69 3.084.23 10.2

pipelined delay (∆∆) 1.88 3.45 0.95 1.097.13 1.55 2.85 0.78 0.9 0.9 0.9 0.9 0.95.54 6.56

FPGA ΩΩ x ∆∆ 4.26 16.2 35.8 63.1280 0.96 3.64 8.04 14.2 22.0 31.6 42.7 53.655.1 253

circuits Mult ΩΩ 1.07 2.07 3.08 4.0814.2 0.29 0.57 0.84 1.11 1.38 1.66 2.37 2.673.59 8.37

∆∆ 3.97 7.81 11.6 15.519.7 3.28 6.43 9.59 12.6 15.9 19.1 18.0 20.115.3 30.2

-- 7 -

Summary. The results given here highlight the main
problem with FPGA-based arithmetic circuits. They
cannot compete with other programmable devices such as
ALUs, at least at the circuit level. Pipelining can be used
to bring the cycle time of an FPGA implementation close
to the delay of an ALU to reduce the delay overhead. But,
the intractable problem is the area overhead. Consider,
from Table I, that m arithmetic circuits of type and data
width i have die area equivalent to mxΩi ALUs. Serial and
sequential arithmetic can reduce the implementation cost
but at the expense of decreasing the performance and
increasing the delay overhead. Since on-chip real-estate is
valuable and the area cost of any FPGA implementation is
already high, FPGA design trade-offs should be optimised
for area. Indeed, neither floating-point arithmetic nor
integer multiplication have shown any implementation
attributes favourable to FPGA platforms. For the case of
integer multiplication, this was also reported by a study on
commercial FPGAs [16].

5. Viability of Adaptive Coprocessors
From the results of the previous section and the 5

numbered equations in Section 2, we can evaluate the
viability of the adaptive coprocessor proposal. For clarity,
assume either integer or floating-point operations only.
Table II examines the conditions necessary for a VLIW
coprocessor machine to have better performance than an
FPGA-based coprocessor. It shows the maximum number
of instructions that can run on the VLIW machine while
maintaining better performance than an FPGA-based
coprocessor for both iteration/data and resource dependent
algorithms.

We assume total coprocessor die area equivalent to
20M transistors (approximately 100 and 300 integer 64-bit
and 32-bit ALUs respectively), a hypothetical algorithm

requiring total node count Σni
fpga ≅ 10, and a reasonable

value of loop unrolling kvliw=10. Although this may seem
to be a large die area for a small number of circuit function
nodes, already some data-path widths, blanked out in Table
II, will not fit onto an FPGA of this size. We examine
three cases for the algorithm. All nodes are addition
operations, all are multiplication operations, and finally, 9
are add and one is a multiply.

Pipelined FPGA implementation. The algorithm once
compiled and run on the VLIW machine could be highly
sequential, data or iteration dependent, with only small
instruction level parallelism. In this case it is limited by
the critical dependence ratio (ρcrit,) as shown in rows 1 to 3
of Table II. Since ρcrit, has to be very small to favour the
VLIW machine, an FPGA-based coprocessor can
adequately exploit pipelining to achieve better performance
than a VLIW machine of an equivalent silicon area. This
is evident, rows 1 to 3, for addition dominated applications
and those with integer multiplication but small data-path
widths. The FPGA, however, would still not be able to
effectively deal with a floating-point algorithm.

Alternatively, the algorithm could be highly parallel
requiring large number of arithmetic function nodes to
exploit the available concurrency as a custom FPGA
circuit. For this type of application, rows 4 to 6 show that
the number of compiled VLIW instructions, before loop
unrolling, that would guarantee VLIW superiority is
relatively small particularly if a limited number of
multipliers are used. This is an advantage for the FPGA
platform and suggest that highly concurrent algorithms of
limited data-path widths, such as some image processing
algorithms are suited for piplined implementation on
FPGA arrays.

Non-pipelined FPGA implementation. Rows 7 to 9 and
10 to 12 exhibit similar behaviour to rows 1 to 3 and 4 to 5

TABLE II
Conditions determining the implementation viability of an FPGA-based Coprocessor

For Σni
fpga = 10 and 32-bit ALU 64-bit ALU

kvliw=10, a VLIW machine Integer FP Integer FP
is better if 8 16 24 32 32 8 16 24 32 40 48 56 64 32 64

all + 1 1 1 1 8 1 1 1 1 1 1 1 1 15 147 1
pipelined ρcrit ≤ 9 and 1 1 1 1 1 10 1 1 1 1 1 1 1 2 18 180 2

FPGA all * 1 1 1 1 2 3
circuits all + 2 5 6 9 315 1 2 2 2 3 3 4 4 159 1583 4

q1 ≤ 9 and 1 3 8 12 19 392 1 2 3 5 6 9 11 14 193 1940 5

all * 8 31 2 7 15 6
all + 1 1 1 2 31 1 1 1 2 2 2 3 3 22 62 7

non- ρcrit ≤ 9 and 1 1 2 10 20 82 1 2 9 17 27 39 45 57 59 280 8

pipelined all * 2 5 10 16 71 1 4 8 13 21 30 40 50 51 234 9
FPGA all + 7 22 33 57 1191 2 5 8 13 17 21 25 28 235 670 10
circuits q1 ≤ 9 and 1 16 60 388 7883241 4 14 97 176 284 419 479 611638 3026 11

all * 43 162 358 633 2798 10 37 81 140 220 318 427 537550 2528 12

-- 8 -

respectively. However, because of the lower AxT efficiency
of non-pipelined FPGA circuit implementations, as shown
in Table I, the results are biased in favour of the VLIW
coprocessor. Indeed unless the mapped algorithm is
dominated by addition operations of small data-path
requirements, an FPGA-based coprocessor is not a suitable
implementation platform.

Summary. We have numerically demonstrated that FPGA
arrays are suitable as coprocessor platforms for realising
algorithms requiring a limited number of multipliers
across a wide range of data-path widths particularly below
32-bits. From Eq(4) and Eq(5) we can deduce that as the
silicon area available increase, the bounds for which the
FPGA-based coprocessor is better than a VLIW machine
tighten in favour of the adaptive coprocessor. The
programmable array would be able to handle algorithms
with more multipliers while the VLIW machine struggles
to maintain a high resource utilisation. Finally, note that
the parametric limits reported in this section regarding the
suitability of one algorithm or architecture over another are
indicative of general trends for a broad range of operand
width values and arithmetic functions and should not be
interpreted as precise statements of comparison for the
specific models and circuits investigated.

6 Example
Consider the implementation of the following code

fragment from a hydrodynamic simulation (1st Loop of the
Livermore Kernels):

for (j = 0; j<n; j++)
 { X[j] = q + (Y[j] * ((r * Z[j+10]) + (t * Z[j+11])))}

Figure 4 shows a possible pipelined custom
implementation of this code segment. It requires three
floating-point multipliers, two floating-point adders, and
three integer adders. Figure 5 gives the compiled VLIW
instructions (before scheduling and allocation) and their
dependency graph. The speedup ranges gained by using an

FPGA-based coprocessor model (Figure 4) over a VLIW
model (Figure 5) are summarised in Table III. We apply
the static characteristic of FPGA implementations (Table I)
to derive the best possible speedup ranges. We assume cvliw

is 20% and that cfpga is negligible.

The first group in Table III include 5 rows that show
the number of operations for each type of resource required
by the code segment as kvliw loops are unrolled. The second
group show the number of ALUs that could be available to
the VLIW machine for three possible resource limitations.
First, assuming maximum required resources are available.
Second, using ρcrit integer ALUs and ρcrit floating-point
ALUs. Third, assuming only one integer ALU and one
floating-point ALU are available (minimum resources).

The third group gives the area of the custom circuit
implementation (FPGA-based coprocessor) normalised to

R1 ← adr(x) ; get base address of array x
R2 ← adr(y) ; get base address of array y
R3 ← adr(z) ; get base address of array z
R4 ← n ; get number of iterations
F1 ← q ; get floating number q
F2 ← r ; get floating number r
F3 ← t ; get floating number t

Start: R5 ← R0 ; k = 0
F4 ← M[10 + R3] ; variable z[10]
F5 ← M[11 + R3] ; variable z[11]
F10 ← M[R2] ; variable y[0]
R6 ← R3 + 12 ; base address for z[11] ; z[12]

S1 Itr: R7 ← R6 + R5(k-1) ; base addr for var z[11 + k]; z[12 + k]
S2 F6 ← M[R7] ; load floating var. z[11 + k]; z[12 + k]

S3 F7 ← F3 * F5(k-1) ; t * z[11 + k]
S4 F8 ← F2 * F4(k-1) ; r * z[11 + k - 1]

S5 F9 ← F8 + F7 ; (r * z[k+10]) + (t * z[k+11])

S6 F4 ← F5(k-1) ; F4 = z[11 + k]
S6x F5 ← F6 ; F5 = z[11 + k + 1]

S7 R8 ← R2 + R5(k-1) ; base address for variable y[k]
S8 F10 ← M[R8] ; load floating var. y[k]
S9 F11 ← F10(k-1) * F9 ; y[k] * (r * z[k+10]) + (t * z[k+11])

S10 R9 ← R1 + R5(k-1) ; base address for variable x[k]
S11 F12 ← F1 + F11 ; x[k] = q + S9
S12 M[R9] ← F12 ; store floating var. x[k]

S13 R5 ← R5(k-1) + 1 ; k++
S14 End: if (R4 != R5) PC ← Itr ; branch to itr if k < n

Figure 5. Dependence graph for the 1st Livermore Loop and a
generic VLIW compilation.Figure 4. Custom implementation of 1st Livermore Loop.

FP
+

q

FP
+

r

t

∆

j+10

Read Z Read Y Write X

FPGA-based
Coprocessor

FP
*

FP
*

FP
*

j
int
+j

int
+

int
+

S4
1

1

1
S6

S3 S6xS11

1

S12 S8

S5S9 S2

S7S10

S1

S10

S7

S1 S1

1

1

1
S13 S14

S10

S7

-- 9 -

that of an ALU. There are three cases; both machines are
32-bits, the VLIW is 64-bits the FPGA machine is 32-bits,
and both machines are 64-bits. The minimum and
maximum values are obtained using the data in Table I.
The fourth group shows the minimum iteration intervals
for the three resource limitation cases. There is no
guarantee however that the compiler will be able to achieve
this goal. Finally, the fifth group is the speedup results for
different data-path widths.

Table III shows that the best speedup is 4.27 assuming
the VLIW machine only has two ALUs (a floating-point
and an integer) and that the VLIW compiler does not
utilise loop unrolling. Comparing Acircuit to Avliw we see
that even with kfpga = 1, the adaptive coprocessor will use
enough area to allow the VLIW machine maximum
resources and to unroll about 25 loops per iteration. With
these resources, the VLIW machine has better performance
than the adaptive coprocessor. In fact the only time that
the FPGA may have any advantage is if no loop unrolling
is done at all which is an unrealistic restriction on the
VLIW machine given the areas used by the FPGA
implemented circuit.

Finally, it is possible to deduce that this code fragment,
which is dominated by floating-point operations, is not
suitable for FPGA-based custom computing because the
VLIW is limited by ρcrit = 3 which is still small compared
to entries in Table III for similar size circuits.

Integer arithmetic. The hydrodynamic simulation
example requires both integer and floating-point resources.
However, many algorithms need only use integer
arithmetic. In Table IV we re-examine the code segment
using only integer arithmetic for both machines. We
restrict the VLIW to 32-bit or 64-bit ALUs while the
adaptive coprocessor implementation can be as small as an
8-bit data-path. The first row gives the area of the custom
implementation of a single iteration. The second row is
the number of custom iterations needed to make available
enough area for maximum VLIW resource needs. The
third row is the number of loops that can be unrolled by the
VLIW to expose as much concurrency as there is area.

Now, the speedup ranges obtained are much higher than in
Table III. The FPGA-based model can maintain better
performance up to 24-bits compared to a 32-bit VLIW and
up to 48-bits compared to a 64-bit VLIW. We can see that
high speedups are obtained for the same data-path widths
predicted in Table II.

7. Conclusions
We have investigated and compared the cost and

performance of both VLIW and FPGA-based coprocessor
models and the characteristics that determine the

TABLE III
Implementation Results for 1st Livermore Loop

 kvliw 1 2 4 6 25

 int add 4 4 4 4 4
number of fp add 4 7 13 19 76
operations fp mult 3 6 12 18 75

(qi
k) brn-jmp 1 1 1 1 1

 I/O 3 6 12 18 75

max # of VLIW Max. Res. 12 18 30 42 156

ALUs (Avliw - 20%) ρcrit ALUs 6 6 6 6 6

 Min. Res. 2 2 2 2 2

Acircuit in # of 32-bit ALU min = 84 & max = 196

ALUs 64-bit 32 min = 22 & max = 50

(kfpga = 1) ALU 64 min = 50 & max = 194

 tiik[res = max required] >= ρcrit = 3 3 3 3 3

 tiik[res = ρcrit] >= max[q/ ρcrit] = 3 5 9 13 51

 tiik[res = min] >= 7 13 25 37 151

32-bit SU[res = max] 1.44 0.72 0.36 0.24 0.06

VLIW ALUs SU[res = ρcrit] 1.44 1.2 1.08 1.04 0.98

 SU[res = min] 3.36 3.12 3 2.96 2.9

 SU[max] 32 1.83 0.92 0.46 0.31 0.07

64 1.59 0.8 0.4 0.27 0.06

64-bit SU[ρcrit] 32 1.83 1.53 1.37 1.32 1.24

VLIW ALUs 64 1.59 1.33 1.19 1.15 1.08

 SU[min] 32 4.27 3.97 3.81 3.76 3.68

64 3.71 3.45 3.31 3.27 3.2

TABLE IV
Implementation Results for 1st Livermore Loop Assuming Integer Operations Only

32-bit ALU 64-bit ALU
Integer Integer

FPGA bit widths 8 16 24 32 8 16 24 32 40 48 56 64

 Afpga in # of ALUs (kfpga = 1) 15 59 112 192 3 13 30 52 80 113 152 191

 max kfpga (Avliw[max] ≅ kfpga x Acircuit[min]) 1 1 1 1 5 2 1 1 1 1 1 1

 max kvliw (given max kfpga) 1 7 14 25 1 3 3 6 9 14 20 25

 Speedup max VLIW resources 15 2.14 1.07 0.6 94 12.5 6.25 3.13 2.08 1.34 0.94 0.75

using min VLIW resources 30 4.29 2.14 1.2 188 25 12.5 6.25 4.17 2.68 1.88 1.5

-- 10 -

suitability of one model over the other. We determined
numerical limits for these parameters beyond which one
machine would be more suited than the other to a specific
application domain.

We conclude that the inherent characteristics of FPGAs
and arithmetic circuits limit the algorithms suitable for
implementation on an integrated adaptive coprocessor to
those with a limited number of multipliers and with no
floating-point arithmetic. When multipliers are an
essential part of the algorithm, only small data-path widths
can be expected to produce any performance gains over a
VLIW machine. We also conclude that the criterion
favouring an FPGA-based coprocessor improve as the
silicon area available increase. Furthermore, the
implementation efficiency gap between the FPGA platform
and ALUs places a high minimum die area requirement,
equivalent to tens of ALU areas, before any advantageous
conditions arise to induce positive speedup in favour of the
FPGA-based integrated coprocessor.

References
[1] P. Athanas and H. Silverman, “Processor

Reconfiguration Through Instruction-Set
Metamorphosis,” IEEE Computer, Vol. 26, No. 3, pp.
11-18, March 1993.

[2] J. P. Gray and T. A. Kean, “Configurable Hardware:
A New Paradigm for Computation,” in Advanced
Research in VLSI, Ed. C. L. Seitz, MIT Press, pp.
279-295, Proc. of the 1989 Decennial Caltech
Conference, March 1989.

[3] N. Hastie and R. Cliff, “The Implementation of
Hardware Subroutines on Field Programmable Gate
Arrays,” Proc. Custom Integrated Circuits Conf., pp.
31.4.1-31.4.4, 1990.

[4] Alberto Sangiovanni-Vincentelli, “Some Con-
siderations on Field Programmable Gate Arrays and
Their Impact on System Design,” Proc. of the 2nd
Int’l Workshop on Field-Programmbale Logic and
Applications, FPL’92 (Lecture Notes in Computer
Science # 705, H. Grunbacher and R. Hartenstein,
Ed.), Vienna, pp. 26-34, August/September 1992.

[5] S. Trimberger, “A Reprogrammable Gate Array and
Applications,” Proc. of the IEEE, Vol. 81, No. 7, pp.
1030-1041, July 1993.

[6] David J. Lilja, “Exploiting the Parallelism Available
in Loops,” IEEE Computer, Vol. 27, No. 2, pp. 12-
26, February 1994.

[7] Monica Lam, “Software Pipelining: An Effective
Scheduling Technique for VLIW Machines,” Proc. of
the ACM SIGPLAN’88 Conf. on Programming
Language Design and Implementation, pp. 318-328,
1988.

[8] X. Chen and S. L. Hurst, “A Comparison of
Universal-Logic-Module Realizations and Their
Application in the Synthesis of Combinatorial and
Sequential Logic Networks,” IEEE Transactions on
Computers, Vol. C-31, No. 2, pp. 140-147, February
1982.

[9] Altera Corporation, FLEX 8000 Handbook, May
1994.

[10] Xilinx Inc, XC5000 Logic Cell Array Family,
Advanced Information (v2.0), February 1995.

[11] Jonathan Rose, Robert Francis, David Lewis, and
Paul Chow, “Architecture of Field-Programmable
Gate Arrays: The Effect of Logic Block Functionality
on Area Efficiency,” IEEE Journal of Solid-State
Circuits, Vol. 25, No. 5, pp. 1217-1225, October
1990.

[12] Jonathan Rose and Stephen Brown, “Flexibility of
Interconnection Structures for Field-Programmable
Gate Arrays,” IEEE Journal of Solid-State Circuits,
Vol. 26, No. 3, pp. 277-282, March 1991.

[13] Ivan E. Sutherland and Robert F. Sproull, Logical
Effort: Designing Fast MOS Circuits, Internal Report
SSA #7893, Sutherland, Sproull, & Associates Inc.,
1990.

[14] Ivan E. Sutherland and Robert F. Sproull, “Logical
Effort: Designing for Speed on the Back of an
Envelope,” in Advanced Research in VLSI, Proc. of
the 1991 University of California at Santa Cruz
Conference, Ed. by Carlo H. Sequin, pp 1-16, MIT
Press, 1991.

[15] Osama T. Albaharna, Peter Y.K. Cheung, and
Thomas J. Clarke, “Area & Time Limitations of
FPGA-based Virtual Hardware,” Proc. of the IEEE
Int’l Conf. on Computer Design: VLSI in Computers
& Processors, ICCD’94, pp. 184-189, October 1994.

[16] Russell J. Peterson and Brad L. Hutchings, “An
Assessment of the Suitability of FPGA-Based Systems
for Use in Digital Signal Processing,” Proc. of the
5nd Int’l Workshop on Field-Programmbale Logic
and Applications, FPL’95 (Lecture Notes in
Computer Science # 975, Oxford, pp. 293-302,
August/September 1995.

