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ABSTRACT
Data transfer intensive applications consume a significant amount
of energy in memory access. The selection of a memory location
from a memory array involves driving row and column select lines.
A signal transition on a row select line often consumes significantly
more energy than a transition on a column select line. In order to
exploit this difference in energy consumption of row and column
select lines, we propose a novel address assignment methodology
that aims to minimize high energy row transitions by assigning spa-
tially and temporally local data items to the same row. The prob-
lem of energy efficient address assignment has been formulated as a
multi-way graph partitioning problem and solved with a heuristic.
Our experiments demonstrate that our methodology achieves row
transition counts very close to the optimum and that the method-
ology can, for some examples, reduce row transition count by 40-
70% over row major mapping. Moreover, we also demonstrate that
our methodology is capable of handling access sequences with over
15 million accesses in moderate time.

Categories and Subject Descriptors
B.5.1 [Register-Transfer-Level Implementation]: Design—Mem-
ory design; B.5.2 [Register-Transfer-Level Implementation]: De-
sign Aids—Automatic synthesis; Optimization

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
address assignment, data layout, memory synthesis

1. INTRODUCTION
In data transfer intensive applications, such as video and image

processing, a significant fraction of the total energy consumption
of the system is due to memory access [16]. Dynamic power dis-
sipation is significant in CMOS circuits, and therefore, behavioural
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level energy minimization efforts often attempt to minimize signal
transition counts, particularly on high capacitance nodes [13].

In order to minimize switching activity caused by memory ac-
cess, it is necessary to have some knowledge about the access se-
quences. For many application-specific integrated circuits (ASICs),
the access sequences are usually known a priori. ASICs may also
contain data dependent access sequences. However, because the
application is known, statistical information can be collected about
the data dependent sequences. Information about the access se-
quences enable the application of energy optimizations to ASICs
which would not be applicable to general purpose systems.

CMOS memory cell arrays are usually organized into rectangu-
lar blocks of memory cells. The selection of a memory location
involves driving row, column and in some cases block select sig-
nals. Signal transitions on high capacitance signals such as the row
and block select lines consume more energy compared to those on
column select lines [3].

In this paper, we present a methodology for minimizing the en-
ergy consumption of memory access through address assignment
that minimizes row switching. The novel contributions of this pa-
per are: (1) formulation of the energy efficient address assignment
problem as a multi-way graph partitioning problem; (2) application
of an existing graph partitioning heuristic to solve the problem; (3)
evaluation of the solution in terms of quality of the solution and run
time.

This paper is organized as follows. Section 2 presents some of
the previous work in the area of memory access energy minimiza-
tion. Section 3 formulates the energy efficient address assignment
problem as a graph partitioning problem. Section 4 contains a list
of assumptions we have made in this work. Section 5 describes our
address assignment methodology. Section 6 reports experimental
results and Section 7 contains conclusions and indicates some pos-
sible future work.

2. PREVIOUS WORK
The relevant previous work of interest address the problem of

reducing memory access energy in ASICs at the behavioural level.
In-place mapping attempts to reduce required memory size by

sharing physical memory locations amongst signals whose life-
times do not overlap [15]. Smaller memories consume less energy
per access compared to larger memories [2]. Therefore, memory
size minimization techniques such as in-place mapping and loop
transformations [16] usually reduce energy consumption. Minimiz-
ing the number of memory accesses through loop transformations
and packing several data items into a single memory word [14] also
result in lower energy consumption.

Most modern memory architectures are based on memory hier-
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archy [2]. Memory hierarchies consist of several layers of memo-
ries. The lower layers consume less energy per access than higher
layers. Although, extra transfers are introduced to copy data from
higher layers to lower layers, if there is sufficient temporal locality,
energy is saved due to the decrease in the number of accesses to
higher layers [17].

For a given number of memory accesses energy can be further
minimized by address assignment that attempts to minimize signal
transition counts, particularly high energy transitions on off-chip
address busses [13]. Address and data bus encoding methods can
also be used to minimize switching activity on off-chip busses [11].

None of the above mentioned work exploit the fact that different
select lines in the memory cell array consume different amounts of
energy. Our work reported in this paper exploits this property of the
cell arrays to add a complimentary energy minimization approach
to the existing architectural level energy minimization techniques.

3. PROBLEM DEFINITION
The problem of minimizing the activity on the row select lines

can be thought of as a problem of clustering the accessed data items
such that the number of transitions between the clusters is mini-
mized. The cluster size is no greater than the number of mem-
ory columns and the number of clusters is equal to the number of
memory rows. We now define, mathematically, the minimum row
switching address assignment problem as a graph partitioning prob-
lem.

Given an undirected edge-weighted graph G(V;E), where vertex
set V = fviji = 0;1; : : : ;n�1g is the set of vertices, E is the set of
weighted edges, and positive integers p and q where p� q � jV j,
find p subsets V0;V1; : : : ;Vp�1 of V such that:

1. [p�1
i=0 Vi =V and Vi\Vj = /0 for i 6= j

2. jVij � q for i = 0;1; : : : ; p�1

3. the cut size, i.e., the sum of weights of edges crossing be-
tween subsets1, is minimized.

4. ASSUMPTIONS
The following assumptions are made in this paper:

1. A signal transition on a row select line consumes more en-
ergy than a signal transition on a column select line.

2. Reducing switching activity on high capacitance signals such
as row select lines reduces energy consumption.

3. Every individual data item has been mapped to a location in
a physical memory but is not bound to a physical memory
address.

4. There is no preference when switching from one row to an-
other, i.e., for example switching from row 1 to row 3 is the
same as switching from 1 to 2.

5. Address generators have not yet been synthesized.

6. Memory cell arrays are rectangular. p and q represent the
number of rows and the number of columns respectively. w
represents the width of a memory word. p and q are known
and p�q gives the total number of locations of that cell array.
p�q�w gives the total capacity of the cell array in bits.

1The sum of weights of edges crossing between subsets is equal to
the number of row transitions.

7. Memory arrays have one read/write port.

8. The data access sequences are known.

9. Memory cells are accessed by activating row and column se-
lect lines. We ignore block select lines.

10. Each data array is assigned to a separate memory cell array.
And the memory cell array is just large enough to contain the
assigned data array.

Assumptions 1- 6 are necessary for the problem formulation and
its solution. Assumptions 7- 10 are simplifying assumptions. These
assumptions hold through out this paper unless stated otherwise.

5. ENERGY EFFICIENT ADDRESS ASSIGN-
MENT METHODOLOGY

5.1 Input
The input sequences contain symbolic addresses. A symbolic

address identifies a unique location within the memory cell array
but is not bound to any physical address. A sequence of these sym-
bolic addresses specify the access sequence into a single port of a
memory cell array. The access sequences can be extracted from an
executable specification or from a control data flow graph (CDFG)
of the system.

For illustration purposes let us suppose that we have the two
dimensional array A[y][x] whose symbolic addresses are defined
as Si = 2y + x where y = 0;1 and x = 0;1. Let us also suppose
that this array produces the following symbolic address sequence:
S = (0;1;2;3;1;2;0;3;1;2;0;3).

5.2 Transition Graph
In Section 3 we defined the problem of finding an address as-

signment that minimizes the activity on the row select lines as a
multi-way graph partitioning problem. Therefore, the input sym-
bolic address sequences are converted to a transition graph for each
memory cell array. The transition graph contains information re-
garding the unique memory locations accessed and the number of
transitions between each pair of unique memory locations.

A transition graph is created from a symbolic address sequence
as follows 2. Every unique symbolic address is mapped to a ver-
tex in the transition graph. A transition between a pair of symbolic
addresses is indicated with an undirected edge between the corre-
sponding vertices. The edges are weighted, and the edge weight is
equal to the number of transitions.

Figure 1(a) shows the transition graph for access sequence S.
The numbers inside the vertices indicate the symbolic addresses
and the numbers on the edges indicate the weights of the edges.

5.3 Multi-Way Graph Partitioning Heuristic
Once the transition graph for a memory cell array has been cre-

ated, we require a mapping of each vertex to one of p rows such
that no row contains more than q vertices.

For two-dimensional data arrays there are two simple address
assignment methods: row major and column major. Figure 2 illus-
trates these two mapping schemes when array A[y][x] is mapped to
a memory with p = 2 and q = 2. Figure 1(b) and Figure 1(c) show
the graph partitioning corresponding to row major and column ma-
jor mappings respectively. The cut size for both row and column

2For an n-port memory cell array, it is necessary to consider n sym-
bolic address sequences. However, since n = 1 from Assumption 7,
only a single sequence is considered in this paper.
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Figure 1: (a) Transition graph for the memory access sequence
S, graph partitionings corresponding to (b) row major, (c) col-
umn major, and (d) minimal row switching assignments.
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Figure 2: (a) Row major mapping of A[y][x] to memory cell ar-
ray (p=2 and q=2). (b) Data array A[y][x] (c) Column major
mapping of A[y][x] to memory cell array (p=2 and q=2).

major mappings is 9. The third possible graph partitioning shown
in Figure 1(d) results in a cut size of only 6.

In general, the problem can be viewed as a multi-way graph
partitioning problem. Since the graph partitioning problem is NP-
complete [5], even for the simplest case of graph bisection with un-
weighted edges and vertices, a heuristic approach is used to solve
this problem.

There are many graph partitioning heuristics and software tools
available [4]. Chaco graph partitioning tool developed by Hen-
drickson and Leland [7] was used for our application. Chaco pro-
vides several partitioning algorithms. We chose the multilevel-
KL algorithm [8] as this offers low cut size for large problems in
moderate time [7]. As data transfer intensive systems access large
memories the ability to quickly partition large graphs into a large
number of sets is very important. Chaco is controlled by a host
of variables. One of the most important for our application is the
KL IMBALANCE variable. When KL IMBALANCE is set to 0,
set sizes for graphs whose vertices are not weighted vary by at most
one [7]. With this guarantee we can prove that multilevel-KL algo-
rithm meets the partitioning constraint jVij � q defined in Section 3:

Proposition: If the largest and smallest set sizes, in a partitioned
graph, differ by one and the size of the memory cell array that the
vertices of the original graph are mapped to, is given by p�q where
p is the number of rows and q is the number of columns, then for
all positive integer values the largest set size will always be smaller
than or equal to q.

PROOF. Let a be the number of sets of size x and b be the num-
ber of sets of size x� 1, then because the total number of vertices
has to be less than or equal to the size of the cell array we have:

ax+b(x�1) � pq (1)

Since p is the total number of partitions, simplifying and substitut-
ing p for a+b gives:

x�b=p � q (2)

Now 0 � b=p � 1 and x and q are positive integers. Therefore, for
0 � b=p < 1

x � q (3)

Note that if b=p = 1 then the size of the largest set is x�1. And we
have

x�1 � q (4)

5.4 Output
The output is a mapping of symbolic addresses to rows of the

memory cell array. It should be noted that the exact row and column
addresses are not fixed after graph partitioning. In other words,
graph partitioning only performs a partial address assignment. The
row and column addresses can be sequentially assigned. However,
this sequential assignment may not be optimal for address gener-
ators. There is further optimization opportunity here for reducing
energy consumption in the address generators.

6. EXPERIMENTAL RESULTS
We performed experiments on several memory access sequences

to evaluate our energy efficient graph based address assignment
method. The total number of row transitions caused by memory
accesses was used as an energy consumption metric for each of
the row major, column major and graph based address assignment
schemes. A row transition in a larger memory may consume more
energy than a row transition in a smaller memory. However, in our
experiments row transition counts are not weighted to take account
of the memory size.

Memory access sequences used for our experiments are obtained
from the following examples: Gauss-Seidel formula (GSR) [12],
Successive Over Relaxation (SOR) [12], Compress algorithm [12],
separable Discrete Cosine Transform (DCT) [1], two dimensional
Convolution (Conv) [1], Lowpass [12] and image flip algorithm [10].
Some of the examples contain several data arrays, exhibiting dif-
ferent access sequences. From such examples we have manually
selected the data array with the most number of accesses for our
experiments. For simplicity, two dimensional data arrays in our
examples are K�K square arrays. We varied the data array dimen-
sion K from 10 to 1000 at intervals of 10 (16 to 1000 at intervals
of 8 for DCT) and studied the effects on the row transition count
(RTC) when the arrays are mapped with different mapping schemes
to memory cell arrays with different numbers of columns.

Table 1 shows the average percentage reductions in row switch-
ing achieved through graph based mapping over row major map-
ping when the data arrays are mapped to a memory with 32 columns
(q = 32). For some examples, average reductions of 40-70% are
achievable over row-major mapping. Row major mapping was cho-
sen as the benchmark, because for all our access sequences row
major mapping produced lower RTCs than column major mapping
when q = 32. Table 1 also shows absolute numbers for row transi-
tion count when K = 256.

The magnitude of reduction in the row transition count over row
major mapping achievable through our method depends on the par-
ticular access sequence. For some access sequences row major
mapping may be optimal and our method would not yield any im-
provement in row transition count. Where reductions in RTC are
possible the amount of reduction additionally depends on the num-
ber of columns in the memory. Figure 3 shows row transition count
for SOR against number of columns when K = 256. When the
number of columns is one, all three mapping schemes produce the
same RTC. And also if the number of columns is large enough to



RTC (K = 256)
this work Avg.

Example row-major (graph based) % Red.

Compress 133619 57075 53.1
Conv 277287 234033 14.5
DCT 8191 2047 73.8
GSR 197339 114304 40.5
Lowpass 268731 148428 43.6
SOR 98551 48463 47.7

Table 1: Average reductions in row transition count achieved
by graph partitioning address assignment. q=32.
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Figure 3: Row transition count against number of memory
columns (q). K = 256.

contain all the data items then RTC would be one. However, the
three mapping schemes take different paths between these two con-
vergent points as q is varied. Figure 4 shows the average percentage
reduction in RTC achieved for several of our examples when q is
16,32 and 64.

Graph partitioning address assignment aims to achieve a near
optimal row transition count. In order to evaluate our graph based
mapping with respect to the optimal mapping we have carried out
the following experiment. source[i][ j] array in the image flip algo-
rithm shown below has a row major access sequence. Therefore,
row major mapping is optimal for this access sequence.

f or(i = 0; j < K; i++)
f or( j = 0; j < K; j++)

dest[i][K�1� j] = source[i][ j];

When source[i][ j] is row major mapped to a memory cell with
p = q = K, this results in an RTC of p. When source[i][ j] is column
major mapped, that results in an RTC of p2, which is the maxi-
mum possible RTC for this access sequence. Our experiments have
shown that for image flip example, graph based mapping on aver-
age only performs 0.08% worse than the optimum.

Table 2 shows the run times for graph partitioning and access se-
quence to transition graph conversion (s2g). The run times reported
are for the case where K = 1000 and q = 32. For this magnitude
of data array size s2g handles input access sequences of up to 16
million memory accesses. And Chaco operates on graphs contain-
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Figure 4: Average reductions in row transition count for differ-
ent numbers of memory columns.

Run Times
sequence No. graph s2g

length edges part (s)
Example (millions) (millions) (s)

Compress 5.0 3.0 105.7 39.7
Conv 15.9 3.0 123.2 82.7
DCT 8.0 1.1 155.1 57.2
GSR 5.0 5.0 138.0 55.0
Lowpass 10.0 4.0 110.1 62.0
SOR 3.5 2.5 109.3 25.3

Table 2: Run times when K = 1000 and q = 32. Number of
vertices is about 1 million for all examples.

ing about a million vertices and up to about five million edges. The
partitioning and conversion tools were executed on a 1GHz AMD
Athlon processor with 776Mbytes of memory running Linux.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented a methodology for energy ef-

ficient address assignment through minimization of memory row
switching. Row transition counts for many commonly found ac-
cess sequences in multimedia applications can be reduced by 40%-
70% over row major mapping with our methodology. We have
also demonstrated that our methodology can achieve row transition
counts very close to the optimum.

The methodology is directly applicable to address generator syn-
thesis methods which require an expanded address sequence, such
as counter based methods [6], shift register based methods [9] and
finite state machine based methods [9].

Energy consumption in the address generators was not consid-
ered. It should be noted that the methodology presented performs
a grouping of data array variables which should be assigned to
the same memory row. It does not fix row and column addresses.
We could simply sequentially assign row and column addresses to
mapped data variables. However, this sequential assignment could
be further optimized for a given address generator architecture.

Furthermore, the methodology presented can be extended to data
dependent memory access sequences through the use of statistical
methods for construction of the transition graph. Also our method-
ology can be easily extended to more complex memory organiza-



tions [3] that use block select lines in addition to row and column
select lines by first assigning data variables to blocks and then to
rows.
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