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Abstract. This paper presents the Customisable Modular Platform
(CMP) approach. The aim is to accelerate FPGA application develop-
ment by raising the level of abstraction and facilitating design reuse.
The solution is based on network of Nodes, communicating using packet-
based protocol. The approach is illustrated using SoftSONIC, a CMP for
video applications. Our approach promotes modularity and design reuse
by having multiple interoperable layers of design abstraction, while sup-
porting advanced development and verification methods such as mixed-
abstraction execution and efficient system-level simulation based on
Transaction Level Modelling. The platform provides domain-specific ab-
stractions and customisations of various elements such as communication
protocols and topology, enabling exploitation of data locality and fine-
and coarse-grain parallelism. The benefits of our approach is demon-
strated using SoftSONIC for development of several real-time HDTV
video processing applications.

1 Introduction

Design cost has become a critical issue as a result of the exponential rise in silicon
and design complexity. This paper presents the Customisable Modular Platform
(CMP) approach, which aims to lower the design cost of complex digital systems.
Reconfigurable platforms are utilised to alleviate some of the problems caused by
manufacturing Non-Recurring Engineering (NRE) and silicon complexity, such
as mask cost, probe card, signal integrity, power and clock management, man-
ufacturing and process variability [1]. The novel aspects of the CMP approach
aims to solve system complexity issues and those silicon complexity issues that
are not directly solved by using reconfigurable platforms.

This area has attracted much attention during the past few years. Exam-
ples include platform-based system-level design [2,3], automated communication
refinement [4] and network-on-chip paradigm [5]. The SystemC community has
been the main contributor to the work on Transaction Level Modelling (TLM)
[6], alongside with SpecC [7].

Our work differs from these previously proposed approaches in the following
ways. (1) Exploitation of reconfigurable platforms: automated mixed simulation
and hardware execution, rapid prototyping and run-time reconfigurability. (2)
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Domain specific design approach, which entails domain-specific information for
design optimisation. (3) Platform customisation to minimise overhead. (4) Com-
bining verification and reuse of Intellectual Property (IP) within a single frame-
work. In addition, while previous work on TLM has been focused on bus-based
embedded mircroprocessor systems. Our work offers a hardware oriented ap-
proach with a selection of communication topologies. Finally, CMP can be used
for abstracting and generalising the Sonic-on-a-Chip approach [8].

The rest of the paper is organised as follows. Section 2 introduces the CMP
approach. Section 3 presents SoftSONIC. Section 4 and 5 cover functional and
design abstractions. Section 6 presents implementation results. Section 7 looks
at current and future work, and concludes the paper.

2 Customisable Modular Platform Approach

Advanced multi-million gate FPGAs such as Xilinx Virtex II Pro and Altera
Stratix and can significantly reduce the manufacturing NRE cost. However, the
design NRE cost dominates the overall cost and time [9]. The CMP approach is
developed to address this issue.

The CMP approach originates from the platform-based design concept [1,2,
10]. A CMP is a domain specific design methodology, capturing the underlying
abstractions and design rules in the form of a virtual platform. It contains a
set of design rules that characterise the target architecture. These rules are
determined partly by the physical architecture and implementation technology,
for instance hardware/software or FPGA/microprocessor. Many of the rules are
‘virtual’, enabling higher-level abstraction of architectural and physical issues.
This higher-level abstraction accelerates the mapping of the application to the
target architecture, and facilitates the design and verification process.

The CMP defines different abstraction layers for the functional abstractions.
Each abstraction layer is defined in terms of information that they entail, for
example numerical precision, timing behaviour, and resource usage. The CMP
adopts four distinct abstractions: Algorithmic, Virtual TLM, Physical TLM, and
Register Transfer Level (RTL).

The penalty in speed, area and power consumption is reduced by two fac-
tors. (1) The platforms are application domain specific. By narrowing the scope,
platform abstractions can be chosen in accordance to known efficient implemen-
tations. Examples of such application domains are video processing [15], wire-
less networks [11] and communications [12]. (2) The platforms are customisable
within the domain for a particular application and implementation, to support
efficient architectural exploration and realisation. In general, architecture-level
design decision have potentially much greater impact on the final performance
than low level implementation optimisations.

Often, the first step in our approach is the selection of a domain specific CMP,
characterised by the communication and computation. The specific scope of the
chosen CMP enables efficient modelling and optimisation. Within SoftSONIC,
our CMP for video applications, the customisable aspects include the level of
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coarse and fine grained parallelism, communication packet structures, communi-
cation protocols and topologies, packet data sequencers, and hardware/sofware
partitioning. For example, the achievable parallelism can be dictated by the
inherent parallelism of the algorithm or can be bound by communication band-
width. The platform can be customised to meet the maximum performance in
either case, for example with the selection of inter or intra device communication.

The main goal of a CMP is the separation of design concerns. In addition to
the traditional separation of computation from communication and the function-
ality from architecture, the CMP approach provides the separation of verification
of functionality from verification of performance. When applicable, this separa-
tion reduces the overall verification effort. The purpose is to avoid functional
re-verification after design exploration and customisation for performance. High-
level functional verification is also simplified, as implementation details need not
be considered.

The CMP approach reduces the observed complexity to alleviate the over-
all design and verification effort in the following ways. IP Reuse. The platform
concept enhances IP reusability by specifying an unambiguous interface between
communication and computation. Furthermore, the modularity of the approach
makes IP reuse possible in several levels and abstractions. Restricted Design
Space. Application developers can focus on using the optimised facilities of-
fered by a particular CMP, while CMP developers can focus on creating efficient
CMPs by optimising and generalising designs. High-Performance System
Simulation. The CMP approach uses TLM for the high-level block models.
Simulation speed at transaction level can be 100 times faster than RTL simu-
lation [13]. Mixed-Abstraction Execution. When a new block is developed,
the behaviour of the rest of the system can be obtained by the fastest available
model, reducing the simulation time. In addition, when using reconfigurable plat-
forms, it is possible to use the actual hardware of available blocks in real-time
execution. This can be several orders of magnitude faster than software sim-
ulation. Co-Simulation. Co-simulation between different design tools is diffi-
cult. The CMP approach alleviates the co-simulation problem by specifying a
restricted, unambiguous platform communication mechanism. Intrinsic Sup-
port for Run-Time Reconfiguration. The possibility to update a product
after deployment enables: (a) support for new features, (b) post-delivery design
optimisation, and (c) adaptation to run-time conditions.

3 SoftSONIC CMP

SoftSONIC is a CMP for video processing applications. It is inspired by the Ul-
traSONIC board-level architecture [14]. The main difference between SoftSONIC
and UltraSONIC is that UltraSONIC was developed to support easy integration
of hardware modules, whereas the aim of SoftSONIC is to reduce the observed
design complexity of the system in order to speed up the design and verification.

In UltraSONIC the system is constructed from discrete PIPE hardware mod-
ules. In SoftSONIC these modules, called Nodes, are virtual, and are separated
from an actual implementation. For example, one FPGA can contain several
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Nodes, or one Node can span several FPGAs. UltraSONIC has a specific set of
protocols to support a particular board architecture. SoftSONIC, in contrast,
can be customised to target different board architectures and applications.

From the functional perspective, SoftSONIC is similar to UltraSONIC; both
cover high-bandwidth video image processing applications [14,15]. SoftSONIC
also adds or improves the following functionalities. Multi-cycle pixel process-
ing. The processing of a pixel can take an arbitrary number of cycles. SoftSONIC
supports pixel-level parallelism in three ways. (1) At high level, the number of
Nodes that run in parallel can be varied. (2) At Node level, the data packets can
be processed in parallel. In FPGA implementations of the Nodes, the packets are
stored in block RAM, which supports parallel accessing. (3) At Node level, the
clock frequency of each Node can be customised to meet design requirements.
Fork and join of data streams. Forking of a stream is important, when new
data are extracted from a stream while the original stream is needed later in
the processing pipeline. The joining of streams is used, for example, in creat-
ing composite images, like blue/green-screen composition, logo insertion, and
gradual stream transition. Support for non-image data. In addition to pure
image data such as RGB 4:4:4[:4] and YUV (4:2:2, 4:2:0) in lines, windows and
scattered pixels, SoftSONIC supports image-related information such as image
metadata, compressed image data, and audio. Shared memory random ac-
cess. Memory random access is enhanced with the use of memory-server Nodes
and random-access data packets.

These improvements illustrate the additional functionalities that SoftSONIC
supports. However, the main goal of SoftSONIC is to reduce application devel-
opment time, which is achieved by exploiting the advances in Section 2.

4 Functional Abstraction

The purpose of functional abstraction is to specify the platform in a concise and
easily adoptable manner. Functional abstractions include the model of commu-
nication and the model of computation. These functional abstractions separate
the timing inside a Node from its external interfaces. This is an important factor
in separating the communication from computation to obtain the benefits listed
in Section 2.
Model of Communication. Communication in SoftSONIC is based on packets
that contain a header and a payload. The packet payload contains structured
data: in addition to explicit information, the type of packet implicitly indicates
how the data should be interpreted. In SoftSONIC, basic packet types are pixel-
based image data, structured to lines, windows or scattered pixel and address-
data pairs for random memory access.

The information structure between Nodes is restricted to packets. The com-
munication is unidirectional: once the packet is sent by the producing Node it
cannot be altered, and after consumption the packet is deleted. Packet schedul-
ing follows bounded First-In-First-Out (FIFO) buffers in a process network.
Both attempts to read an empty buffer and to write to a full buffer are blocking
operations.
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Fig. 1. A SoftSONIC node

One exception to packet communication is Configuration Register (CReg)
communication. An element outside the communication network, for example
the host computer or on-board user interface, can access CRegs inside the Nodes
without using packet-based communication. The CReg interface is intended for
low-bandwidth, time-independent sporadic communication involving, for exam-
ple, information about Node parameters and user control. The CReg interface
implementation is application and environment specific, but must follow CReg
update rules, which due to space restrictions are not explained here.

Model of Computation. User-defined functions take place inside the Nodes.
The general structure of a SoftSONIC Node is depicted in Fig. 1. A Node consists
of: the Input and Output Buffers, the Buffer status information ‘S-box’, the Node
Engine Wrapper, and the Node Engine.

The Input and Output Buffers contain FIFOs for packet communication. The
S-box contains the status information of the buffer and handles the arbitration of
the buffer. The S-box interface handles the transition between abstractions lay-
ers, development environments, and clock domains. The Node Engine Wrapper
is a customisable data sequencer for input and output buffers. It can be cus-
tomised, for example, to access packets in parallel sequential streams or to have
application specific scan pattern. It starts consuming the input packet when all
required input buffer(s), output buffer(s) and the Node Engine(s) are available.
The CReg interface is implemented within the Node Engine Wrapper and the
actual registers locate inside the Node Engine.

User-defined computation is performed inside the Node Engine. The Node
Engine can use only the information included in the input buffer(s), the packet
header, internally stored data and the CReg data. A Node can contain one or
more engines wrapped by a single Node Engine Wrapper.

The Nodes are connected to each others with channels. The channels have an
identical interface to the input and output buffers, and have the same firing rules
as computation Nodes. The only difference is that a channel does not change the
contents of the packet in any way; it just transports a packet from one buffer to
another. It is also possible to connect Nodes together in a point-to-point manner.
In this case one Node’s output buffer becomes another’s input buffer.
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Fig. 2. Transaction Level Model Layers: Virtual and Physical

5 Design Abstraction Layers

SoftSONIC is divided into four distinct design abstraction layers. Each layer is
defined in terms of timing, implementation and data accuracy, the incoming and
resulting system model and the target design questions the layer aims to answer.

Algorithmic: Executable Specification. The algorithmic layer does not use
SoftSONIC functional abstractions. The purpose of this layer is to provide an
executable specification for the system under development. In this layer, the
whole system functionality is described using high level software languages such
as C/C++ or Matlab. The executable specification does not contain information
about the timing and performance of the system. However, this layer must con-
tain information about limited bitwidth effects and the maximum error bound.

Virtual TLM: Parallel Functionality. Layer 2, Virtual TLM, is the first
SoftSONIC specific layer. The purpose of this layer is to re-specify the contents
of the Algorithmic layer using the SoftSONIC functional abstraction. The main
design effort is in mapping the functionality to individual Nodes and extraction of
parallelism in the application. Node communication is modelled using unlimited
communication resources in bandwidth and the number of connections, but with
bounded input and output buffers. In other words, the packet always takes zero
time to arrive from producer to the consumer. Bounded input and output buffers
enable mixed-abstraction execution. The bounding of the FIFOs can be made
arbitrarily at this point, as it does not affect the functionality of the system. An
example of a Virtual TLM is depicted in Fig. 2(a).

In this layer, sending and receiving a packet is modelled as a single transaction
in a queueing process network. Coarse grain parallelism at Node level can be
explored, but there is limited feedback of resource usage as unbounded resources
are assumed. In other words, it is possible to explore whether the algorithm
can be parallelised, but it is impossible to determine whether such a system is
feasible for real-life implementation. The verification task is system-to-system:
the functionality of the Algorithmic layer must correspond to that of Virtual
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TLM. In this layer, both communication channels and computation Nodes are
described using untimed TLM models.
Physical TLM: Design Exploration. In the Physical TLM layer, the func-
tional description of the Nodes remains unchanged. The focus is on resource
allocation, design exploration, and customisation. As the functionality does not
change, the verification task of this layer involves purely the validation of the
performance requirements in speed, area, power, etc. The separation of func-
tional and performance verification simplifies the task, and makes it easy to
support a systematic approach to the problem. This can guarantee ‘correct by
construction’ functionality when carrying out architectural design exploration.

Design exploration can be divided into two parts: communication and Node
implementation analysis. Communication exploration examines the choice of dif-
ferent communication protocols, media and throughput versus resource usage.
Choices can be made between on-chip and off-chip resources, packet sizes and
types. A crucial decision is the size of the input and output buffers, as these can
have significant impact on performance and resource usage. In Node implemen-
tation analysis, different levels of coarse and fine grain parallelism are explored.
Also, if the decision has not been made earlier, Node-level software/hardware
partitioning is carried out.

In this layer, the final packet sizes and types, communication and imple-
mentation media are allocated and buffer sizes re-examined. Thus performance
analysis in terms of throughput can be estimated by modelling the individual
throughput of the Nodes and communication system. These figures can be ob-
tained from the lower RTL layer, or estimated. The communication is described
using timed TLM models. As mentioned before, the computation Nodes remain
unchanged; they are still modelled with untimed TLM models.

From the Virtual TLM layer description in Fig. 2(a), one possible outcome of
design exploration and customisation is illustrated in Fig. 2(b). The communi-
cation of the first two Nodes is handled by point-to-point communication, such
that the output buffer of the producing Node is the input buffer of the consum-
ing Node. One of the Nodes is replicated to enhance Node-level parallelism. The
second communication choice is to utilise a packet switch for the communication
and finally, a bus is utilised.
RTL: Path to Implementation. The RTL layer implementation begins by
generating the communication description from the Physical TLM layer. The
communication acts as a wrapper for the RTL implementation. For simulation,
the higher-level description of the communication can be used. This layer is
focused on to the computation in the Nodes and the communication remains
unchanged. The RTL description of the Node engines can be done by using a
synthesisable language like RTL SystemC, HandelC, VHDL or Verilog. The ver-
ification of the Nodes is made easier by the independence of the Nodes and the
ability to re-use the verification environment. The verification task is Node-to-
Node when we move from Physical TLM layer to RTL layer. This is in contrast
to system-to-system verification, which is the case when we move from Algo-
rithmic layer to Virtual TLM layer. This also leads to opportunity for the use
of advanced verification methods like assertion-based verification and formal
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Table 1. Comparison of performance in Thermal Camouflage effect

Implementation Clock Seed Throughput Speed-Up Factor
[MHz] [Frames/s] (compared to SW)

Software (PC) 2400 1.6 1.00
VHDL simulation (PC) 2400 0.0006 0.0004
Mixed VHDL and SoftSONIC 2400/133 0.02 0.01
SoftSONIC 133 64 37.85
Parallel SoftSONIC 133 128 75.70
UltraSONIC 66 32 18.88
Normalised SoftSONIC 66 32 18.78

methods. The reduced scope of the verification problem increases the feasibility
of these methods.

6 Results

This section compares the performance of various implementations of SoftSONIC
against UltraSONIC and software simulations. We have developed an experimen-
tal hardware implementation which involves a real-time HDTV 1920 by 1080
RGB 4:4:4 10 bit/channel (SMTPE 372M – “Super2K”) video effect applica-
tion. The system creates a ‘thermal camouflage’ effect used to visualise semi-
transparent objects. Similar effect has been used, for example, in the movies
Predator (1987) and Hollow Man (2000). This application consists of 6 Nodes:
Packet Source and Sink, 3x3 Blur Filter, 2D 3x3 Sobel Filter, Image Differen-
tiator, and finally the ‘Lens Effect’ Node that produces a special effect to areas
where the foreground image is different from the background image. The lens
effect is created by varying the refraction according to the intensity of the edges.

One implementation of SoftSONIC is customised to the application and to
the Xilinx Virtex-II Pro 50 FPGA by selecting packets of one line with buffer
size of 2. This way, eight Block RAMs in 512x36 bit mode can form one buffer.
With this setup, it is possible to have eight parallel pixel reads and writes. In
this application, maximum throughput is determined by external memory ac-
cess. Buffer size of 2 offers optimal performance/area tradeoff, as one buffer can
be read while the other is being written, without significant pauses in processing.
As all the functions in the application involve stream processing without non-
deterministic components, point-to-point communication is the optimal selection
for communication. Sometimes, the performance could be further optimised by
maximising the individual clock speed of the Nodes, but in this case the maxi-
mum clock speed of 133MHz is dictated by the ZBT SRAM interface. Clock rates
could also have an effect on the power consumption, but this is not currently
being evaluated.

We consider seven different implementations, and the performance results are
summarised in Table 1. The software implementation is the C++ Algorithmic
level description of the system as a DirectShow filter running on a dual Athlon
PC at 2.4GHz with 2G bytes of memory. Software simulation is based on Mod-
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Table 2. SoftSONIC Node performances

Kernel BRam 1 engine 2 engines 4 engines 8 engines
Slice MHz fps Slice MHz fps Slice MHz fps Slice MHz fps

Invert Colours 8 160 289 139 183 295 282 228 315 604 405 296 1137
Image Diff 16 264 277 132 313 270 259 445 279 535 809 267 1025
Alfa Blend 16 364 175 83 554 167 160 951 160 307 1868 146 560
3x3 Noise Filter 24 1162 201 95 1773 202 191 3056 200 380 5525 220 836
2D 3x3 Sobel 24 1578 200 94 2736 202 191 4999 185 351 9389 140 532

elSim SE Plus 5.7f running on the above PC. In the mixed VHDL and Soft-
SONIC implementation, only the Lens Effect Node is simulated, and the other
parts of the design is running on the FPGA. The Lens Effect Node would most
likely be the only one that needs to be built from scratch, as the other Nodes
are common image processing kernels. In the Parallel SoftSONIC implementa-
tion, the Packet Source and Sink produce/consume packets in double rate, and
there are two Node Engines in each processing Node to enhance parallelism.
The application does not have inter-line dependencies, so the upper limit of the
parallelisation is bound only by the available memory or memory bandwidth.
The UltraSONIC implementation contains Xilinx Virtex 1000E FPGAs using
UltraSONIC protocols. Finally, in order to enable fair comparison between Soft-
SONIC and UltraSONIC, the Normalised SoftSONIC is an implementation on
UltraSONIC hardware.

From the results it can be seen that the SoftSONIC implementations provide
significant speedup compared to the software implementation. The Normalised
SoftSONIC implementation is only slightly less efficient than the UltraSONIC
implementation, indicating that the performance penalty is not significant. The
main overhead is the higher usage of Block RAMs for input and output buffers.

Table 2 illustrates individual SoftSONIC Node performances, without con-
cerning external memory access. The results are obtained after place and route,
but without I/O buffers, as reported by Xilinx ISE 6.2.01i. For synthesis, Syn-
plify Pro 7.2.2 is used. For each kernel, there are four separate implementations,
which indicate 1, 2, 4, and 8 parallel engines inside a Node. Naturally, the faster
implementations consuming more area, has more parallelism. All the implemen-
tations are automatically generated according to the level of engine parallelism.
Because of the used abstractions, the engines can simply be replicated in order to
accommodate the parallelism. However, as all these implementations use before
mentioned 8 BRAM I/O buffers size, the data sequencers are different in each
implementation in order to handle serialisation and de-serialisation of the data.
Although, in the case of window processing this is non-trivial task as parallel
engines have overlapping data, also these are automatically generated.

The table shows that very high frame rates can be achieved by using the
SoftSONIC Nodes, and it is likely that the performance limitation will come
from external memory access. In addition high performance of the kernels, the
integration of kernel-Nodes to applications is greatly facilitated, as the Node
interface guarantees interoperability.
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7 Summary

We have described the Customisable Modular Platform approach for rapid ap-
plication development and optimisation of reconfigurable designs. Our approach
is illustrated using the SoftSONIC platform. Opportunities for customising Soft-
SONIC are discussed, and it is shown that SoftSONIC can produce many im-
plementations rapidly without significant overheads. Current and future work
includes refining the SoftSONIC model, automating the customisation process,
and evaluating our approach using complex applications.
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