SONICmole: A DEBUGGING ENVIRONMENT FOR THE
UltraSONIC RECONFIGURABLE COMPUTER

T. Wiangtong', C. T. Ewe’, P. Y. K. Cheung’

'Electronic Department, Mahanakorn University of Technology, Bangkok, Thailand
*Department of Electrical & Electronic Engineering, Imperial College, London, England

ABSTRACT

Reconfigurable Computers based on a combination of
conventional microprocessors and Field Programmable Gate
Arrays (FPGAs) presents new challenges to designers.
Debugging on such hardware/software cohabiting systems can
be a nightmare. This paper presents SONICmole, a debugging
environment designed for the UltraSONIC reconfigurable
computer, which is designed specifically for real-time video
applications. The window-based integrated debugging
environment includes a hardware debug module (the “mole™)
that performs the function of a logic analyzer, embedded within
the FPGA design, and an easy-to-use software package that
facilitates such a hardware/software system. The resource
overhead of the hardware module is only 4% of a Virtex
XVCI1000 FPGA. The approach repotted here is not limited to
the UltraSONIC architecture, and can easily be modified for
other reconfigurable computers.

1. INTRODUCTION

The development of Field Programmable Gate Arrays (FPGAs)
has given rise to a new breed of programmable systems known as
reconfigurable computers [1]. Such a system usually contains a
mixture of conventional microprocessors executing software and
FPGA-based computing engines implementing hardware
algorithims. Application development and debugging on such
reconfigurable systems presents new challenges. While the
software portion of the design is relatively easy to handle, helped
by visual-based integrated development environment (IDE) such
as Microsoft’s Visual Studio®, debugging the FPGA-based
hardware remains difficult. The high-speed specification of the
modern FPGA devices and the high pin count packaging
technology prevent the use of conventional debugging tools such
as a logic analyzer. Connecting an analyzer to a FPGA
computing engine is often not only physically impaossible, such
action may also alier the timing of the design significantly.
Furthermore, signals internal to the FPGA remain invisible.

This paper describes a debugging environment known as
SONICmole, which is specifically designed for the UltraSONIC
reconfigurable computer [2]. SONICmole provides a visual-
based exploration and debugging environment for the FPGA-
based hardware. It consists of a flexible, yet area-efficient, debug
module which serves as the “mole” which resides inside the
FPGA. The mole is dormant, only invoked during debugging,
when it functions as an embedded multi-channel logic analyzer.
The SONICmole software provides a seamless interface to the

0-7803-7761-3/03/817.00 €2003 1IEEE

mole and an casy-to-use graphical user interface running on the
host computer.

The contributions of this paper are: 1} A novel debugging
concept for reconfigurable computer is proposed; 2) An efficient
but flexible hardware debugging module suitable for embedding
invisibly within the hardware of a reconfigurable computer is
designed; 3) A software environment that integrates into the
reconfigurable computing environment is reported.

The paper is organized into 6 sections. Section 2 provides a brief
introduction to the UltraSONIC reconfigurable computer system.
In section 3, the problem addressed by this paper is described
along with some related work and alternative approaches. Section
4 describes the design of the SONICmole in details. Section §
provides evaluation and concluston to the work.

2. THE SONIC ARCHITECTURE

The SONIC platform (2] [3] is a reconfigurable computing
systemn designed to cope with the computational power and the
high data throughput demanded by real-time video applications
(figure 1). UltraSONIC is the latest implementation of the
SONIC architecture, The design consists of Plug-In Processing
Elements (PIPEs) interconnected by two types of buses: global
bus, called PIPE bus (PB), and local bus, called PIPEflow bus
(PF). The SONIC architecture exploits the spatial and the
temporal parallelism in video processing algorithms. It also
facilitates design reuse and supports the software plug-in
methodology.

PIPE Bus - 64bit Address/Data and 2 bit control

LB
(Local
BusConfroller)
XCV300
Global Pipefiow Bus
32bit + 2bit Ctrl

Vartax Device XCVW1 uhs

PE

PiwEengine £y
P_C! Bus Py
64bit 66MRz

sRAM

PIPErquter SAM

a
SRAM
PWPEFlow L+ 3250 PIPEFiGw Right 32bit

;[Giobal PIPEFlow Bl {Glotial) 320k

Figure 1. The SONIC architecture [2]

I1-808

By using the global bus, we can transfer information between the
host system (PC) and the PIPEs such as image data,
configuration data and controls of the routing of data on the
PIPEs. Two local buses are used to transfer information between
PIPEs. The global PIPEflow bus (PFG) cnables data
broadcasting, and the PIPEflow chain (PFC) connects adjacent
PIPEs to support pipelined processing. The system uses a
predefined raster-scan protocol to send data ovet these buses.

The basic PIPE consists of three parts (figure 2): PIPE engine
(PE), PIPE router (PR) and PIPE memory (PM). The PE handles
computation while the PR is responsible for image data
movement and formatting. The PM provides local buffering of
video data therefore reducing bus traffic.

The principle of separating the computation engine PE from the
routing engine PR has many advantages. It allows computational
functions to be implemented independently from dataflow, thus
facilitating design reuse. A particular user-application configures
only the PIPE engine and not the PIPE router. The unique design
of the PIPE router provides a flexible and scalable solution to
routing and formatting video data.

PE

s

MemPortB MemPartaA

3 1 Bank1
Mx 133MHZ
Memory :
— Controller || H Bankz
(B T e |t
R - 4 & -3
] PR Mg/ | P
PE Left (PF Chain) ““PF Right (PF Chain))
¢ PF Global)

Figure 2. The UltraSONIC PIPE structure

The user application on the host system controls operations in the
SONIC platform—such as setting registers in PR and PE,
configuring selected PIPEs, loading or retrieving images from
PM-through a set of well-defined SONIC Application
Programming Interface (API) routines.

UltraSONIC, is designed with a Virtex XCV1000E device
implementing both the PE and the PR {2]. The PIPE memory is
implemented with synchronous SRAM, which allows fast and easy
memory access. The available memory is sufficiently large to
buffer two video frames at HDTV resolution. The communication
between the host system and the UltraSONIC board is via a 64-bit
PCI bus running at 66MHz,

3. RELATED WORK

Different types of logic analyzers, including PC software based
logic analyzers and stand-alone units [4][5], have been built to
help digital design engineers testing and debugging their work.
The main jobs of a logic analyzer are to capture and store data
from input channels, and to display into the captured data in an
easily interpreted format. However, with the arrival of multi-
million gate FPGA devices in reconfigurable computers,
something more sophisticated is needed such as internal access to
buses and signals, and proper integration of the analyzer engine
to the entire system.

The Tagalyzer [6] can be used to debug JITAG chains made up of
any manufacturers parts and provide information to the board
level design engineers. At the circuit level, we need more than
that to probe signals inside the FPGA. ChipScope™ Pro system
[7] from Xilinx offers this through a number of standard black
boxes embedded within individual hardware modules inside a
FPGA device. Results are sent to the software program running
on the PC through the JTAG interface to the display.

SONICmale shares a number of common features with
ChipScope: the ability for setting up trigger conditions, the
capture of history list of values ¢tc.. But unlike ChipScope,
which is designed for debugging ASIC type of hardware,
SONICmole is designed specifically for a reconfigurable
computer. Instead of using the slow JTAG interface and a
software environment that is not easily adaptable, SONICmole
uses the fast PCI bus of the reconfigurable engine and a well-
defined set of Application Programming Interface (API)
functions common to the reconfigurable computing system. As a
result, SONICmeole is better integrated with the software
environment of the reconfigurable computer.

4. SONICmole DEBUGGING
ENVIRONMENT

SONICmole consists of two components: a hardware mole
module and a visual debugger software known as SONIChug.

The mole resides inside the FPGA. It contains all the necessary
hardware for triggering and capturing the specified signals (or
variables). To insert the mole into a hardware routine (designed
for the FPGA in Verilog or VHDL), the predesigned mole (exists
as an EDIF file), is merged with the user’s design before place-
and-route. Connections between the meole and the user hardware
are defined in a separate probe-list file and the probes are
restricted to top level signals in the design. A user can therefore
easily monitor different sets of signals by modifying the probe-
list and rerun place-and-route,

The SONIChug visual debugger is a software program that
performs two functions: it allows access and control of the PIPE
hardware on the UltraSONIC, and it provides a visual interface
to the mole module.

4.1 Detail Design of the mole Module

Each SONIC PIPE consists of a dual-ported, dual-bank PIPE
Memory (PM) (MemPortd, MemPoriB). The two PM banks are

11-809

rarely accessed at the same time. The mole exploits this feature
and employs a portion of the memory in the PM bank not used
by the user design to store the signal states captured by the mole.
This has the advantage that it does not use any embedded
memory resource inside the FPGA. However, some user
applications cannot avoid wusing both memory ports
simultaneously. Therefore the SONICmole is designed to have
two modes of operations: embedded mode, and standalone mode.

Figure 3 shows the mole operating in embedded mode inside a
PIPE Engine (PE). 4 selectable ports, each with 32 signal
channels, are available for monitor and capture. These¢ 128
charmels can be used to debug signals within the PE or bus
signals connecting the PE to other modules such as the PE
registers or the PM memory port. It also shows how the mole is
interfaced to one of the PM bank via the PIPE's memory
controller.

The restriction of the embedded mode is that the two memory
ports are not used simultaneously. If this is not true, then
SONICmole can be configured to work in a standalone mode. In
this mode, one entire PIPE is dedicated to the operation of the
mole. While this frees all the resources on the other PIPEs for
user application, it also limits monitoring and capturing to the
interface signals external to the PIPEs (i.e. signals on the PIPE
Flow and Global buses).

PE

\1

Y,
s

——
—
IThe mole

(P55 o

MemPortB

PE
Registers

N
._l/

@

NG

PB sighals

Controlier

Figure 3. The mole operating in embedded mode

The internal architecture of the mole is shown in figure 4. There
are three separate modules: moleRegister, mo/eController and
moleMultiplexers. Ports (P!-P4), each with 32 channels, are
available for carrying signals either for trigger or for capture. 13
moleRegisters are used to configure the operation of the mole.
Overall control is done by the moleController which is designed
as a finite state machine (FSM). The detail design of the FSM is
depicted in figure 5.

iPEWiite

iPBSal

iPBAd

— feRsgistors
000 Mode REG {Abits)

E. 0x06¢__ Firish_REG (4bils)

EugaTry_REG (4bi5)
ion_REG (dbits

TriggervalusA REG (32bits)
TriggervaiueB _REG (3Zbits)
StoraAddress_REG (21bits)
StoreValuad REG (32bits)
StoréValueB REG {Yohits)
MemSize REG (21hits)
a8 RoundNo REG {dbits)
Dx050_ SelOUtCH _REG (dbits)
0x058 SelTrgCH_REG (4bits)

Finigh

Figure 4. Detail architecture of the mole

full or Stop Rags, then

flag Finish
Reg

Figure 5. The moleController FSM

Our design of the moleController is capable of:

0-810

Reporting the current operating mode.

Specifying triggering on positive or negative edges of
signals.

Operating; start, stop, pause or resume, the search for trigger
or capturing values anytime by sending commands to the
mofeRegisters.

Using any memory locations and sizes in PM (defined by
users) to store the capture signal state. This makes the
system more flexible because we can avoid the area
occupied by normal applications.

Changing trigger port and capture port by via software
control without hardware recompilations.

4.2 The SONICbhug Program

The SONIChug program, written in Microsoft Visual C++, has a
user-friendly GUL It provides an easy way to control and
monitor the entire reconfigurable computer system by using API
functions already existed for the UltraSONIC. For example,
values of all the PIPE Registers and moleRegisters can be
dynamically monitored and altered during runtime without
affecting the user logic or requiring recompilation of the user
design. Figure 6 shows a screen shot of the SONIChug while it is
displaying captured signal states both as a history list and as a
timing diagram. It also shows the dialog box for setting up the
trigger and capture conditions.

5. EVALUATIONS & CONCLUSIONS

The UltraSONIC system is designed to operate at a maximum
PIPE frequency of 66MHz. The SONICmole design is shown to
operate comfortably within this timing constraint. In addition,
the overhead cost of the hardware mole is only 510 slices,
representing around 4% of the XCV1000E device on a SONIC
PIPE. As long as the user application can afford such overhead,
embedding the mole in a desigh permanently should incur no
penalties.

The entire SONICimole debugging environment has been used for
real applications. It can reside and operate independently on each
PIPE. Monitoring and controlling to each PIPE from the
SONICbug program is changeable at runtime. It has proved to
shorten verification and debugging time significantly, as well as
has used in some specific jobs; for example, using with a counter,
it can precisely measure the execution time of tasks implemented
inside PIPE [8]. The transparency of the hardware mole and the
case of use of the SONICbhug program have made SONICmole an
invaluable tools for all developers on the UltraSONIC system.

Although SONICmole has been designed specifically with
UlraSONIC in mind, its basic concept and most of its
implementation can easily be adapted for use on any
reconfigurable computing system.

6. ACKNOWLEDGEMENTS

The authors would like to acknowledge the help and support of
Simon Haynes, John Stone and their UltraSONIC team at Sony
Broadcast Professional Laboratory, Basingstoke.

7. REFERENCES

[11 Vemuri R. R, Harr R. E.: Configurable Computing:
Technology and Applications, JEEE Computer, April 2000,
pp 39-40.

[2] Haynes S. D., and others: UltraS8ONIC: A Reconfigurable
Architecture for Video Image Processing. Field-
Programmable Logic and Applications (FPL), 2002

[3] Haynes S, D., Stone J.,, Cheung P. Y. K., Luk W.: Video
Image Processing with the Sonic Architecture. /EEE
Computer, April 2000, Page(s)} 50-57.

[4] Link Instruments - PC based Logic Analyzer:
http://www linkinstruments.comy/logana.htm

[3] Tektronix - Logic Analyzers:
http:/fwww.tektronix com/Measurement/logic_analyzers/

[6] Xilinx, The Tagalyzer - A JTAG Boundary Scan Debug
Tool, Application Note XAPP 103, January 23, 1998.

[71 Xilinx, ChipScope ILA: Software and Cores, User Manual,
March, 2002

[8]1 Wiangtong T., Cheung P. Y. K., Luk W.: Multitasking in
Hardware-Software Codesign for Reconfigurable Computer,
submitted to International Symposium on Circuits and
Systems, 2003

) URSONIC Logle Analyzer

T AT e S 40 SR MW cpe s AT b i

Tdugar and Storl s.mp o) m
£y =. 4

; BmanmunSM* e
smrumdmumm 1 WD\JU qu

MumoryS‘L-(’*Bﬂ I

ns‘ssassassiss‘sa?sag

B0

:él Scurce Icmmnem ~i i
L3 P | Vaiue: (0,7 or%for donteare

By, pocodtin bovtedent ?Oowm [lmoocxx

e T
o | mr%

G up Configuration.... '
[Fare, S T)
Bin B
Nibols Nibis{?.0) H
| goucs .
5 i 114
| Saquance 7N|hh1n]’3]

iiSoues “Mibbla(? 6]
+ | Dastinaion _ Hifblsfs 4]
i'j Sequence Nibble[3 0}
¢

t

Reaty

Figure 6. The SONIChug user interface showing signal states as history lists and as timing diagrams

1I-811

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

