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Abstract. This paper presents a method for evaluating functions in hardware based
on polynomial approximation with non-uniform segments. The novel use of non-
uniform segments enables us to approximate non-linear regions of a function par-
ticularly well. The appropriate segment address for a given function can be rapidly
calculated in run time by a simple combinational circuit. Scaling factors are used to
deal with large polynomial coefficients and to trade precision with range. Our func-
tion evaluator is based on first-order polynomials, and is suitable for applications re-
quiring high performance with small area, at the expense of accuracy. The proposed
method is illustrated using two functions,

√
− ln(x) andcos(2πx), which have been

used in Gaussian noise generation.

1 Introduction

The evaluation of functions is often the performance bottleneck of many compute-bound
applications. Examples of these functions include elementary functions such asln(x) or√

x, and compound functions such as
√
− ln(x) or tan2(x)+1. Computing these functions

quickly and accurately is a major goal in computer arithmetic; software implementations
are often too slow for numerically intensive or real-time applications. The performance
of such applications depends on the design of a hardware function evaluator. Advanced
FPGAs enable the development of low-cost and high-speed function evaluation units, cus-
tomizable to particular applications. The principal contribution of this paper is a fast and
efficient hardware function evaluator using polynomial approximations. The key novelties
of our work include:

– a method for polynomial approximations with non-uniform segments;
– hardware architecture and implementation of the proposed method;
– evaluation of this method with a logarithmic function and a cosine function.

The rest of this paper is organized as follows. Section 2 covers background material
and previous work. Section 3 explains our segmentation technique. Section 4 describes
the hardware architecture. Section 5 presents a method for determining the placement of
segment boundaries. Section 6 discusses evaluation and results, and Section 7 offers con-
clusion and future work.

2 Background

Polynomial approximation [13], [14] involves approximating a continuous functionf with
one or more polynomialsp of degreen on a closed interval[a, b]. The aim is to minimize a
distance‖p−f‖. There are two kinds of approximations: least squares approximations that



minimize the average error, and least maximum approximations that minimize the worst-
case error [15]. In both cases, the aim is to minimize a distance‖p− f‖. For least squares
approximations, that distance is:

‖p− f‖2 =

√∫ b

a

w(x)(f(x)− p(x))2dx, (1)

wherew is a continuous weight function for selecting parts of[a, b] where we want the
approximation to be more accurate. For least maximum (minimax) approximations, the
distance is:

‖p− f‖∞ = max
a≤x≤b

|f(x)− p(x)|. (2)

Our work is based on minimax polynomial approximations, which involve minimizing
the worst-case error. Since we are interested in fixed-point number representation in our
work, we will be concerned with the worst-case absolute errors. A recent study of minimax
polynomial approximation on FPGAs can be found [21].

Much of the work on function evaluation is generally concerned with producing highly
accurate approximation with complex designs. Instead, we will focus on applications that
require very high speed and small area but not high accuracy. Examples of such applications
include Gaussian noise generation [3] and belief propagation in LDPC decoding [20]. We
will focus in this paper on first-order polynomials of the formp(x) = c1 × x + c0, where
c1 is the gradient andc0 is the y-intercept, which can be computed by two table lookups, a
multiplication and an addition.

Previous work on polynomial approximations involves equally sized segments [4], [5],
[6], [7], [8], [9], [10], [11], [12]. Approximations using such uniform segments are suitable
for functions with linear regions, but they can be inefficient for non-linear functions. It is
desirable to choose the boundaries of the segments to cater for the non-linearities of the
function. Highly non-linear regions may need smaller segments than linear regions. This
approach minimizes the amount of storage required to approximate the function, leading to
more compact and efficient designs.

3 Function Evaluation based on Non-uniform Segmentation

The interval of approximation[a, b] is divided into a set of sub-intervals, called segments.
The best-fit straight line, in a minimax sense, to each segment is found. A lookup table is
used to store the coefficients for each line segment, and the functions can then be evaluated
using a multiplier and an adder to calculate the linear approximation [1].

Using well-known methods that compute elementary functions such as CORDIC [2],
the evaluation of compound functions is a multi-stage process. Consider the evaluation of
the function

√
− ln(x) over the interval(0, 1]. Using CORDIC, the computation of this

function is a two-stage process: the logarithm ofx followed by the square root. With our
approach, we look at the entire function over the given domain, and therefore we do not
need to have two stages.

As shown in Figure 1, the greatest non-linearities of the function
√
− ln(x) occur in the

regions close to zero and one. If uniform segments are used, a large number of small seg-
ments would be required to get accurate approximations in the non-linear regions. However,
in the middle part of the curve where it is relatively linear, accurate approximation can be
obtained using relatively few segments. It would be efficient to use small segments for the
non-linear regions, and large segments for linear regions. Arbitrary-sized segments would
enable us to have the least error for a given number of segments; however, the hardware to
calculate the segment address for a given input can be complex. Our objective is to provide
near arbitrary-sized segments with a simple circuit to find the segment address for a given
input.
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Fig. 1.
√
− ln(x) over(0, 1].

We have developed a novel method which can construct piecewise linear approximation
such that: (a) the segment lengths used in a given region depends on the local linearity,
with more segments deployed for regions of higher non-linearity; and (b) the boundaries
between segments are chosen such that the task of identifying which segment to use for a
given input can be rapidly performed. The proposed method consists of five steps.

1. Determine optimal placement of segment boundaries (see Section 5) – this would in-
clude dividing into regions such that in each region the function either monotonically
increases or decreases.

2. For a non-linear region, if the non-linearity is monotonically increasing, then increase
segment size by a factor of two or more at each step; if the non-linearity is monotoni-
cally decreasing, then reduce segment size by a factor of two or more at each step.

3. The segment addresses can be obtained by computing the prefixes [16] with a simple
combinational or pipelined circuit.

4. If necessary, divide the function into several intervals, then apply step 1–3 (see the
functioncos(2π, x) in Section 6).

5. If necessary, repeat the above steps with higher-order terms.

As an example to illustrate our approach, consider approximating
√
− ln(x) with an 8-

bit input (Figure 1). Using the traditional approach, the most-significant bits ofx are used
to index the uniform segments. For instance if the most-significant four bits are used, 16
uniform segments are used to approximate the function. Using our approach, it is possible
to use small segments for non-linear regions (regions near 0 and 1), and large segments for
linear regions (regions around 0.5). The idea is to use segments that grow by a factor of
two from 0 to 0.5, and segments that shrink by a factor of two from 0.5 to 1 in thex-axis of
Figure 1. We use segment boundaries at locations2n−8 and1− 2−n where0 ≤ n < 8. Up
to 14 segments can be formed this way. A circuit based on prefix computation can be used
for calculating segment addresses (Figure 2) for a given inputx. It checks the number of
leading zeros and ones to work out the segment address. A cascade of OR gates is used for
segments that grow by factors of two, and a cascade of AND gates is used for segments that
shrink by factors of two; these circuits can be pipelined and a circuit with shorter critical
path but requiring more area can be used [16]. Note that the choice of segments does not
have to be factors of two, it could be more. The appropriate taps are taken from the cascades
depending on the choice of the segments and are added to work out the segment address. In
Figure 2, the maximum available taps are taken, giving 14 segment addresses. Some taps
would not be taken if the segments grow or shrink by more than a factor of two. It can
be seen that the critical path of this circuit is the path fromx6 or x7 to the output of the



adder. By introducing pipeline registers between the gates, higher throughput can be easily
achieved.

address

+

segment

x7 x6 x5 x4 x3 2x x1

Fig. 2. Circuit to calculate the segment address for a given inputx. The adder counts the number of
ones in the output of the two prefix circuits.

When approximating
√
− ln(x) with 32-bit inputs based on polynomials of the form

p(x) = c1 × x + c0, the gradient of the steepest part of the curve is in the order of108,
thus large multipliers would be required. To overcome this problem, we use scaling factors
of multiples of two to reduce the magnitude of the gradient, essentially trading precision
for range. This is appropriate since the larger the gradient, the less important precision
becomes. The use of scaling factors provides the user the ability to control the precision for
bothc1 andc0, resulting in variation of the size of the multiplier and adder. Hence for each
segment four coefficients are stored:c1 and its scaling factor,c0 and its scaling factor.

It is also possible to divide the input interval into uniform or non-uniform intervals,
and have uniform or non-uniform segments inside each interval. In this case, the most-
significant bits are used to address the intervals, and the least-significant bits are used to
address the segments inside each interval. It can be seen that one can have any number of
nested combinations of uniform and non-uniform segments. This hybrid combination of
nested uniform and non-uniform segments provides a flexible way to choose the segment
boundaries. Currently, this segmentation step is done by hand, which is slow and far from
optimal. A possible approach to automate this step is discussed in Section 5.

4 Hardware Architecture

The architecture of our function evaluator shown in Figure 3 is based on polynomials of the
form p(x) = c1 × x + c0. The most-significant bits are used to select the interval, and the
least-significant bits are passed through the segment address calculator which calculates
the segment address within the interval. The design shown is developed for the common
cases, and has been used in the examples of this paper. For other cases, one could divide the
input bits into more than two parts and apply the segment address calculation depending
on whether the parts use uniform or non-uniform segments.

The ROM outputs the four coefficients for the chosen interval and segment.c1 is mul-
tiplied by the inputx and c s1 is used to scale the output. The scaling circuit involves
shifters, which increase or decrease the value by powers of two. This scaled multiplication
value is added to the scaledc0 coefficient to produce the final result.

For high throughput applications, the segment address calculator, the multiplier and
the adder can be pipelined. For typical applications targeting FPGAs, the ROM would be
small and could be implemented on-chip using distributed RAM or block RAM. Often
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Fig. 3. Our function evaluator architecture.

the multiplier would be the part taking up a significant portion of the area. Therefore it
is important to minimize the multiplier size by finding out the minimum bit width for
the coefficientc1. Also recent FPGAs, such as Xilinx Virtex-II devices, provide dedicated
hardware resources for multiplication which can benefit the proposed architecture.

5 Placement of Segment Boundaries

Let f be a continuous function on[a, b], and let an integerm ≥ 2 specify the number of
contiguous intervals into which[a, b] has been partitioned:a = u0 ≤ u1 ≤ ... ≤ um = b.
Let ni anddi(i = 1, ..., m) be non-negative integers and letPi denote the set of rational
functionspi whose numerators and denominators are polynomials of degrees less or equal
to ni anddi, respectively. Fori = 1, ..., m, define

hi(ui−1, ui) = min
pi∈Pi

max
ui−1≤x≤ui

|f(x)− pi(x)|. (3)

Let µ = µ(u) = max1≤i≤m hi(ui−1, ui). Lawson states in his paper [18] that the seg-
mented rational minimax approximation problem is that of minimizingµ over all partitions
u of [a, b]. It can be shown that if the error norm is a non-decreasing function of the length
of the interval of approximation, that the function to be approximated is continuous and that
the goal is to minimize the maximum error norm on each interval, then a balanced error
solution is optimal; the term “balanced error” means that the error norms on each interval
are equal.

Pavlidis and Maika present an iterative scheme for segmentation in their paper [19]
which results in a suboptimal balanced error solution. The scheme is based on an iteration
of the form

uk+1
m = uk

m + c(ek
m+1 − ek

m), m = 1, ..., n− 1. (4)



Hereuk
m is the value of them-th point and thek-th iteration,ek

m is the error on(uk
m−1, u

k
m]

andc is an appropriate small positive number. It can be shown that for sufficiently smallc
the scheme converges to a solution [19]. In this algorithm, the number of segments is fixed
and this determines the maximum error. However in many cases, it may be more useful to
fix the accuracy desired and let the number of segments vary. Starting froma or b one could
apply polynomial approximation in small increments, until the desired accuracy is reached.
Then start a new segment from that point.

Once the segment boundaries have been found by using one of the two approaches
above, the next step is to match the boundaries based on our addressing scheme as close
to the suboptimum ones as possible. As discussed in Section 3, our addressing scheme is
based on nested uniform and non-uniform segments. By carefully using these combina-
tions of segments, it is possible to get a close approximation to the suboptimum segment
boundaries. Our aim is to enable the user to input constraints such as maximum error norm
and to apply the segmentation automatically to produce lookup tables and the correspond-
ing circuits such as the one shown in Figure 3. A possible approach of such an automated
method is shown in Figure 4.

User

Constraints


Find suboptimum

segment boundaries.


Apply our addressing scheme

to match the suboptimum


boundaries.


Meets user

contraints?


Tighten

constraints.


Generate lookup tables

and circuitry.


YES


NO


Fig. 4. Steps for automating segmentation.

6 Evaluation and Results

Our function evaluator has been successfully implemented for the Gaussian noise generator
presented in [3]. Three functions are approximated:

√
− ln(x), cos(2πx) and sin(2πx)

over [0, 1]. 32-bit inputs are used for
√
− ln(x) and 16-bit inputs are used forcos(2π x)

andsin(2πx).
We first consider the function

√
− ln(x). As stated earlier, the greatest non-linearities of

this function occur in the regions close to zero and one. To be consistent with the change in
linearity, we use line segment locations to boundaries at locations2n−32 for 0 < x ≤ 0.5,
and1 − 2−n for 0.5 < x ≤ 1, where0 ≤ n < 32. A total of 59 segments are used to
approximate this function as shown in Figure 5. Since

√
− ln(x) approaches infinity forx



values close to zero, the smallestx value is1/232, resulting in a maximum output value of
around 4.7.
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Fig. 5. The segments used to approximate
√
− ln(x) with 32-bit inputs. The asterisks indicate the

segment boundaries of the linear approximations.

The maximum absolute error of this approximation is 0.020. However this is the case
only if we have infinite precision for the coefficients, which is not realistic. Multipliers
take significant amount of resources on FPGAs, therefore the coefficients for the gradient
should be as small as possible. Tests are carried out to find the optimum number of bits
for the gradient coefficients that provides the least absolute error. Figure 6 shows how the
maximum absolute error varies with the number of bits used for the gradient of

√
− ln(x).

The figure indicates that six bits are sufficient to give a maximum absolute error of 0.031.
The approximation should differ from the true value by less than one unit in the last place
(ulp) [17]; the least significant bit of the fraction of a number in its standard representation
is defined to be the last place. With this error, it is sufficient to give an output accuracy of
eight bits (three bits for integer and five for fraction). If uniform segments are used, small
segment size would be needed in order to cope with the highly non-linear parts of the curve.
In fact, one would require around 617 million segments to get the same maximum absolute
error with uniform segments. This is a good example to demonstrate the effectiveness of
our non-uniform approach. It is clear that our approach works well especially for functions
with exponential behavior.

To evaluate the functionscos(2πx) andsin(2πx), due to the symmetry of the sine and
cosine functions, only the input range[0, 1/4] for cos(2πx) needs to be approximated [15].
The specific axis-partitioning technique for

√
− ln(x) is unsuitable forcos(2πx), since

the non-linearities of the two functions are different. If the same technique is used, there
would be many unnecessary segments near the beginning and end of the curve, and not
enough segments in the middle regions. As before we consider both the local linearity
of the curve, and the computational concerns with respect to choosing specific segment
boundary locations, leading to the approximations shown in Figure 7. The curve is divided
into four uniform intervals and within each interval, non-uniform segmentation is applied.
Note that for each interval, not all taps are taken from the segment address calculator. We
use a total of 21 segments to approximate this function.

With finite precision on the coefficients, the maximum absolute error of this approxi-
mation is 0.0035, which is sufficient to give an output accuracy of eight bits (all eight bits
for fraction). Using uniform segments, the same error can be obtained with a slightly larger
number of segments; this is because the curve does not have high non-linearities.
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Table 1 shows a comparison of the number of segments for the two functions for non-
uniform and uniform segmentation in order to achieve the same worst-case error. Note that
for uniform segmentation, the number of segments needs to be a power of two. This is be-
cause the most-significantn bits are used for addressing. For instance, the actual number of
uniform segments needed for the

√
− ln(x) function is 617 million, but 1 billion segments

are used which is the next power of two (230). We do not have this kind of a restriction
with our non-uniform addressing scheme. The table also shows the number of bits used for
each coefficient in the look-up tables. The lookup tables for the three functions

√
− ln(x),

cos(2πx) andsin(2πx) have a total size of just 3504 bits. With such small lookup table
size, all the coefficients can be stored on-chip for fast access.

Table 1. Second column shows the comparison of the number of segments for non-uniform and
uniform segmentation. Third column shows number of bits used for the coefficients to approximate
the

√
− ln(x) andcos(2π x) functions.

function non-uniform uniform c1 c s1 c0 c s0√
− ln(x) 59 1 billion 6 5 32 5

cos(2π x) 21 32 8 4 16 4



The function evaluators for the three functions are written using the Handel-C hardware
compiler from Celoxica [25], and are mapped and tested on a Xilinx Virtex-II XC2V4000-6
device [24]. The design occupies 1864 slices, four block multipliers and two block RAMs,
and takes up around 7% of the device. A fully pipelined version of our design operates
at 133 MHz with a latency of 14 clock cycles, and the function evaluators are capable of
133 million operations per second; the completion time for each input is given by 14 / 133
million = 105 ns. The design has also been implemented on a low cost Xilinx Spartan-
IIE XC2S300E-7, which occupies 70% of the chip and is capable of 62 million opera-
tions per second. Our hardware implementations have been compared with software imple-
mentations (Table 2). The Virtex-based FPGA implementation is 158 times faster than the
Athlon-based PC in terms of throughput, and 11 times faster in terms of completion time.

Table 2.Performance comparison: computation of
√
− ln(x), cos(2πx) andsin(2πx). All PCs are

equipped with 512MB DDR RAM. The XC2V4000-6 FPGA belongs to the Xilinx Virtex-II family,
while the XC2S300E-7 belongs to the Xilinx Spartan-IIE family. The software implementations are
written in C generating single precision floating point numbers, and are compiled with the GCC 3.3
compiler [26].

platform clock speed latency area throughput completion time

(MHz) (clock cycles) (slices) (operations / second) (ns)

XC2V4000-6 FPGA 133 14 1864 133 million 105

XC2S300E-7 FPGA 62 14 2129 62 million 226

AMD Athlon PC 1400 - - 0.84 million 1187

Intel Pentium 4 PC 2400 - - 0.79 million 1261

Well-known function evaluation methods, such as SBTM [5], [6], deal with the approx-
imation of elementary functions over a fixed input range where the function is linear. Range
reduction techniques such as those presented in [22] and [23] are used to bring the input
within the linear range. However, range reduction is not possible for most compound func-
tions. Our approach caters for both non-linear and linear regions, which makes it suitable
for both elementary and compound functions. Currently, our approach tends to produce
small lookup table sizes with low accuracy; we hope to improve accuracy by further work
on automatic segmentation.

7 Conclusion

This paper presents a novel method for evaluating functions using polynomial approxi-
mations by employing non-uniform segments. The non-uniform segments deal with the
non-linearities of functions which occur frequently. A simple cascade of AND and OR
gates can be used to rapidly calculate the segment address for a given input. Scaling factors
are used to deal with large polynomial coefficients, trading precision with range. Two func-
tions developed for the generation of Gaussian noise are used as examples to illustrate and
to evaluate our approach. Results show the advantages of using non-uniform segments over
uniform ones. Current and future work includes automating the selection of boundaries,
and exploring the use of higher order polynomials for more accurate approximations. This
would enable us to apply our approach to a wide range of functions and to obtain detailed
comparison with other methods. We will also look at how our function evaluator can be
used to speed up addition and subtraction functions in logarithmic number systems [12],
which are highly non-linear functions.
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