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Abstract

This  paper  evaluates  alternative  multiplication
algorithms and parallel multiplier structures for the
design of expandable multiplication wunits to be
incorporated  into  hardware  components  for
reconfigurable computing. It shows how the well-known
methodologies used for fixed-length parallel multipliers
can be extended to deal with expandable units. A novel
design for such units is shown to offer a significant speed
advantage over existing schemes.

1. Introduction

Traditionally arithmetic units of digital computers
had to deal with one or at most two different data
representation formats, and the same applied to most
application-specific ~ processors. The  increasing
importance that new media applications — image and
audio processing, 3D graphics, MPEG video playback,
videoconferencing, etc. - have been gaining, led to the
extension of microprocessor instruction sets with
multimedia-oriented instructions. At present the dominant
processor architectures, Intel’s Pentium [19], Sun’s
Ultrasparc [21], HP’s PA 8000 [17], and lately PowerPC,
all feature multimedia extensions.

Although the multimedia instruction subsets differ
from one architecture to the other, they have in common
the support for parallel short length arithmetic, the so-
called “subword parallelism” [17], where binary
arithmetic operations are performed simultaneously over
multiple shortlength operand pairs. Hence the need to
incorporate on such processors ALUs capable of
operating both on word-long operands, typically 32 or
64-bit long, and on several short operands in parallel. The
length of the short operands is typically the 8-bit data
formats used in graphics and video processing, 16-bit in
audio applications and to keep full precision when
processing 8-bit data, and 32-bits for some 3D graphics
algorithms.

On the other hand, in the domain of field-
programmable gate arrays their increase in complexity of

to tens and even hundreds of thousands of equivalent
gates on a single chip, makes possible their use as the
basic building block of complete systems on a chip. An
array of general-purpose logic cells, the structure of
current FPGAs, is however quite inefficient in handling
the requirements of most systems. As the real estate on
the chips continues to grow, the inclusion of specialized
functional blocks becomes viable without affecting the
application-generic nature of the component.

Fast arithmetic figures high on the list of
requirements, being a critical performance parameter in a
number of application domains where the use of FPGA-
based systems has been investigated. Suppliers have
somehow started to address the problem by providing
FPGAs with some resources dedicated to speed up
addition. However, configuring existing FPGAs to
perform multiplication results in slow and expensive
solutions. Hence the embedding of dedicated multiplier
blocks into the FPGA structure appears as an attractive
proposition, capable of offering good performance with
an efficient use of silicon area. To keep however the
FPGA structure application-generic, these new blocks
should be able to handle both signed and unsigned
multiplication and to accommodate the different operand
wordlengths typical of the various application domains.

Hence a 8X8 bits multiplier is a sensible choice for
the basic block. It has however to be expandable, such
that longer wordlength multipliers can be built simply by
connecting basic blocks, and to be able to deal with both
two’s complement and unsigned operands. These are also
the requirements for the multiplication units of the
current microprocessor architectures that feature multiply
instructions in their multimedia extensions, as is the case
with Pentium MMX and Ultrasparc VIS. Hence the topic
of this paper is of interest to the apparently disjoint
domains of reconfigurable systems hardware and
arithmetic units for general-purpose computation.

This paper proceeds with a review of multiplication
algorithms and parallel multiplier structures, followed by
a novel approach to the design of expandable multi-mode
multipliers. Finally some results, obtained in the context
of the design of reconfigurable systems, are presented.



2. Multiplication algorithms and structures
2.1. Multiplication Algorithms

Schemes to achieve fast multiplication times have
been pursued since the early days of electronic
computers. They have addressed both the multiplication
of unsigned binary and two’s complement numbers.

Two fundamental questions have been addressed —
on the one hand how to improve on the basic add-shift
algorithm, the binary analogue of manual multiplication,
and on the other hand how to deal with the multiplication
of two’s complement numbers. Two classes of algorithms
have evolved, one class grouping solutions derived from
the basic add-shift algorithm, optimized to deal with
two’s complement operands [1], along with unsigned
multiplication for which it has been originally designed
[16], the other class including solutions based on
multiplier recoding, originally proposed by A. Booth [3]
for two’s complement multiplication and that has since
been extended to deal with unsigned operands [18], [8].
These are generally known as Modified Booth,
Overlapped Multiple-bit Scanning or Higher-Radix
multiplication algorithms.

Table 1 indicates the number of partial products
generated by the radix r algorithm, together with the
minimum number of bits necessary for the representation
of the partial products to handle unsigned, two’s
complement and mixed mode multiplication.

No. of partial products
Length of partial products
Multiplicand multiples

(n/logyr) + 1
m + log,r
-r/2, ..., 12

Table 1 — Radix r multiplication parameters
n — multiplier length; m — multiplicand length

Only the radix-2, the original Booth’s algorithm, and
radix-4, known as 2-bits-at-a-time Modified Booth’s
algorithm, or just Modified Booth’s algorithm, do not
require multiples of the multiplicand not obtainable by
simple shifts. Hence the radix-4 algorithm is by far the
most widely used, since it halves the number of partial
products generated for only a small increase in
complexity of the partial product generation logic.

2.2. Parallel multiplier structures

In parallel multipliers the partial products are
generated simultaneously and the product is calculated
using a combinatorial scheme, hence the designation
“non-iterative  multipliers” that distinguish such
architectures from sequential ones, where registers are

used to store partial results and the combinatorial part is
used iteratively.

The addition of the partial products could be done
using multiple standard adders. Since adders reduce the
two operands at their inputs to one output, a maximally-
parallel tree of adders scheme can be used (a “Par-Mult”
structure [22]), to achieve multiplication times of
logs(Acpa), Where Acpy is the delay of a carry-propagate
adder with the same number of bits as the partial
products. The speed of such a structure is limited by the
propagation of the carries, the major factor contributing
to Acpa. Hence parallel multiplier structures are based
usually based on a different, and cheaper, approach,
where the set of generated partial products is first reduced
to two numbers whose sum produces the final result,
leading to the structure depicted in Fig.1.
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Fig.1 — Parallel multiplier block structure

The design of the reduction block depends on the
choice of the reduction strategy and the type of
components to be used.

The set of partial products can be viewed as a bit-
matrix, where all bits in a column have the same binary
weight. The reduction process is then a way of producing
the binary count of the number of bits in each column, the
procedure being iterated until a matrix with columns of
height two is obtained. Hence the components to be used
are called counters [6], since they produce the binary
count of the number of ones at their inputs. If the
counters operate on single columns, i.e. if their inputs
have identical weight, they are called column-
compressors, unary-to-binary converters [4] or (m,n)-
counters, where m is the number of inputs and n the
number of outputs. If they are capable of producing a
weighted count, i.e. if they admit at their inputs bits from
different columns, they are known as generalized
counters [20]. Full-adders, i.e. (3,2)-counters, and half-
adders, i.e. (2,2)-counters, are the simplest counters. The



use of high-order counters looked attractive when the
scale of integration did not allow for single-chip fully
parallel multipliers, each counter being then realized as a
single chip, and allowing for a reduction in the number of
components in the design and hence faster operation
through less off-chip delays. However such counters,
when implemented with gates, are basically cascades of
full and half-adders, offering no significant reduction in
the number of gates and making the layout more complex
because of the heterogeneity of the structure. Hence in
this paper FAs and HAs are the only components to be
considered for the reduction block in Fig.1.

No. of P.P.s (NP) No. of reduction stages
3 1
4 2
5<=NP<=6 3
7<=NP <=9 4
10 <=NP <=13 5
14 <=NP <=19 6
20 <= NP <= 28 7
29 <=NP <=42 8
43 <= NP <= 63 9

Table 3 — Minimum number of carry-save adder stages as
a function of the number of partial products

Two main reduction strategies are available: parallel
(or tree) reduction and iterative (linear) reduction.
Parallel reduction strategies have been proposed in [23]
and [6]. Following the nomenclature proposed in [1],
parallel reduction can be done either on a word-basis
(“Wallace multipliers”) or on a column-basis (“Dadda
multipliers”). The minimum number of reduction stages
as a function of the number of partial products to be
reduced (NP) is indicated in Table 3 when just (3,2) and
(2,2) counters are used. This number is O(logz, NP), NP
being the number of partial products. Both Wallace and
Dadda multipliers achieve the reduction in the minimum
number of stages and are in that sense optimal.

In a Wallace structure [23] partial products are
grouped into sets of three. Within each set FAs and HAs
are employed to reduce the 3 partial products to two
words. Extra rows, i.e. those that are not part of a three
partial product set, are transferred to the next stage
without modification, to be reduced in a later stage. The
procedure is iterated until a 2-row bit matrix is obtained.
Silicon implementations of Wallace multipliers have been
reported, one notably using the Modified Booth algorithm
[9].

Dadda’s scheme [6] views the partial products
generated as a bit matrix, rather than as a set of multiple-
bit entities. Partial product bits are taken individually and
the reduction is viewed as a sequence of column-

compression operations whose aim is to obtain a matrix

with columns of height 2, hence the designation “column-

compression multipliers” given to these structures.

Different reduction procedures have been proposed for

column-compression multipliers, all of them requiring the

minimum number of reduction stages and an almost
identical number of gates. Dadda’s procedure [6] is to use
at each stage in the reduction the minimum number of

FAs and HAs required to compress the matrix columns to

the maximum height that can be reduced in one less stage

(as given by Table 3). Hence, for instance, if the initial

column height is 8, requiring 4 reduction stages, the

output of the first reduction stage is a matrix with a

maximum column height of 6, which can then be reduced

in 3 further stages. The resulting structure is highly

irregular — partial product bits have to be routed in a

highly  irregular pattern and some  counter

interconnections have to cross several reduction stages.

However some VLSI implementations claiming

reasonable area efficiency have been reported (e.g. [5]).

An alternative column-reduction strategy, leading to

the so-called Reduced Area (RA) multiplier [2], is to
apply Wallace procedure on a bit, rather than a word,
basis. Hence at each stage (3,2) counters are used to
achieve the maximum compression possible. If as a result
column-height still exceeds the maximum that can be
reduced in one less stage, (2,2)-counters are used. A
(2,2)-counter is also used at the rightmost column
containing 2 bits, in order that the final output of the
reduction process requires a minimum length carry-
propagate adder. The advantage of such a scheme is to
minimize the number of bits passing between successive
stages in the reduction, hence reducing the
interconnection overhead, while using the same number
of counters as Dadda’s scheme. The number of latches
required in highly pipelined implementations is also
minimized in this scheme.

Other schemes aiming at improving the mapping to
silicon have been proposed [24], in what became known
as “Windsor multipliers” [4]. The criteria used in order to
minimize silicon area are:

1. To distribute the adders as evenly as possible among
the reduction stages in order to achieve a rectangular
form factor.

2. To minimize the
interconnections

3. To reduce the maximum length of interconnections
(favour nearest-neighbour interconnections).

Different structures result depending on which criteria, 1

or 2, is given priority, but in both cases the number of

counters is the same as for the previous two schemes.

That number has been shown to be minimum [10],

whereas Wallace multipliers a larger number. One of the

schemes leads also to a shorter carry-propagate adder,

similarly to [2].

number of  cross-stage



A question that must be addressed is the use of these
tree-reduction schemes when the set of partial products is
generated by a Booth class algorithm. Then the partial
products generated are signed two’s complement
numbers and hence their summation must be done
mod(2™™). Given that the reduction is being done in a
maximally parallel way, the conventional sign-extension
scheme used to prevent the need for double-length
addition does not work, and the sign-extension bits must
figure explicitly in the bit matrix. In order to get around
the problem a strategy similar to the one used in Baugh-
Wooley to deal with the partial product sign bits can be
used — the partial products are stripped of their sign bits,
and these are collected in a single word whose two’s
complement is then calculated. In order to simplify the
logic this extra word can be made to correspond to the
situation where all partial products are negative, a +1
being added at the most significant end of all non-
negative partial products [7]. This is in fact equivalent to
generate (NP/2+2), instead of (NP/2+1) partial products.

Linear reduction translates into an array-like structure
as first proposed in [18] (albeit for an iterative scheme).
In these structures delay is O(NP), i.e. a linear function of
the number of partial products, (NP-2) reduction stages
being required. The regularity of the structure leads to
very compact chip layouts, making it by large the most
used in actual designs.

The sign-extension problem is also easier to deal with.
For these reasons, array schemes have so far been the
almost universal choice in actual chip designs. The
resulting structure is called a carry-save array.

3. Expandable Multiplier Array Blocks
To perform multiple-length multiplication using nXn
multipliers a number of extra adders is required, as
illustrated in Fig.2 for 2nX2n multiplication. The use of
Programmable Additive Multiplier Modules (PAM),
where each module performs the function
P=4*B+C+D
has been proposed in [16]. The module design used is a
Baugh-Wooley design modified to perform not only
two’s complement but also unsigned and mixed mode
multiplication, with the final carry-propagate addition

performed by a ripple-carry adder. For MXN
multiplication, where:
M=pXn and N=gXn,

the overall delay Ay is:
Ar=[(p+q)—1] Dpanm
QAp v being the delay of the nXn PAM block.

However, if the multiplier blocks are integrated on a
single chip, it becomes possible to merge the outputs of
the reduction stages of each block, instead of adding the
short length results. In such a scheme the inputs to the
reduction stage of each block are not only the short-

length partial products but also the outputs of the
reduction stages of preceding blocks.
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Fig. 2 — Doing 16X16 multiplication with 8X8 multipliers (4
PAM modules, P1 — P4 required)

Fig.3 illustrates the scheme for 16X16 multiplication
based on 8X8 multiplier blocks. The partial products
have been produced by Baugh-Wooley’s algorithm. Fig.4
represents the resulting bit matrix to be reduced by each
block. Figures 5 and 6 do the same as figures 3 and 4 but
for the case when the radix-4 multiplication algorithm is
used. Overall delay is now: A = (p — 1) Ag, where Ag
being the delay of the reduction block of a nXn
multiplier.

****************:‘v
L O
Fig.3 — 16X16 multiplier built from 8X8 Baugh-Wooley blocks.
* - block o/ps that are fed to the i/ps of connected blocks
! — sign-extensions of the o/ps of intermediate blocks



For the reasons already explained 8X8 has been
chosen as the dimension for the basic multiplier block.
Hence the parallel and iterative reduction of the bit
matrices depicted in figures 4 and 6 must be compared in
terms of performance and numbers of components (FAs
and HAs) required. Tables 4 and 5 summarize the results.
Since a main factor in determining the achievable speed
with a reduction scheme is the number of reduction
stages, the data shows that the use of parallel reduction
on 8X8 expandable multiplier blocks can provide at most
a 20% increase over an iterative scheme when partial
products are generated by the radix-4 Modified Booth
algorithm. The potential nominal speed advantage of
parallel over iterative reduction when Baugh-Wooley’s is
used is almost double that at 37.5%. Since an identical
number of reduction stages (5) is required for the radix-4
Modified Booth array structure and the Baugh-Wooley
tree structure, we can conclude that the nominal speed of
these two alternative solutions is similar.

It must be stressed however that these comparisons
are only based on logic delays, ignoring connection
delays, which are longer in tree than in array structures.

Fig.4 — 8X8 Baugh-Wooley bit matrix for expandable
multipliers
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Fig.5 — 16X16 multiplier built from 8X8 Modified Booth
blocks using sign-extension correction bits
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Fig.6 - 8X8 radix-4 M.Booth partial product matrix for
expandable multipliers
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Tree Array
Baugh-Wooley 5 8
Radix-4 M.B. 4 5
Table 4 — No. of Reduction stages for 8X8 expandable
multiplier blocks
Tree Array

Baugh-Wooley | 65 FAs+6 HAs | 64 FAs
Radix-4 M.B. 54 FAs+ 6 HAs | 48 FAs

Table 5 — No. of 1-bit full and half adders in the reduction
stages of 8X8 expandable multiplier blocks

In what concerns the number of components required
in the reduction stage, the fact that in the iterative (array)
structure it is possible to sign-extend the words,
dispensing the need to explicitly include the sign-
extension bits in the original matrix to be reduced (i.e. the
! bits in the figures), causes the array schemes to require
less logic. The economy is bigger for the radix-4 M.B.
array (roughly 15%, assuming that a FA requires around
twice the area of a HA).

The design of a expandable multiplier block based on
Baugh-Wooley’s algorithm has been reported in [14] and
[15], for a block of dimensions 4X4.

Fig.7 shows that cascading radix-4 Modified-Booth
array blocks leads to a quite straightforward design. The
logic blocks to be bypassed are shown shaded. The
connections between blocks are also represented. The
multiplier decoders are not shown. Only the decoders of
the blocks dealing with the most significant part of the
partial products are active; the others should be disabled.

From an i/o perspective only some extra control bits
indicating the relative position for each multiplier block
(most significant end or not, top, middle or bottom of the
reduction array) are required.

Given that the top carry-save adder row has some of
its inputs free, it is possible to use the block as a
multiplier-accumulator performing the function

P=A*B+C C - n-bit operand

When calculating an inner product, if A and B are
integers, C is the least significant half of the output and
attention must be paid that intermediate results do not
overflow. However when A and B are two’s complement



numbers the most significant half of the result can be fed
into the last row of the carry-save array that is not used
when doing two’s complement multiplication. Hence a
full-precision accumulation can be performed with the
array of Fig.7.

4. Conclusions

A new methodology for the design of expandable
multiplier blocks has been presented. It was shown that
this methodology leads to designs enjoying a significant
speed advantage over previous schemes. Alternative
algorithms and structures were evaluated for the design of
8X8 blocks, considered to be the most adequate
dimension to build variable-length multiplication units
for reconfigurable systems. A design using the radix-4
Modified Booth’s algorithm and an array reduction
structure was shown to hold significant speed advantages
over the alternatives. Such a design offers also the
advantage of being able to execute multiply-accumulate
operations at no extra hardware or speed cost.
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