
PTM: A Technology Mapper for Pass-Transistor Logic

Nan Zhuang, Marcus v. Scotti and Peter Y.K. Cheung1

Abstract

Pass-Transistor Mapper (PTM), a logic synthesis tool speci�cally designed for pass-

transistor based logic library that has only three basic cells, is reported. It exploits the close

relationship between BDD representation of logic and the structure of pass-transistor logic

cells to ensure e�cient technology mapping. BDD variable order optimization is achieved

through a genetic algorithm with dynamic parameters. Unlike LEAP, the only previously

reported system for pass-transistor logic, PTM integrates both synthesis and logic optimiza-

tion in one step and can be used for large logic functions. Results of using PTM on a large

set of benchmarks are compared to that from Berkeley's SIS using the MCNC CMOS cell

library and are found to be promising.

Indexing terms: CMOS, Pass-Transistor, Logic synthesis, Technology Mapping

1 Introduction

It has been demonstrated that CMOS pass-transistor based logic can often result in high-speed

and high-density circuits. For example, by using pass-transistor logics, a 3:8ns 0:5�m CMOS

16�16-b multiplier was implemented in 1990 [1], a 1:5ns 0:25�m 32b CMOS ALU was developed

in 1993 [2], and a 4:4ns 0:25�m CMOS 54� 54-b multiplier was designed in 1995 [3].

The most important di�erence between conventional CMOS cells and pass-transistor cells is that

in conventional logic the inputs can only be connected to the gate of transistors, and all inputs

are symmetrical. In the pass-transistor logic inputs can be connected to both gates and drains,

1The authors are with the Dept. of Electrical and Electronic Engineering, Imperial College London, UK,

SW7 2AZ

1



and changing the input con�guration will correspond to di�erent Boolean functions. It implies

that pass-transistor based circuits are more exible. Unfortunately, traditional state-of-the-art

logic synthesis tools can no longer be used in pass-transistor logic design if the full potential of

pass-transistor logic is to be exploited. Due to the lack of the automatic design tools for general

logic functions, pass-transistor logic is currently mainly restricted to the design of arithmetic

macros [1]{[4].

A research group at Hitachi proposed a synthesis package, LEAP(Lean Integration Pass-

transistor), for pass-transistor logic [5]. In LEAP a very simple pass-transistor cell library

is proposed as shown in Figure 1, where Y1, Y2, and Y3, which are essentially multiplexers,

form the basic logic cells. Completing the library are simple inverters with di�erent drive capa-

bilities. The core idea of LEAP is (a) to express the required logic function with a reduced and

shared BDD [6], and (b) to partition the BDD into the smaller trees which can be mapped into

one of the basic cells in library. Although LEAP shows very positive results for small designs,

it falls short in the following:

(1) it does not have an optimization capability;

(2) it can not handle large logic functions.

In this paper, we describe an improved pass-transistor synthesis tool called Pass-Transistor

Mapper (PTM). In PTM, we use the same cell library as [5], where Y1, Y2, and Y3 are used

as the essential logic cells, and the inverters are used to realize the negation operation of input

variables. Compared with LEAP, PTM has the following improved features:

(1) it employs optimized ROBDD [7]{[9];

(2) it can handle large logic functions;

(3) it exploits state-of-the-art logic synthesis techniques for pass-transistor technol-

ogy mapping.

2



PTM is a sophisticated package composed of a group of algorithms. The BDD ordering using

Genetic Algorithm is explained in Section 2. Pass-transistor based technology mapping using

Boolean matching and greedy covering algorithm is proposed in Section 3. The inverter optimiza-

tion algorithm, netlist compiling algorithm, and PTM package implementation are described in

Section 4. Section 5 discusses the test results for large set of MCNC benchmarks using Mentor

Graphics' GDT environment for placement, routing and veri�cation, and conclusions are given

in Section 4.

2 BDD size minimization using Genetic Algorithm

2.1 Problem Formulation

It is well known that multiplexer based structures are directly related to BDDs, and �nding the

optimal data-select variable ordering of the multiplexer network is equivalent to �nding the good

variable ordering for BDDs [10, 11]. Since reduced ordered BDD (ROBDD) has been shown to

be an e�cient representation of Boolean functions for logic synthesis and veri�cation [6], it is

employed in our algorithm. The �rst step of our synthesis algorithm is to minimize the size of

the ROBDD, and then the ROBDD is mapped to the pass-transistor cell library.

De�nition 1: An OBDD is a rooted directed graph G = (V;E). The vertex set V is composed

of two kinds of vertex, non-terminal and terminal. Each non-terminal vertex has as at-

tributes a pointer index(v) 2 f1; 2; :::; ng to an input variable in the set fx1; x2; :::; xng,

and two children low(v); high(v) 2 V . A terminal vertex v has as an attribute a value

value(v) 2 B(B 2 f0; 1g). The edge set E is composed of negative edges and positive

edges.

De�nition 2: BDD size, jBDDj, is given by its number of non-terminal nodes. For a certain

variable ordering, BDD size can be reduced with the following three rules:

3



Deletion Rule (R1): The node v with label xi can be deleted, if and only if the two succes-

sors low(v) and high(v) of v represent the same subfunction of f , i.e. the subfunction

represented a v does not depend essentially on xi.

Merging Rule (R2): Nodes v and w with label xi can be shared, if and only if they represented

the same subfunction of f .

Complement Rule (R3): For nodes v and w with label xi, w can be replaced with v0, if and

only if v = w0.

De�nition 3.: A BDD is called a reduced ordered binary decision diagram(ROBDD) if no

reductions can be achieved using the above rules.

ROBDD size is extremely sensitive to the choice of the variable ordering. The existing

methods of �nding a good variable ordering can be classi�ed into three categories: heuristic

methods [12, 13], exact methods [14], and Genetic Algorithms (GA) methods [7]{[9].

Previous research indicated that GA methods can produce better results with reasonable

CPU time for most benchmark circuits. In this paper a novel GA [8] which uses dynamic

parameters is employed to search for near optimal variable ordering.

De�nition 4: For any Boolean function f(x1; x2; :::; xn), the decision variable ordering (from

the root to the terminals of the data structure) can be de�ned with a vector Order[n] =

fxk1 ; xk2 ; :::; xkng.

For a certain Order[n], the size of the ROBDD, BDD Size(), is the number of the

non-terminal vertex in the data structure. Our goal is to �nd a good variable ordering

fxk1 ; xk2 ; :::; xkng for a given function f(x1; x2; :::; xn), such thatBDD Size() is minimized.

2.2 The Dynamic Parameter Genetic Algorithm

The optimal variable ordering used in calculating the BDD is found with a Genetic Algorithm

(GA), details of which can be found in [18]. A major factor that a�ects the performance of GAs

4



is the size of the population from which new generations are evolved. A small population size

would tend to limit the search in a con�ned area. A large population size will spread the search

area wider and reduce the chance of producing good o�spring as result of the diversi�cation of

the parents.

Mutation is another important mechanism in GA which prevents a solution being trap in a local

minima. Unfortunately, setting too high a mutation rate can cause the algorithm to escape from

solution areas which are already close to the global optimum, while too low a rate might cause

the algorithm to be trapped in local minima.

In the new algorithm, we propose to use dynamic population size and mutation rate as de�ned

below:

if (improvement found in new generation)then

decrease Population Size by �1;

decrease Mutation Rate by �;

else

increase Population Size by �2;

increase Mutation Rate by �;

Population Size := max (MIN SIZE,min(Population Size, MAX SIZE));

Mutation Rate := max (MIN RATE, min (Mutation Rate, MAX RATE));

Here �1, �2 and � are constants and are determined experimentally. Whenever improvements

are found, the algorithm is exploring in an area which is already promising. Therefore it is

reasonable to concentrate the search e�orts and avoid increasing the exploration space. It is

also reasonable to reduce the chance of escaping from this search area. On the other hand, if no

improvement is found, it is worth enlarging the search area by increasing both the population

size and mutation rate to provide a better chance of jumping out of local minima. This algorithm

therefore avoids the use of too small or too large a search area and too many or too few random

mutations.

In conventional GA implementations, the algorithm is terminated either after a �xed number

of generations, or when no improvements are found in a �xed number of iterations. In our

5



algorithm, we allow the stop criteria of the algorithm to adapt to improvement as follow:

if (improvement found in new generation) then

increase Generations Remaining by 1;

else

decrease Generations Remaining by 2;

if (Population Size � MAX SIZE) then

decrease Generations Remaining by 3;

1, 2 and 3 are empirical constants. While improvement is found, it is reasonable to spend

more computing e�orts in searching for a better solution by increasing the number of generations

to evolve and vice versa. In addition, if Population Size reaches a predetermined MAX SIZE, it

signi�es that no improvement has been found for a number of iterations and the termination of

the evolutionary loop is accelerated.

The pseudocode for the dynamic genetic algorithm for optimum variable ordering is given as

follows:

Dynamic Genetic Algorithm(benchmark)

f

for(K1 = 0; K1 <= MAX POPULATION) f

Random Order();

BDD Size();

Initial Roulette Wheel Selection();

g

while(Generation Remaining) f

Crossover();

Mutation();

BDD Size();

random number = rand()%100;

if(random number < HY BRID RATE)Heuristic Parent Selection();

else Roulette Wheel Parent Selection();

Elitism();

if(improvement found in new generation) f

decrease Population Size by �1;

decrease Mutation Rate by �;

increase Generation Remaining 1;

g else f

6



increase Population Size by �2;

increase Mutation Rate by �;

decrease Generation Remaining by 2;

g

if(Population Size >=MAX POPULATION)

decrease Generation Remaining by 3;

Population Size = max(MIN POPULATION;min(Population Size,

MAX POPULATION));

Mutation Rate = max(MIN RATE;min(Mutation Rate;MAX RATE));

g

Copy Best Ordering();

g

3 Pass-transistor based Boolean Matching and Greedy Covering

Boolean matching, a key operation of the technology mapping process, is a technique to recognize

logic equivalences between two functions, one representing a sub-network in the subject graph

(called cluster function), and the other representing a library cell (named pattern function). In

the subject graph each internal vertex has unit fanout.

De�nition 1: A cluster function is denoted by: F(x1; x2; :::xn). It has n inputs and one output.

The phase of variable xi is denoted by: � 2 f0; 1g, where, x�ii = xi for �i = 1, and x�ii = �xi

for �i = 0. A library is denoted by: � : fG1;G2; :::;Gkg. The pattern function Gj is a

multiple-inputs single-output function.

De�nition 2: Given a cluster function F(x1; x2; :::xn) and a pattern function G(y1; y2; :::ym),

�nd an ordering fo1; o2; :::ong and a phase assignment f�1; �2; :::; �ng of the input variable

of F such that F matches G if F(x
�o1
o1 ; :::; x

�on
on ) = G(y1; y2; :::ym) is a tautology. In other

words, Boolean matching addresses the question of whether an input variable Negation

matrix N, and an input variable Permutation matrix P exist such that F(X) = G(PNX)

is a tautology.

7



There are three pattern functions corresponding to library cells Y1, Y2, and Y3 [5] as follows:

g1 = (x bar �A+ x �B)0 (1)

g2 = (x bar �A+ x � (y bar �B + y � C))0 (2)

g3 = (x bar � (y bar �A+ y �B) + x � (y bar � C + y �D))0 (3)

The relationship between a ROBDD and the cluster function it represents can be described as

follow:

Corollary 1: An OBDD with root v denotes a cluster function fv : B
n
! B such that:

(1) If v is a terminal vertex with value(v) = 1, then fv = 1;

(2) If v is a terminal vertex with value(v) = 0, then fv = 0;

(3) If v is a non-terminal vertex and index(v) = i, then fv = x0i
_flow(v) +

xi _fhigh(v),

where, _flow(v) = flow(v) if edge(v; low(v)) is positive, and _flow(v) = f 0
low(v)

if edge(v; low(v))

is negative. _fhigh(v) can be de�ned in a similar way.

In the normal Boolean matching algorithms [15] the upper bound on the number of variable

permutation to be considered in the search of a matching is
Qn

i=1 jC
b
i j! � (jCij � jCb

i j)!, where n

is the variable number of the cluster function, b is the number of the binate variables, and Ci is

the symmetry class whose elements have cardinality i. In our package the matching is realized

by traversing the OBBD. Because the multiplexer based cell library is strongly related to the

BDD data structure, a sub-BDD can always be matched by one of the three cells in the library.

The task of the matching algorithm, pass matching(), is to �nd the input variable Negation

matrix N, and Permutation matrix P. pass matching() can be described as follows:

struct model f

P � permu; = � permutation matrix � =

N � nega; = � negation matrix � =

8



char � cell; = � name of the library cell � =

g

pass matching(v; �)

f

if(value(v) == 0 OR value(v) == 1) f

model� > cell = constant;

return 0;

g

if(fanout num(low(v)) == 1 AND fanout num(high(v)) == 1) f

model� > cell = Y 3;

model� > permu = get permutation matrix(v; Y 3);

model� > nage = get negation matrix(v; Y 3);

array insert last(model�; matching node array;model);

g else if(fanout num(low(v)) == 1 OR fanout num(high(v)) == 1) f

model� > cell = Y 2;

model� > permu = get permutation matrix(v; Y 2);

model� > nage = get negation matrix(v; Y 2);

array insert last(model�; matching node array;model);

g

model� > cell = Y 1;

model� > permu = get permutation matrix(v; Y 1);

model� > nage = get negation matrix(v; Y 1);

array insert last(model�; matching node array;model);

return 1;

g

pass matching(v; �) is called repeatedly during the traversal of the BDD. All matchings are

stored in the arraymatching node array. The algorithm is of time complexity O(jBDDj), which

is much faster than the Boolean matching algorithm in [15]. The function get permutation matrix()

is quite straightforward. For example, the permutation matrix for the Y3 cell will be (xindex(v) xindex(low(v))

low(low(v)) low(high(v)) high(low(v)) high(high(v))). The negation matrix is determined by

the negative edges in the BDD. For example, for the Y1 cell, if edge (parent(v); v) is positive,

edge (v; low(v)) is negative, and edge (v; high(v)) is positive, the Negation matrix will be (0 1).

A greedy covering algorithm is employed in this package. The subject graph is not required to

be a tree, but just a rooted DAG for Boolean covering. There is always at least one match for

each vertex because the library contains a multiplexer, which is strongly related to the BDD

9



data structure. When multiple matches exist at a given vertex, the algorithm selects the biggest

covering match. This is because according to the library circuits in Figure 1, the bigger the cell

chosen, the more e�cient it is in area and delay. The selection priority in the pass-transistor

library is therefore Y3, Y2, and Y1. For example, for vertex j in Figure 2, there are three

matches, where match 1, which related to Y1 cell in the library, is smaller than match 2 and

match 3. So, match 1 is ignored. Match 2 and match 3 are with the same size. The algorithm

will arbitrary select one of them. The complexity of the algorithm is linear with respect to the

size of the subject graph.

4 PTM Implementation

After the covering algorithm, a gate interconnection netlist based on the pass-transistor library

has to be generated. However, to further optimize the synthesised circuit and to provide a suit-

able interface with external physics design tools, such as Mentor Graphic's GDT, the following

synthesis and interface algorithms are used.

4.1 Inverter optimization

During technology mapping described in the last Section, some redundant inverters would in-

evitably be introduced. We use the algorithm red inv rem() to remove these parallel and serial

redundant inverters. If there are i (i > 1) inverters fanout from the same node, the algorithm

will remove i � 1 parallel redundant inverters from the network. If an inverter's fan-in is also

an inverter, the algorithm will remove both inverters from the network. The most signi�cant

di�erence between red inv rem() and reminv in UC Berkeley SIS [16] is that red inv rem()

will avoid removing bu�er inverters associated with the pass-transistor library cells, because

they are required to ensure correct drive capability in the circuit.

10



4.2 Phase optimization

The total number of inverters in the network can be further minimized via phase assignment

algorithm. Here, we directly use good phase() algorithm, which is available in UC Berkeley

SIS [16], to perform phase optimization. good phase() determines for each node whether to

implement the function or its complement in order to reduce the total number of inverters.

4.3 Interface algorithm

To establish a suitable interface with the commercial physics design software, Mentor Graphic's

GDT, we used the algorithm interface GDT (). The algorithm can transfer the pass-transistor

library based netlist into the netlist which can be accepted by GDT. It transforms a netlist

format "cell node 1 node 2 ... node n" into a router �le format "cell xx.node yy, cell xy.node yz,

...,cell zz.node xz" used by the automatic place and route package AutoCells.

interface GDT ()

f

Print Header Information() ;

Print Input Nodes() ;

Print Output Nodes();

Print Logic Cell Instances();

while(cellsleft) f

Read Next Cell(cell);

if(cell == Any Cell Type) f

Increase(cell:type:counter);

while(type:nodecounter <> 0) f

Read Cell node(cell:node);

if(cell:node == NEW ) f

Start New List(cell:node; "cell:type; cell:type:counter; cell:node:type");

g

else f

Append List(cell:node; "cell:type; cell:type:counter; cell:node:type");

g

Decrease(type:nodecounter);

g

Reset(type:nodecounter);

11



g

g

Print Full List();

g

4.4 Veri�cation

After synthesis, the network is usually changed from the original. It is necessary to verify

the optimized network against the speci�cation. We integrated Berkeley's formal veri�cation

algorithm verify() in our package PTM.

The entire synthesis procedure for pass-transistor based CMOS circuits is depicted in Figure 3

PTM includes all algorithms within the rectangle, and has been integrated in UC Berkeley's

SIS environment. It can accept the standard gate-level descriptions from HDL compilers, create

the optimized netlist based on pass-transistor cells, and generate data for the layout tools.

5 Results

The numerous algorithms described in the previous sections were combined together as PTM.

Since no other pass-transistor based synthesis tools which can test general benchmark circuits

has been published, the performance of PTM is compared to state-of-the-art CMOS-based

synthesis algorithms in UC Berkeley SIS. In SIS a gate-level description is initially optimized

with the most robust technology independent synthesis script script:rugged. Then the optimized

network is mapped into MCNC CMOS standard library, mcnc:genlib. good phase() is also used

to perform phase optimization. To make the comparison fair, both pass-transistor logic and

standard CMOS logic libraries are designed for the TSMC 0.6� process using 5V supply voltage.

Since the technology allows only two metal layers metal1 is used for the cell design leaving metal2

for over-cell routing. The CMOS library has 19 di�erent cells, the pass-transistor cell library

only needed 7 di�erent cells including inverters and bu�ers.

Although PTM does not use power dissipation as an optimisation parameter, a rough estimate

12



on the power dissipation of synthesised circuits were made. We concentrated on the capacitive

switching power and neglected short-circuit, leakage and static power dissipation. Node activity

for each input was assumed to be 50% and uncorrelated. Using the topology of the netlist the

activity for each cell output was calculated. The capacitive load on this output was derived

from a database containing input-capacitance information for every cell-type. These input-

capacitance include the internal capacitances of the cells, which are derived from a statistical

analysis of their hidden internal nodes. The average power dissipation can be calculated using

the following formula [17]:

Pavr = a0�>1 �CL � V dd
2
� fclk (4)

where a0�>1 is the probability of a '0' to '1' transition on the node, CL is the load capacitance,

Vdd and fclk are the supply voltage and operation frequency respectively. Since Vdd and fclk are

constant for a given system, the average power for the entire circuit can be estimated by the

activity-capacitance product:

Cact =
nodesX
i=1

2
4ai �

fanoutiX
j=1

Cij

3
5 (5)

where Cij is the input capacitance for the j
th fanout of the ith node.

A large set of benchmark circuits were tested, and the results are shown in Table 1. Results

for the pass-transistor implementation are represented as percentages of that for the CMOS

implementation.

The CMOS values are used as reference, while PTM is given as a percentage to this value.

Column "Area" indicates the area used in mm2; "Delay" shows the critical path delay of the

mapped and place-and-routed circuits in ns; "C-active" indicates the average node-activity

multiplied by the load-capacitances (in pF) as mentioned above. "CPU" is the CPU time on

a SUN Sparc 10 workstation in seconds. From Table 1, it can be seen that PTM designs are

marginally larger in area when compared with standard CMOS. However, critical path delay is

in general better, on average by a factor of 1.4, with occasional exceptions. Power dissipation is

13



also lower for PTM in most cases.

6 Conclusion

A CMOS pass-transistor based logic synthesis package, PTM, which can run in UC Berkeley's

SIS environment is proposed in this paper. Since the cell library used is strongly related to the

BDD data presentation, our algorithm is not only memory e�cient, but also much faster than the

Boolean matching method in [15]. To solve the NP-complete problem of BDD variable ordering,

Genetic Algorithm with adaptive population size mutation rate and number of generations was

used. Since mapping is achieved using a cell library consisting of only three logic cells and

four bu�er-inverters, adding new technologies is extremely easy. Comparing the area, speed

and power of the benchmark circuits synthesis by PTM for pass-transistor logic and SIS for

conventional CMOS logic, better area-power-speed product is achieved in the majority of the

cases using PTM.

The current PTM only attempts to minimise the size of the mapped circuit. A future imple-

mentation will include power and timing in the optimisation cost function.

Acknowledgement

This project is supported by Mentor Graphics Corporation, USA, and Analog Devices.

References

[1] YANO K., YAMANAKA T., NISHIDA T., SAITO M., SHIMOHIGASHI K., SHIMIZU

A., \A 3.8 ns CMOS 16 � 16 multiplier using complementary pass-transistor logic", IEEE

J. Solid State Circuits, 1990, 25, (2), pp. 388{395

[2] SUSUKI M., OHKUBO N., YAMANAKA T., SHIMIZU A., SASAKI K., \A 1.5 ns 32 b

CMOS ALU in double pass-transistor logic", 1993 IEEE Int. Solid-State Circuits Conf.

14



Dig. Tech. papers, 1993, pp. 90

[3] OHKUBO N., SUSUKI M., SHINBO T., YAMANAKA T., SHIMIZU A., SASAKI K.,

NAKAGOME Y., \A 4.4ns CMOS 54 � 54-b multiplier using pass-transistor multiplexer",

IEEE J. Solid State Circuits, 1990, 30, (3), pp. 251{257

[4] ZHUANG N., WU H., \A New Design of CMOS Full Adder", IEEE J. of Solid-State

Circuits, 1992, 27, (5), pp. 452{456

[5] YANO K., SASAKI Y., RIKINO K., KEKI K., \Top-down pass-transistor logic design",

IEEE J. Solid State Circuits, 1996, 31, (6), pp. 792{803

[6] BRYANT R., \Graph-based algorithms for Boolean function manipulation", IEEE Trans.

Comput., 1986, 35, (8), pp. 677{691

[7] ALMAINI A.E.A., ZHUANG N., BOURSET F., \Minimisation of multi-output Reed-

Muller binary decision diagrams using hybrid genetic algorithm", Electronics Letters, 1995,

31, (20), pp. 1722-1723

[8] ZHUANG N., BENTEN M.S.T., CHEUNG P.Y.K., \Improved variable ordering of BDDs

with novel genetic algorithm", Proc. of IEEE Int. Symposium on Circuits and Systems,

May 1996, (III), pp. 414{417

[9] ALMAINI A.E.A., ZHUANG N., \Using genetic algorithm for the variable ordering of

Reed-Muller binary decision diagrams", Microelectronics Journal, 1995, 26, (5), pp. 471{

480

[10] SCHAFER I., PERKOWSKI M.A., \Synthesis of multilevel multiplexer circuits for in-

completely speci�ed multi-output Boolean functions with mapping to multiplexer based

FPGA's", IEEE Trans. on CAD, 1993, 12, (11), pp. 1655{1664

15



[11] MURGAI R., SHENOY Y.N., BRAYTON R.K., SANGIOVANNI-VINCENTELLI A.L.,

\An improved synthesis algorithm for multiplexer-based PGAs", Proc. of 29th ACM/IEEE

Design Automat. Conf., 1992, pp. 380{386

[12] ISHIURA N., SAWADA H., YAJIMA S., \Minimization of binary decision diagrams based

on exchanges of variable", Proc. of IEEE Int. Conf. Comput.-Aided Design, 1991, pp. 472{

475

[13] RUDELL R., \Dynamic variable ordering for ordered binary decision diagrams", Proc. of

IEEE Int. Conf. Comput.-Aided Design, Nov. 1993, pp. 42{47

[14] FRIENDMAN S.J., SUPOWIT K.J., \Finding the optimal variable ordering for binary

decision diagrams", IEEE Trans. on Comput., 1990, 39, (5), pp. 710{713

[15] MAILHOT F., DE MICHELI G., \Technology mapping with Boolean matching", IEEE

Trans. on CAD, 1993, 12, (5), pp. 599{620

[16] SENTOVICH E.M., SINGH K.J., LAVAGNO L., MOONC., MURGAI R., SALDANHAA.,

H. Savoj, P.R. Stephan, and R.K. Brayton, \SIS: A system for sequential circuit synthesis",

Technical report UCB/ERL M92/41, University of California, Berkeley, May 1992.

[17] CHANDRAKASAN A.P., BRODERSON R.W., \Low Power Digital CMOS Design\,

Kluwer Academic Publishers, 1995, ISBN 0-7923-9576-X

[18] MITCHELL M.,\An Introduction to Genetic Algorithms\, MIT Press, 1996.

16



out

out out

1

2

4

8

Y1 Y2

B

B B

A

C A D C A

X X

Y

X

Y

X

Y

X

Y

X

Y3

Figure 1: Pass-transistor cell library consisting of three basic cells Y1, Y2, Y3 and

bu�er/inverters of sizes 1,2,4 and 8

17



d

a

j k

b b

e e e

aaa

d

f d c h a

1

match 3

match 1

match 2

Figure 2: An example of the greedy covering (black dots depict negative edges)

18



GDT Place & Route

Mask Pattern

HDL Compiler

HDL Descricription

Gate-level Description

BDD Optimization

Technologh Mapping

Pass-transistor Cell Lib.

Inverter & Phase Opt.

GDT Netlist

verification

netlist compiling

Figure 3: Schematic diagram of package PTM (outlined by box)

19



Circuits Area (mm2) Delay (ns) C-active (pF) CPU (s)

CMOS PTM (%) CMOS PTM (%) CMOS PTM (%) CMOS PTM (%)

5xp1 0.03610 68.1 11.61 45.0 4.264 43.5 12.400 88.7

9sym 0.07320 20.5 6.67 78.4 7.357 14.3 61.200 20.6

b12 0.02560 126.6 4.66 104.1 3.279 59.9 9.500 356.8

bw 0.05690 116.0 12.39 66.4 5.427 58.6 24.200 42.6

clip 0.03910 94.4 9.91 54.6 4.106 65.2 35.800 49.2

con1 0.00630 93.7 1.60 100.0 8.473 63.7 2.900 79.3

cordic 0.04850 69.1 4.25 316.7 2.877 70.4 2025.300 11.5

duke2 0.18330 128.8 10.30 145.9 10.197 73.1 97.700 80.2

inc 0.03310 115.1 22.42 18.1 3.545 63.7 14.300 49.7

misex1 0.01580 117.7 6.14 53.4 1.984 65.3 6.100 41.0

misex3 0.24840 123.8 12.52 111.6 15.841 77.7 916.200 65.5

rd53 0.00960 92.7 4.91 57.6 1.070 67.9 5.500 67.3

rd73 0.01790 101.7 7.82 58.6 1.970 67.2 12.700 34.6

rd84 0.04980 48.4 7.46 69.6 4.657 36.1 48.600 30.9

seq 0.96280 98.2 10.33 214.4 40.828 77.9 33606.600 10.4

sqrt8 0.02130 77.0 7.42 59.2 2.540 47.8 7.800 39.7

squar5 0.02100 79.5 5.53 55.2 2.163 52.2 7.500 94.7

table3 0.38980 150.1 46.21 29.0 14.958 102.7 1733.200 11.1

xor5 0.00560 75.0 3.39 61.1 0.353 112.0 3.600 33.3

Table 1: Results for LGSynth93 benchmarks (CMOS columns are results for conventional CMOS

synthesis using SIS; PTM columns are results for pass-transistor logic synthesised using PTM

expressed as percentages of CMOS)

20


