MULTITASKING IN HARDWARE-SOFTWARE
CODESIGN FOR RECONFIGURABLE COMPUTER

T. Wiangtong', P.Y.K. Cheung’, W. Luk’

'Electronic Department, Mahanakorn University of Technology, Bangkok, Thailand
*Department of Electrical & Electronic Engineering, Imperial College, London, UK
*Department of Computing, Imperial College, London, UK

ABSTRACT

This paper presents a new approach for modeling hardware and
software tasks in codesign system. The model has the advantage
that the hardware tasks are structured in a way that is compatible
with the software tasks. As a result, both hardware and software
tasks can be managed in a uniform manner using a single task
manager. A hardware/software partitioning and schedule
algorithm is developed to automatically map the tasks to the
codesign resources to minimize the processing time (makespan).
The practicality of our approach is demonstrated with an
implementation of dummy tasks for an existing reconfigurable
computer, the UltraSONIC. The results show that our approach
is promising for a real application,

1. INTRODUCTION

Most reconfigurable systems contain both hardware and software
resources that must work cooperatively with each other. This has
fueled the interest in research into issues relating to hardware-
software codesign, partitioning and scheduling. Much of this
research assumes a general system model that ignores realistic
issues such as bus and memory contentions [1][2}. Others ignore
the cost of communications completely [3]. In addition,
traditional formulation of the partitioning and scheduling
problem for a codesign system also employs a hardware model
that is totally different from that used in software. This is
understandable because most codesign systems have one or mote
microprocessors responsible for software tasks that are controlied
by a multitasking operating systemn, while the hardware tasks are
implemented scparately from the software, with different
optimization constraints (such as the degree of parallelism, speed
and hardware resources). The end results are algorithms and
systems that do not take a uniform view of the hardware and the
software resources.

This paper reports a new method of constructing hardware tasks
in a codesign system that makes them more compatible with
software tasks without sacrificing the benefit of concurrency
found in conventional hardware implementations. At the same
time, it exploits the advantages of modularity, cohesion and
structured approach offer by software tasks. We further present a
partitioning and scheduling algorithm reported previously 4],
but applied to a reconfigurable computer system known as
UltraSONIC using the new hardware-software system model.
This demonstrates the potential of our model and our
partitioning/scheduling algorithm when applied to a realistic
system.

0-7803-7761-3/03/817.00 ©2003 IEEE

The novel contributions of this paper are: 1) a new way of
stmicturing and modeling hardware tasks in a codesign system;
2) a partitioning and scheduling algorithm that employs this
method; 3) applying the algorithm to a realistic reconfigurable
computer system; 4) evaluation and verification of our model
using the reconfigurabie computer.

The rest of this paper is organized as follows. Section 2 presents
how the hardware and software tasks are modeled in the codesign
system. Section 3 describes the environment in which the
codesign system works. In Section 4, the UltraSONIC system
used as the realistic target for our partitioning and scheduling
software is briefly described. Section 5 gives the experimental
results of the partitioning and scheduling algorithm applied to the
UltraSONIC system and Section 6 concludes this paper.

2. SYSTEM MODEL

Figure 1 shows the hardware/software system model adopted in
this work. We assume the use of a single processor (software)
resource SW capable of multitasking, and a number of
concurrent hardware processing elements PEQ to PEn, which are
assumed to be implemented on FPGAs. We employ a loosely
coupled model with each processing element (PE) having its own
single local memory. All system constraints such as shared
resource conflicts, reconfiguration time (of the FPGAs) and
communication time are taken into account.

ﬂ Bhobal Communicalion Channel

N

EI T [
SR - P
)] R e

=

Figure 1, Codesign system modeling

The assumptions used in our model are: 1) tasks implemented in
each hardware PE are coarse grain tasks representing blocks,
loops, or functions; 2) local memory is single port, and only one
task can access the local memory at any given time; 3) tasks for a
PE can be dynamically swapped in through dynamic -
reconfiguration; 4) each task is small enough to fit into a single
PE; 5) multiple tasks residing in a given PE execute sequentially,;

V-621

6) tasks residing across different PEs can execute concurrently;
7) a global communication channel is available for the processor
and the PEs to communicate with each other; 8) local
communication channels are available for neighboring PEs to
communicate with each other in a pipeline ring; 9} a task
manager program is used in the software processor to manage all
tasks—software and hardware.

This system model effectively makes the hardware tasks look
very much like software tasks. In this way, the management of
task scheduling, task swapping and task allocation can be done in
a uniform manner, no matter whether the task in question is
implemented in hardware or in software. Concurrency is not
affecied as long as we map concurrent tasks onto separate PEs.
Although conceptually different PEs are separate from each
other, multiple PEs may be implemented in a single FPGA
device.

3. CODESIGN ENVIRONMENT

Figure 2 depicts the codesign environment of our system. The
system to be implemented is assumed to be described in some
suitable high level language, which is then mapped to a directed
acyclic graph (IDAG). Tasks are represented by nodes and
communications by edges in the DAG, The nedes are then
partitioned into hardware or software tasks, and are scheduled to
execute in order to obtain the minimum makespan (total
processing time), The partitioning and scheduling software used
is adapted from tabu search and list scheduling algorithms
reported earlier by the authors [4]. After getting resuits of
partitioning and scheduling that inform where tasks are
implemented and when tasks are executed, a Task Manager (TM)
program can be produced. Its functions are described below.

High level

language Task

manager
r: program
E
5|8
22
R ﬂ-ﬁwﬁm
-EE O - PE PE1
Partitioning SN0 |nwem O 0
and
scheduling O %D %]
—

Mem

Figure 2. The codesign environment

Central to our approach is the use of the Task Manager (TM)
program running in the processor (software) resource to manage
both hardware and software tasks. This program controls the
sequencing of all the tasks, the transfer of data and the
synchronization between them, and the dynamic reconfiguration
of the FPGA in the PEs if required. Figure 3 shows the
conceptual block diagram of the TM and its operation. The TM
communicates with a Local Task Controller on each PE in order
to assert control. A message board is used in each PE to receive
commands from TM or to flag finishing status to TM.

board 1 board
Giobal egisters
variabie Start (TaskiD) v

Task manager

forsw [program
sk stop (Taatid) w1
Chack operation Data Trangfor 11|
l Finish Trnmhr\/

massages on each
@ PE and decide
when to

"1+ run HW tasks FIY

Task
Controllar

+run SW tasks in \—/
bad‘gmund Message board
(muitithread) Registers
+ reconfig HW Date Transter v
tasks)
+ transfer data Finish Transfor o
between PIPE Sigrt {TaskiD)

Stop (TaskiD)
Task
Controller

\/\ -

w=mame{

Figure 3. The task manager

This system employs a message-based protocol when running a
process. For example, messages indicating execution completion
from tasks are posted to registers inside the PEs to inform the
task manager program. When this program—written to poll these
registers—finds the message, it can then decide what to do next.
By using this method, tasks on each PE is run independently by
the task manager program created from partitioning and
scheduling results. Hence the program operates asynchronously
at systern level. In lower level (task-level), however, functions
are executed synchronously and sequentially inside each PE, thus
making execution time predictable.

4. VERIFICATION IN
RECONFIGURABLE COMPUTER

In order to verify the practicality of our model and the
effectiveness of our partitioning/scheduling algorithm, we
implement the system described in the previous sections on a
high performance reconfigurable computer known as
UltraSONIC.

UltraSONIC [5][6] is a reconfigurable computing system
designed to cope with the computational power and the high data
throughput demanded by real-time video applications. The
system consists of Plug-In Processing Elements (PIPEs)
interconnected by local and global buses. The architecture
exploits the spatial and the temporal parallelism in video
processing algorithms. Tt also facilitates design reuse and
supports the software plug-in methodology.

The basic PIPE consists of three parts (see figure 4): PIPE
engine, PIPE router and PIPE memory. The PIPE engine handles
computation while the PIPE router is responsible for image data
movement and formatting. The PIPE memory provides local
buffering of video data therefore reducing bus traffic.
UltraSONIC uses a Virtex XCV1000E device implementing both
the PIPE engine and the PIPE router. The PIPE memory is
implemented with synchronous SRAM, which allows fast and
easy memory access. The program on the host system (PC}
controls operations in the platform-such as setting registers,
configuring selected PIPEs, loading or retrieving images from
PM-through 64-bit PCI bus running at 66MHz by using a set of

V-622

well-defined SONIC Application Programming Interface (API)
functions.

LBG
{Local
BuaController)
XCV300

<~
PC! Byt B4bit 66MHZ T
- Vertex Device XCV1000E -~
PIPE Engine PEregister
9
InterPIPETriReg
IntarFIPETrCmad K
TaskDalalnRagC
TaskDalalnRag1
Task C . TaskDalalnRag2
PEwask . - . TaskDalalnReg3
TaskRea | Taskack i, : TaskDalaOulRegD
TaskDataQuiRegl |-
Controller TaskDataOuiRegZ |.
- TaskCataOulRegd |
5 i |
° ' d TaskDataCtiReg0 |
I 1k Memory] 9
.o TaskDataCtriRegl
| S _‘_ i1 i
iy
Porta Pon3
PIPEBLS g
o
z 5'22 MemControl
8
g E
&gy
Bus Gontrol &
Routing PIPE Router
RFF Lafl (PFC) PFG PF Right {PFC)

Figure 4. Codesign model implement on UltraSONIC PIPE

P shift reg
OfP shift reg

N
HW overhead

Figure 5. Task model

Comparing to the model depicted in figure 1, UltraSONIC
system employs PIPE Bus (PB) as a global communication
channel interfacing between software and hardware. Global
PipeFlow Bus {PFG) represents local communication channel
between PIPEs. This figure also shows how our codesign model
ts implemented in the UltraSONIC PIPE. The Local Task
Controller implements the message passing protocol to control
the operation of all the hardware tasks resident in this PIPE. The
message board is implemented in PEregister. Various hardware
tasks are implemented in the PIPE engine hardware resources.
Although the UltraSONIC PIPE is designed with a dual-port

memory interface, currently we only employ a single port access
in our model.

Figure 5 illustrates a task model. A hardware task resides in a
standard frame consisting of /O shift registers, I/O buffers, and
control block (called khardware overhead). Because of single
local memory, to represent several incoming/outgoing edges of a
task in DAG, we have to use shift register to read/write data from
memory. The standard frame can be parameterized to suit with
input/output requirements in each task.

5. RESULTS

In order to verify that the implemented system works, we apply
the partitioning and scheduling program to a randomly generated
DAG which contains 15 tasks. This is shown in figure 6
alongside the execution time of each task in software and
hardware respectively. Numbers on edges are the amount of data
(KB) transferred between tasks. From these, the graph is
partitioned and scheduled using the Tabu search and list
scheduling algorithm adapted from our previous work [4]. The
objective is to minimize the processing time (makespan).

The result of the partitioning algorithm is also shown in figure 6.
Tasks {0, 1, 3, 6, 8,9, 12} are implemented in PIPE] and Tasks
{2,4, 7,10, 11, 14} in PIPEQ. Tasks 5 and 13 are implemented
in the host processor. The results of the scheduling algorithm and
communication channels between tasks are shown in figure 7.
PFG bus is used to transfer data between tasks located on
different PIPEs (/nterPIPETrf), while PB is wused for
communication between software and hardware tasks including
data transfer and message transfer. '

Time Time
3007 3254
Ba52 3
6401 4583
8479 2502
5262 ECI,
5089 1385
4883 6482
6674 3179
4053 2011
7427 3306
7997 3§52
6112 1228
8699 4210
5811 4503
9735 4702

Figure 6. Implemented DAG after partitioning

The DAG is artificially generated and is used to verify the
operation of the entire system by emulating each task with a
“dummy” hardware or software module. Each task module
mimics the exact input and output data transfer (emulating the
communication between tasks) and takes the same amount of
time to execute as the actual system (emulating the processing
time of each task).

V-623

Figure 8 shows the overall timing obtained from hardware
(PIPEO, PIPEI) when the DAG in figure 6 is implemented on the
UltraSONIC system. Although the Task Manager can conduct
operations—running tasks and transferring data—in the right
execution order as shown in the scheduling diagram, the total
processing time is found to be around 42ms, which is more than
the 31.2ms predicted by the partitioning and scheduling
algorithm. The discrepancy can be explained by the message
transferring time incurred by the Task Manager which is not
included in our model. From some additional experiments, we
found that it takes 60ps/message. Therefore this overhead can be
estimated by using the number of sending/receiving messages
happen in Task Manager. In the case of this implementation, it is
about 9.7ms which, when added to the predicted makespan,
yields a time fairly close to the measured result.

0 SW PED PE1

48K

L 78K -
[re] #]
BEK__ P
[Fro
5
T
H
i
3 i {1 B
2 -—
X 30K ——
£
2 o
4 .
k4 3
& ;
2 : |
o E : g

*"“ Communication channels between tasks

[like3sk
A i1K

v L

31.196 ms

Figure 7. Scheduling diagram and communication channels

6. SUMMARY

This paper presents a way of modeling and implementing
hardware tasks in a codesign environment such that they can be
task managed in the same way as software. The model makes it
easier for partitioning algorithms to select between software or
hardware implementation. The proposed use of a unified Task
Manager running in the processor also allows a single runtime
environment to be used for the codesign system. The proposed
system is implemented on a realistic reconfigurable computer, the
UltraSONIC. An existing partitioning and scheduling algorithm
adapted to suit our new environment proves to be effective. The

experiment we conducted showed that our overall system works
satisfactorily. However, in order to achieve better predicted
makespan by the scheduling algorithm, the Task Manager
communication overhead must be taken into account by our
model.

The future work will include: 1) this TM overhead in our medel;
2) extending our approach to deal with a realistic problem, such
as implementing a complex video processing algorithm on this
systern,

Time Time

Operations [ms} Operations (ms)
on PIPEQ Start Period on PIPE1 Start Parlod

Step Stop

g R I SR
g o] o | gt] o
Taokt 32._4;;32 2928 Tosk1 ij;i 3.340
e | e
o, e | Lo
o L] e | e 2] o
vt [aswer] % | tawe e o
o] o | e e
NI
|"lB(ng1|:)ETff ;:::; 0.706

=]

Figure 8. Results showing start and stop time of each HW task

7. REFERENCES
[1] Kai M., Shimada M., “Task scheduling algorithms based

on heuristic search taking acccunt of communication
overhead”, Communications, Computers and Signal
Processing, 1999 Page(s): 145 -150

[2] Topcuoglu H., Hariri S., Min-You Wu, “Performance-
effective and low-complexity task scheduling for
hetercgeneous computing”, IEEE Transactions on Parallel

{3] Freund L., Israel M., Rousseau F., Berge, M., Auguin, M,
Belleudy C., Gogniat, G., “A codesign experiment in
acoustic echo cancellation: GMDF", System Synthesis,
1996

[4] Wiangtong T., Cheung P. Y. K., Luk W., "Comparing
Three Heuristic Search Methods for Functional
Partitioning in HW-SW Codesign", International Journal
on Design Automation for Embedded Systems, Kluwer
Academic Publishers, 2002, Page(s) 425-449.

{5] Haynes S. D., and others, UltraSONIC: A Reconfigurable
Architecture for Video Image Processing. Field-
Programmable Logic and Applications (FPL), 2002

[6] Haynes S. D., Stone J., Cheung P. Y. K., Luk W, Video
Image Processing with the Sonic Architecture. JEEE
Computer, April 2000, Page(s) 50-57.

V-624

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

