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Abstract    This paper presents a design for a reconfigu-
rable multiplier array. The multiplier is constructed using an
array of 4 bit Flexible Array Blocks (FABs), which could be
embedded within a conventional FPGA structure. The array
can be configured to perform a number of 4n x 4m bit
signed/unsigned binary multiplications. We have estimated
that the FABs are about 35 times more efficient in area than
the equivalent multiplier implemented using a conventional
FPGA structure alone.

I. INTRODUCTION

T has been suggested that FPGAs are well suited for
use as reconfigurable hardware to accelerate software

in many applications [1]. Image/video processing tasks
are particularly well suited to hardware acceleration, be-
cause of the inherent parallelism and data flow structure.
Common to many image/video processing tasks is the
need for intensive arithmetic operations such as multipli-
cation and addition.

Whilst existing FPGA architectures are well suited to
binary addition [2], configuring FPGAs for binary multi-
plication results in the available reconfigurable resources
being used inefficiently [3]. Typically over 70% of the
FPGA resources could be used solely for multiplication
in some applications. The literature also suggests that
hardware implemented on an FPGA requires as much as
100 times more die area, and will be about 10 times
slower than the custom hardware equivalent [4].

One possible solution would be to embed custom
multipliers into the FPGA structure. The difficulty with
this is that inefficiencies will result if the size of the
multiplier is not compatible with that of the algorithm.
We suggest that a better solution is to use FPGAs with
embedded reconfigurable multiplier blocks. In this paper
we suggest a design for a reconfigurable 4 bit flexible ar-
ray block (FAB), an array of which can be combined to-
gether to construct a multiplier which has speed compa-
rable to that of a conventional signed array multiplier,
with minimal extra cost in hardware required for recon-
figuration. The multiplier can be configured to perform
any 4n x 4m bit signed/unsigned binary multiplication.
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A. Organisation Of The Paper

Section B briefly discusses an existing reconfigurable
scheme, and explains why most of the techniques for im-
plementing fast multipliers are not well suited for a re-
configurable design. Section II presents our design for a
flexible array block (FAB), and explains how an array of
FABs can be used to create a 4n x 4m multiplier. Section
III gives a proof of the functionality for the proposed de-
sign. The FAB scheme is compared to existing fixed size
multipliers, the Hwang reconfigurable multiplier, and
multipliers implemented using conventional FPGAs
structures in section IV. A possible modification to the
FAB scheme is discussed in section D, to allow simple
implementation of multiplier accumulators, and FIR fil-
ters.

B. Previous Designs

Hwang has suggested constructing Universal Multi-
plication Networks using small (4 bit) Programmable
Additive Multiply (PAM) modules[5]. Whilst simple in
design, these networks have the drawback of slow multi-
plication times and a non-scaleable connection pattern,
especially for large operand sizes.

Most other multiplier architectures are concerned with
the multiplication of two multiplicands of fixed length.
The techniques used for speeding up the multiplication
are largely at the expense of regularity, such as Wallace
Trees [6], or require some form of ‘pre-processing’ of the
operands, e.g. Booth’s Modified algorithm [7]. Neither of
these styles of design are well suited to generalisation for
multiplicands of variable size, thus making it difficult to
create a reconfigurable multiplier based on these meth-
ods.

II. NEW DESIGN

This section outlines the proposed new design for a
reconfigurable multiplier based on 4 bit flexible array
blocks .

A. The Design of the Flexible Array Block (FAB)

We propose the design shown in Fig. 2 for a 4x4
flexible array block (FAB). The block uses a modifica-
tion of the array developed by Baugh-Wooley for two’s
complement multiplication [8]. The FAB consists of two
parts: i) A multiplier array which reduces the four bit
multiplication to two 5 bit numbers, and ii) an adder to
produce the final output. The adder is unused unless the
FAB is in the final column of overall multiplier array
(i.e. it uses the most significant bit of the multiplicand
A).
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Each FAB is configured using the six configuration
bits Ma, Mb, Cl, Cr, Ct, and Cb as shown in table TABLE
I. The configuration of each FAB will be denoted by
FAB(Ma,Mb,Cl,Cr,Ct,Cb)

TABLE I

CONFIGURATION SETTINGS FOR THE FLEXIBLE MULTIPLIER
BLOCK .

Bit Meaning
Ma High if A3 is the MSB of a signed number.
Mb High if B3 is the MSB of a signed number.
Cl High if A0 is not the LSB of the multiplicand A (The FAB is con-

nected to the FAB on the left).
Cr High if A3 is not the MSB of the multiplicand A (The FAB is

connected to the FAB on the right).
Cb High if B3 is not the MSB of the multiplicand B (The FAB is con-

nected to the FAB on the bottom).
Ct High if B0 is not the LSB of the multiplicand B (The FAB is con-

nected to the FAB on the top).
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Fig. 1, The two basic units used in the FAB. (FA = Full Adder)

B. General Connection Scheme

Fig. 3 shows the proposed connection scheme for an
embedded 4x4 array of FABs. The interconnect is both
regular and scaleable, allowing simple VLSI implemen-
tation and expansion to larger array sizes. It is suggested
that the interconnect is dedicated, thus leaving free the
valuable reconfigurable interconnect resources of the
FPGA. The array of FABs could either be placed physi-
cally together in one location of the FPGA, or distributed
regularly throughout the FPGA structure.

Such an array of FABs can be configured to perform a
number of multiplications, with multiplicands of varying
sizes. For example, the array shown in Fig. 3 is capable
of performing a single 16x16 bit multiplication, or 16
4x4 bit multiplication (unsigned, or two’s complement in
either case).

To configure the array, the six configuration bits of
each FAB must be set appropriately, the correct multipli-
cands supplied to each FAB, and the output(s) taken from
the appropriate place.
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Fig. 2, Schematic for a 4x4 flexible array block (FAB)
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Fig. 3, The proposed connection scheme for a 4x4 array of FABs

C. Using FABs to Construct Multipliers

Fig. 4 shows how 4 FABs, as described above, can be
configured to produce an unsigned 8x8 bit multiplier.
Fig. 5 shows the configuration necessary for 6 FABs to
generate an 8x12 bit two’s complement multiplier.
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Fig. 4, An unsigned 8x8 multiplier using 4 FABs.
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Fig. 5, A two’s complement 8x12 bit signed multiplier, constructed
using 6 FABs

III.  PROOF OF MULTIPLIER

The multiplier as described in section II has three
modes of operation: i) Both multiplicands are unsigned,
ii) Both multiplicands are signed, and iii) One multipli-
cand is unsigned, the other signed.

The proof for each case will be considered in this
section.

A. Both Multiplicands Are Unsigned

A and B are unsigned n and m bit binary numbers, re-
spectively, as given by (1) (both m and n must be multi-
ples of 4)
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It can be easily shown that A*B is given by (2)
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When the array of FABs has been correctly config-
ured  for a n by m bit unsigned multiplication, an array of
elements equivalent to that shown in Fig. 6 exists.

The output of this array is given by (3)
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Fig. 6, The equivalent array for an n by m bit unsigned multiplier
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Fig. 7, One column of the multiplier array

Consider one column of the multiplier array, as shown
in Fig. 7. The output of the column is given by (4). By
using the appropriate boundary conditions it is easily
shown that the output of the multiplier array is given by
(5), which is equivalent to the required result, as derived
in (2).
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B.  When Both Multiplicands Are Two’s Complement Signed
Numbers.

A and B are both two’s complement signed n and m
bit binary numbers, respectively, as given by (6).
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Therefore, it can be shown that A*B is given by

(7)

A B a b a b b a a bi j
i j

j

m

i

n

n
n j

j
j

m

m
m i

i
i

n

n m
m n∗ = ∗ ∗











− ∗ ∗ ∗











− ∗ ∗ ∗









+ ∗ ∗+

=

−

=

−

−
−

=

−

−
−

=

−

− −
+ −∑∑ ∑ ∑2 2 2 2 2 2

0

2

0

2

1
1

0

2

1
1

0

2

1 1
2

(7)

When the array of FABs has been correctly config-
ured  for a n by m bit two’s complement signed multipli-
cation, an array of elements equivalent to that shown in
Fig. 8 exists. The OR gate, present in Fig. 8, can be con-
sidered equivalent to an adder, because both inputs can
never be high.
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The output of this array can be seen to be given by
(8).
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Consider the ith column of this array as shown in Fig.
9. The output of this column is given by (9).
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Using the appropriate boundary conditions, it is pos-
sible to calculate the output of the multiplier array as
shown in (10).

Boundary Conditions:      
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This can be shown to be equivalent to (7)

C.  One Multiplicand Unsigned, The Other A Two’s Comple-
ment Signed Number.

A is an n bit two’s complement signed binary number,
and B is unsigned m bit binary number as given in (11).
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Therefore, it can be shown that A*B is given by (12).
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When the array of FABs has been correctly config-
ured  for a n by m bit multiplication, with A and B de-
fined as in (11), an array of elements equivalent to that
shown in Fig. 10 exists.
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Fig. 10, The equivalent array for an n by m bit multiplier, A signed, B
unsigned

The output of this array can be seen to be given by
(13).
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i

n

= + + +

=

−

∑2 2 0
1

0

1

( ) * (13)

Consider the ith column of this array as shown in Fig.
11. The output of this column is given by (14).
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Using the appropriate boundary conditions, it is pos-
sible to calculate the output of the multiplier array as
shown in (15).

Boundary Conditions:   Y X y
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This can be shown to be equivalent to (12).

D. Summary of Proofs

This section has proved that the multiplier array will
work correctly for unsigned, and signed two’s comple-
ment numbers, when properly configured.

IV. COMPARISON WITH EXISTING DESIGNS

The FABs are compared to the PAMs, as described by
Hwang, in terms of speed and gate count. It is also com-
pared to two fixed operand size schemes, the Baugh-
Wooley Array, and the Wallace/Dadda to show that the
cost of reconfigurability is small.

The FAB scheme is also compared to multipliers im-
plemented using conventional FPGA structures, to show
that there is a significant reduction in the die area re-
quired.

A. Speed of the FAB Scheme

Table II shows that the delay of the FABs is much
better than the Hwang reconfigurable array, and is com-
parable to that of the Baugh-Wooley fixed size operand
array. The delay of the PAMs is of O(N2), whilst the de-
lay of the FABs is of O(N). The delay of the
Wallace/Dadda multiplier is of O(log2N).



TABLE II

GATE DELAY FOR VARIOUS MULTIPLIER SCHEMES.

Scheme Configurable 8 Bits 16 Bits 32 Bits 64 Bits
FABs yes 34 66 130 258
Hwang’s PAMs yes 48 160 576 2 176
Baugh-Wooley no 30 62 126 254
Wallace/Dadda no 32 52 80 124

(Assuming that Full Adders are used to implement the final addition stage in
all cases)

B. Gate Count for the FAB scheme

Table III shows that, in terms of the number of gates
required, the FABs are slightly more costly (≈3%) than
the existing Hwang reconfigurable scheme. The FAB
scheme is more costly than either of the two fixed size
operands schemes, with 50% more gates being required.

TABLE III

COMPARISON OF THE NUMBER OF GATES REQUIRED FOR
VARIOUS MULTIPLIER SCHEMES.

Scheme Configurable 8 Bits 16 Bits 32 Bits 64 Bits
FABs yes 664 2 656 10 624 42 496
Hwang’s PAMs yes 644 2 576 10 304 41 216
Baugh-Wooley no 413 1 701 6 965 28 245
Wallace/Dadda no 379 1 763 7 603 31 571

(Assuming that Full Adders are used to implement the final addition stage in
all cases)

C. Number of Interconnects Required Between FABs

The price which must be paid for the significant in-
crease in speed when using FABs, compared to the PAMs
is the 50% increase in the number of interconnects be-
tween the FABs, when compared with the PAMs, as
shown in table TABLE IV.

TABLE IV

COMPARISON OF THE NUMBER OF INTERCONNECTS BETWEEN
EACH BLOCK.

Scheme Number of interconnects for a 4x4 reconfigurable
block

FABs 39
Hwang’s PAMs 26
Baugh-Wooley N/A
Wallace/Dadda N/A

(N.B. figures exclude the configuration control, and power)

D. Comparison with conventional FPGA structures

The FAB scheme is compared to multipliers imple-
mented using Altera’s FLEX10K, and Xilinx’s 4000 se-
ries FPGAs, in terms of total die area required.

An estimate of transistor count has been chosen as the
best metric for comparing the relative die area for each
scheme. This is a reasonable assumption because most
modern processes have a large number of metal layers,
making routing less of a bottle neck. The number of tran-
sistors includes any required for the configuration, and
routing of any cells used.

For all the considered schemes the amount of hard-
ware required to implement an n x n bit multiplier pro-
portional to n2, for n>4 and n a multiple of 4.

A Xilinx 4000 FPGA requires, on average, 1.14*n2

CLBs (Configurable Logic Blocks) to implement an n x n
bit multiplier (73 CLBs are need for an 8x8 multiplier
[9]). For the Xilinx 4000 part each Cell (CLBs in this in-
stance) requires 4 700 transistors. This figure includes all
transistors required for configuration, routing, and CLB
logic.

From extensive experimentation, we have found that
the Altera Flex10K part requires, on average, 0.41*n2

LABs (Logic Array Blocks) to implement a n x n multi-
plier.  We have estimated that each LAB requires about
13 700 transistors, for configuration, routing, and cell
logic.

Using the FAB scheme, each 4x4 Cell requires ap-
proximately 2 600 transistors, with 0.0625 FABs being
required per bit2

Table III shows that the FAB scheme requires about
35 times less die area than either the FLEX10k, or 4000
FPGA.

TABLE V

COMPARISON OF THE DIE AREA REQUIRED FOR IMPLE-
MENTING MULTIPLIERS USING FPGAS AND THE FAB SCHEME

Implementation Trans. Per
Cell

Cells Per
Bit2

Trans.
Per Bit2

Relative
Area

FABs 2 600 0.0625 160 1
Altera Flex10K 13 700 0.41 5600 35
Xilinx 4000 4 700 1.14 5400 34

V. EXTENSION OF THE UTILISATION OF THE FABS

The 5-bit adder in each FAB is only used if the FAB
is as the last stage of the multiplier. Therefore if the size
of either multiplicand is greater than 4 bits, there are a
number of ‘spare’ adders available. With minimal cost in
terms of extra hardware and multiplier performance, it
would be possible to extend these adders to 8-bit adders,
as shown by Fig. 12, and Fig. 13.

This would require 4 more configuration bits to sign
extend the inputs to the adders, and 2 additional vertical
connections between each FAB.

This small alteration would enable simple implemen-
tation of structures such as multiply-accumulators
(MACs). and finite impulse response filters (FIRs), to be
embedded within the multiplier array. Fig. 14 shows how
an 8x8 MAC can be implemented using 4 FABs. The
FABs should be connected as before.
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VI. CONCLUSION

We have proposed the design for a new reconfigu-
rable flexible multiplier which is considerably faster than
existing reconfigurable multipliers reported previously in
the literature. The speed improvements are gained at the
cost of adding extra interconnects between the reconfigu-
rable blocks. We estimate that this design is approxi-
mately 35 more efficient in terms of silicon area than
using a conventional FPGA structure alone. It is likely
that such a design would also yield considerable im-
provements in speed. Such a design should enable sub-
stantial savings of the ‘standard’ reconfigurable re-
sources of an FPGA when used for image/video process-
ing applications.
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