ARCHITECTURES FOR FUNCTION EVALUATION ON FPGAs

Nalin Sidahao*, George A. Constantinides**, Peter Y.K. Cheung**

*Department of Electronic Engineering, Mahanakorn Untversity of Technology, Bangkok 10530, Thailand
++Department of Electrical and Electronic Engineering, Imperial College, London SW7 2BT, UK

ABSTRACT

This paper presents a new family of architectures for muiti-cycle
area-efficient evaluation of elementary and composite functions,
and an exploration of the design tradeoffs for implementation on
Field Programmable Gate Arrays (FPGAs). The method is
exemplified with two common functions, sine and power-of-2.
To test the performance of each design, we compare the
proposed architecture to an established table-based method for
several different input word-lengths and output precision
requirements. FPGA-based results are presented, illustrating
both the technology-independent and the technology-specific
attributes of the tradeoff of area and speed between the proposed
techniques.

1. INTRODUCTION

Due 1o the increasing need for high-performance Digital Signal
Processing (DSP) and scientific computing applications,
hardware-based implementation of elementary functions have
been proposed in the past {1-3].

Qur approach to simple and regular hardware evaluation of
clementary functions is based on minimax polynomial
approximations of these functions, i.e. approximations that
minimize the worst-case error [4]. An important aspect of our
work is that the proposed structures can perform an arbitrary
function with miner hardware changes. Moreover, we propose a
family of architectures, allowing a different number of terms of
the polynomial (0 be computed per clock cycle, and leading to a
controlled latency / area tradeoff.

Table-based methods are often employed to implement functions
in hardware. For conventional table lookup methods, when the
required function precision increases, the memory size grows
eiponentially. To obtain memory savings, a bipartite table
technique [5] and an improved symmetric bipartite table method
(SBTM) [6, 7] have been proposed in the past. These techniques
can reduce the size of the tables by factor of two compared to
previous methods for bipartite table approximations, however the
hardware area cost still scales rapidly with the precision
requirement,

The area requirement for high precision is thus an essential factor
with which to be concermed. This paper proposes a new
architecture to evaluate functions for implementation on FPGAs,
based on polynomial approximations. The method is illustrated
through the implementation of sine and power-of-2. Compared to
the table-based SBTM method, for high precision, the proposed

0-7803-7761-3/03/317.00 ©2003 1EEE

architecture provides a lower area requirement for
implementation in the FPGA, at the cost of a slower evaluation.
Our aim is therefore to target non-critical portions of the
arithmetic design to achieve a multi-cycle area-efficient
implementation. Results are presented illustrating the design
performance tradeoff between area and speed. We believe that
the detailed quantitative data presented in this paper for current
FPGA families [10] can be helpful in guiding designers or
designing automation tools in their selection of function
approximations, based on speed, area, and precision
requirements.

In summary, the contributions of this paper are:

e The development, and details, of a family of multi-
cycle polynomial evaluation architectures

» FPGA performance comparisons between the proposed
approach and table-based methods, in order to aid
future design and design automation

The rest of this paper is organized as follows: after a description
of the proposed architecture in Section 2, the implementation
details and performance measurements compared with SBTM are
presented i Section 3. Finally, conclusions are drawn, and future
work is suggested in Section 4.

2. POLYNOMIAL APPROXIMATIONS
2.1 ALGORITHM

The method described in this paper uses polynomials based on
minimax approximations to approximate the value of a function.
Consider a general polynomial functional form with real
coefficients and real variable

fl)=a,+ax+ax*+. . . +ax")]
where 0<pneZ,a,xeR, j=0l...n.4,#0-

The core arithmetic operations to be performed in polynomial
evaluation are multiplication and addition.

Each member of the proposed family of evaluation architectures
allows a different number of terms to be calculated each cycle.
We refer to an architecture capable of ¢valuating k terms per
cycle as a k-stage architecture.

As an example, consider the following derivation of a 2-stage
implementation. We could consider Equation (1) as representing
a fully unfolded paraliel implementation. Rearranging Equation

II-804

(1) leads to

f(x]:ao+a]x+a,x2+x’(a3x+...+aﬂx"'2) 2)
liwehave: £, (x)=a, +ax+ax’+..+a,x"? 3)
then from {2) and (3), we can obtain

f(x) =y +ax+ foa (,\:)11 4)

We can consider implementing (4) as a single multiply
accumulate, together with a feedback loop, as shown in Fig 1.

AOM#1
a,
=
W
ROM#2
a, X
By
H ¥
a, —
3
x2 X =<) — #(x)
Ragister

Figure 1: A 2-stage Architecture of n-Degree
Polynomial Evaluation

Developing in the same manner, the equation of k-stage of
n-degree polynomial can be expressed as

) =a, vax+. . +a,_ "+ f, () &)

2.2 ARCHITECTURE AND IMPLEMENTATION

Generalizing this algorithmic approach, and pipelining the
associated feed-forward network leads to the general polynomial
evaluation architecture, shown in Fig. 2.

The diagram is a straightforward realization of equation itself.
Two arithmetic operations of multipliers and adders are
exploited. The input and output are assumed to require the same
precision, p bits. Each ROM contains the coefficients stored as
(p+g)-bit signed number in 2's complement (g is the number of
guard bits). The number of guard bits provides a degree of
accuracy control, and can be selected depending on each
approximated function and the required bound on approximation
error. The requirement is that the generated approximation f(x)

differ from its true value f(x) by less than one unit in the least
[significant] position, or ulp {8]. Due to word-length growth, we
truncate the results f(x) before feeding back to (p+g)-bit

register providing current output for next cycle multiplication
with x*.

Many DSP systems use the fixed-point number system due to
power, speed and area advantages over floating-point equivalents
[9]. Likewise we assume all coefficient values are in the range
[-1, 1). In addition to the datapath, some overheads of a counter,

registers for pipelining p-bit inputs x to x* and a p-bit output
fx), clear and reset circuits, and rounding part at output are
required. A deep pipeline is required for the calculation of the
required power of x, as in order to maintain the feedback loop as
the critical path, each multiplier must include a pipeline register.

ROM
#1 Lp.g
v
L4
X
ROM P 1
2 | prg 2prg -~ V)
L — |
=L
e szpw
P
ROM ’//’ ,ch2 ,—'/
3 | g 2prg " X
L —
9
| - ‘,.ZP'*Q
g
v r
» N . [
L] 1] 1 L] L]
. L] 1] L] L]
1o
B
1 2p+g
AOM 1 ! -
* |peg |
|_,,c_|__LI ces
1

Figure 2: General Architecture of n-Degree Polynomial
Evaluation (pipeline stages shown as dashed lines)

For a 1-stage architecture, only ROM#1 and a feedback loop are
needed. The ROM#]1 contains all polynomial coefficients, and
provides an output sequence at each clock cycle starting from a,
and ending with a,. For a k-stage design, the coefficient values
for each ROM are summarized in the fellowing table:

Given m=[(n+1)yk]-1 6
Last cycle First cycle
4 ..

ROM#1 aaeé o 1T Ban e | Gk

ROMH2 | @y | Guun | Gans | oo | Gpier

ROM#3 Ca G A B | e | Ol

ROM#k .. ﬂ&;,. A4t 5 [+ I TN .El ceey Ay,

Table 1: Content of ROMs

1I-805

l-stage
2-stage
3-staga
4-stage
5-stage
§-stage
T-stade

Bitwidth

Pg'viergf' 2

1-stage
—t z-stage
B8 & i-stage
=~ 4-stage
S-stage

;\.\? sc f-stagu
8
z 4
24
2
Bitwidth
{a) Area

— P R
2 PP SER Slviot

o —-
5 8T o A
] s P b b
= B kel g

0 t2 B8 20 22
Bitwidth
Power of 2
£ A
IS c
E‘ZO i e .3
T PR St S
- &-ﬂlii;ti-——f"._-* J
0 - _g--
,__e,_e——e-——e—‘e—e/‘,

3 16 12 14 16 18 20 22
Bitwidth

(b} Latency

Figure 3: Performance Results against Bitwidth

For non-integer {n+ 1)k, the addition of higher order term(s) with
zero coefficients is required to fill the ROMs appropriately. This
increases the hardware requirement by a small amount in order to
maintain a regular and simple hardware structure.

Rather than pipelining the output of each ROM, the stored
coefficients are rotated by of the degree to which it would be
pipelined. For example, in Fig. 2, ROM#3 coefficients are
rotated from rigfit to left by one address position.

There are three main aspects of this structure;

* The critical path of the overall computation lies on the
teedback loop. This is caused by the propagation delay
of a p(p+g)-bit multiplier and a (2p+g)-bit adder.

¢ A polynomial of n-degree with k-stages can produce a
complete evaluation every r(n+1)/k? cycles. Thus
fewer stages lead to lower throughput. In addition,
tfewer stages tend to require more guard bits in order to
maintain acceptable approximation results.

s Due to the pipelining of the feed-forward network, the
total latency for a k-stage design is I-(n+1)/k-i+k cycles.
If latency is more important than throughput for a
particular design, attention must be drawn to the fact
that there is a lowest latency achievable of

approximately 3 fin+1) cycles, for ¢ = fm+1) and

integer fin+1) -

The number of polynomial terms obtained from minimax
polynomial approximations is based on the maximum error

acceptable between the approximation and the true function
value. The acceptable maximum error must be less than one ulp
for each precision; therefore lower precision requires fewer
terms. This implies that very high stage implementations are
superfluous for low precision requirements.

3. RESULTS

For analyzing performance of the hardware, an implementation
of the proposed architectures on a Xilinx Virtex device [10]
(V1600E) is considered. For comparison, SBTM tools were
obtained from [11). In all cases, the number of guard bits was
exhaustively simulated through MATLAB [12] to ensure
comparabie error performance between the two methods.

Fig. 3 demonstrates the performance results against word-length,
The overall results show the tradeoffs that can be make in terms
of area and speed for different precision requirements. Fig. 3(a)
shows percentage slice usages of total 15,552 slices (each slice
consists of twe 4-input look-up tables (LUTSs) and two registers).
The area usages of our proposed architecture grows linearly with
word-length, whereas the SBTM is likely to increase
exponentially. Considering each particular stage provides
important information about the range of precisions where the
proposed method requires less area. In both cases of functions of
Fig 3(a), this area cross-over occurs between the 14- and 22-bit
approximations for a 1-stage design. The cross-overs for 2- and
3-stage designs are at 18 to 22 bits. Finally, upwards of 4-stage
are at 20- to 22-bit approximations.

Fig. 3(b) illustrates the effect on latency of increasing word-
length. As the word-length increases, the lalency of all cases

1I-806

increases. It is clear that for all precisions the proposed method
has a significantly longer latency than the SBTM approach. The
more complex interaction between the number of stages and
latency are also clear from Fig. 3(b): both the sine and power-of-
2 architectures have minimum latency for a 2-stage design,

Fig. 4 illustrates the variation of throughput for our proposed
method with the number of stages. A similar plot for the SBTM
approach is not provided, as the latter can be pipelined to an
arbitrary depth.

Sine
4 "o B oita
- 3 —4— 19 bikb
12 bits
§ ol
a3 -5 1€ bits
£ —o- 18 bits
5% 5 —— 20 bits
0.; —gp- 22 bits
£3 o ===
35 - =g —8 _
Eg) ;Al%—:—__'—’?‘—‘ =5 - —=§
3 -0
i 1 .
E
4 [7
Stage

Power of 2

imilllons anglglgnguu}“nnl fauc)
’
8!
I

F-N
o
[+2]

7

Figure 4: Throughput Results against Stage

Mainly as a result of fewer polynomial computation terms
required for low precision calculations, the throughput for low
precision tends to be greater than that for high precision. As the
number of stages increases, the throughput rises linearly until a
[+ 112 Fstage design. After this, the throughput tails off. This
is because the |—(n+1)lﬂ-stage design computes half the number
of polynomial terms by a cycle which is the most possible for full
utilization of all resources during all cycles. This number of
stages requires two cycles to complete all polynomial terms.
Although using more stages can compute more than half the
terms each cycle, these designs still require two cycles to
complete all terms. For instance, for the 6" order polynomial
approximation to the 16-bit sine function, a 4-stage design would
achieve the peak throughput, whereas 5- and 6-stage designs
would be inferior, providing approximately the same throughput
with a greater area requirement and longer latency.

4. CONCLUSIONS

The proposed architecture provides designers the flexibility of a
family of architectures for function approximation in order to
achieve a multi-cycle area-efficient implementation, We have

also presented the important aspect of bit precision to area and
speed performance of our work compared to a table-based
method.

The restrictions of our propesal are the following: the
representation used for evaluation the elementary function
employs a signed fixed-point fractional number system; the
tradeoffs for floating point or alternative numbers may be
different. In addition, we limit the coefficients of polynomial in
the range [-1, 1). Therefore, if the original minimax coefficients
do not satisfy such a range, these will be scaled down by an
appropriate constant value o«. That means when actually
implementing the approximation, the final outputs of f(x) need

to be multiplied back with a (this may involve only shift and add
operations}.

Current effort involves extending the presented architecture for
other function approximations and incorporating them within an
electronic design automation framework. In addition, we are
investigating shaping the precision and overflow-protection
requirenents.

5. REFERENCES

[11 J. Cao, BW.Y. Wei and J. Cheng, “High-performance
architectures for elementary function generation,” in
Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, Vail, Colorade, pp. 136-144, June, 2001.

[2]1 Y. H. Hu, “CORDIC-based VLSI architectures for digital
signal processing,” JEEE Signal Processing Magazine, vol.,
9, pp. 16-35, July 1992,

[3]1 1. L. Aravena and.S. T. Soh, “Architectures for polynomiat
evaluation,” Proceedings of the Twenty-First Southeastern
Symposium on System Theory, pp. 190-194, March 26-28,
1989,

[4]). M. Muller, Elementary Functions: Algorithms and
Implementarion, Birkhauser, 1997,

[5] D.D. Sarma and D. W, Matula, “Faithful Bipartite ROM
Reciprocal Tables,” Proceedings of the 12th IEEE
Symposium on Computer Arithmetic, Bath, England, pp. 17-
28, July, 1995,

{6] M. J. Schulte and |. E. Stine, “Symmetric Bipartite Tables
for Accurate Function Approximation,” Proceedings of the
I3th IEEE Symposium on Computer Arithmetic, Pacific
Grove, California, pp. 175-183, July, 1997.

[7] M. 1. Schulte and J. E. Stine, “Approximating Elementary
Functions with Symmetric Bipartite Tables,” [EEE
Transactions on Computers, vol. 48, no. 8, pp. 842-847,
August, 1999,

[8] I. Koren, Computer Arithmetic Algorithms, Englewood
Cliffs, New Jersey: Prentice Hall, 1993.

[9] C.Inacio and D. Ombres, “The DSP decision: fixed point or
floating?,” IEEE Spectrum, vol. 33, pp. 72-74, September
1996.

[10] Xilinx, San Jose, DataSource™ CD-ROM, Rev. 7, Third
Quarter, 2002.

[113 M.]. Schulte and James E. Stine, “Internet Tools for
Symmetric Bipartite Tables for Accurate Function
Approximation,”
http:/fwww.eecs.lehigh.edu/~caar/SBTM.html.

[12] MathWorks, “MATLAB,” http.//www.mathworks.com.

11-807

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

