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Abstract. This paper focuses on a class of problem relating to the mul-
tiplication of a single number by several coefficients that, while not con-
stant, are drawn from a finite set of constants that change with time.
To minimize the number of operations, we present the formulation as a
form of common sub-expression elimination. The proposed scheme avoids
the implementation of full multiplication. In addition, an efficient imple-
menation is presented targeting the Xilinx Virtex / Virtex-II family of
FPGAs. We also introduce a novel use of Integer Linear Programming
for finding solutions to the minimum-cost of such a multiplication prob-
lem. Our formulation results in area savings even for modest problem
sizes.

1 Introduction

For Digital Signal Processing (DSP) or arithmetic intensive applications, multi-
plication is considered as an expensive operation. This is because, typically, the
main part of the area consumed in their implementation comes from multipliers.
For a constant coefficient multiplication, instead of using a full multiplier, a gen-
eral method to efficiently reduce the hardware usage is to use a series of binary
shifts and adders. A shift operation may have almost negligible cost since it is
hard-wired. Therefore, the total hardware cost is approximately corresponding
to the area of adders required.

Reducing the number of adders in constant multiplication is an optimization
problem. The key point of most existing research is the minimization of this
quantity, which is an NP-hard problem [1].

By contrast, our approach introduces a form of the common sub-expression
(CSE) elimination problem, which we refer to as multiple restricted multiplica-
tion (MRM). This refers to a situation where a single variable is multiplied by
several coefficients which, while not constant, are drawn from a relatively small
set of values. Such a situation arises commonly in synthesis due to resource
sharing, for example in a folded implementation of a FIR filter [2] or a poly-
nomial evaluation using Estrin’s method [3l4]. Recent FPGA architectures have
included dedicated multiplier blocks. By exploiting our technique, these blocks
are freed to be used for true general multiplications.

Existing approaches to CSE are unable to take advantage of such a situation,
resulting in the use of expensive general multipliers, as shown in Fig.[l Fig. [a)
shows a Data Flow Graph (DFG) with input z tied together, input sets of
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constant multiplicands labelled as {c11, ¢12, ..., c17} and {c21, ¢a2, ..., car}. The
first subscript here refers to the spatial index and the second to the time index,
i.e. ¢j is the value of multiplicand 4 at time ¢. A standard technique using ROMs
and multipliers is depicted in Fig.[D((b) and our approach performing equivalently
is shown as a “black block” in Fig. Mc).
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>

Fig.1. (a) A DFG with only multiplier nodes, one input x, and other two inputs of
multipliers. (b) The standard implementation with ROMs and Multipliers. (c) A black
box interpretation of our approach.

In this paper, it is shown that the MRM problem can be addressed through
extending the basic unit of operation from an addition, used in multiple constant
multiplication (MCM) [7[]], to a novel adder-multiplexer combination. It is fur-
ther demonstrated that for Xilinx-based implementations, the Xilinx Virtex /
Virtex-1II slice architecture [9] can be used to implement such a basic compu-
tational unit with no area overhead compared to the equivalent adder used in
MCM.

A similar technique was previously presented by R.H. Turner, et al. [5] for
implementing multipliers with a limited range of coefficients, which we extend
by making use of the dedicated AND gate presented in the slice. The key is to
exploit the set of primitive components: the supplementary logic gates, next to
each LUT, and the dedicated carry-chain logic. Full utilization of these allows
the implementation of an adder and/or a substractor along with a multiplexer
in a novel configuration. This can be applied to constant multiplication using
sub-expression sharing to achieve efficient FPGA implementation. A recent work
by S.S. Demirsoy, et al. [6] has begun to address this problem using the type of
computational node demostrated in [5].

Since MCM is NP-hard [1] and is a special case of MRM, it follows that
MRM is NP-hard. Thus in order to find the area-optimal implementation of a
given MRM block, a novel formulation of the optimization problem as a class of
Integer Linear Program (ILP) is proposed. This approach allows us to leverage
the recent advances in the field of ILP solution.

This paper therefore has the following novel contributions: 1. the introduc-
tion of the MRM problem, and its solution using a novel extension of adder-
multiplexer cells. 2. the formulation of the minimum-area MRM as ILP for-
mulation. 3. an efficient use of the Xilinx Virtex / Virtex-II slice structure to
implement MRM.
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This paper has the following structure. Section 2 describes the background
of MCM. Section 3 describes the proposed architectural solution to the MRM
problem, and Section 4 demonstrates that this solution can be efficiently im-
plemented in the Xilinx Virtex family of FPGAs. Section 5 formulates the op-
timization problem in ILP, Section 6 collects and discusses results from MRM,
and Section 7 concludes the paper.

2 Background

2.1 Multiple Constant Multiplication

MCM, a special case of the MRM problem address in this paper, has been used
in many research fields, especially in DSP applications. A common use of MCM
is within the design of fully unfolded digital filters [2]. The main idea of this
technique involves removing the redundancy inherent in the re-computation of
common sub-expressions. Applying this approach provides a significant reduction
of area necessary to implement multiple constant multiplications. Even within
a single multiplication, common sub-expressions exist. As an example, consider
integer multiplication with constant coefficient 10100101. Let us denote left-shift
as <<. Instead of performing (z << 7) + (z <<5) + (z << 2) + x where z
is an input variable, we can perform (y << 5) + y where y = (x << 2) + z.
Hardware is then saved due to the elimination of the 101 (z << 2) + x sub-
expression. Sharing such sub-expressions across several coefficients results in
significant savings.

2.2 Representing Multiplicands with Data Flow Graphs

DFGs are the basis of a computational model used extensively in DSP. A DFG
is a directed graph, with nodes in one to one correspondence with operations
and edges in one to one correspondence with data flow. We shall consider edge-
weighted DFGs, where the edge weight corresponds to a shift operation. For
example, the CSE case considered above may be represented as a DFG in Fig.
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0
O

Fig. 2. DFG representation of coefficient 10100101

The topmost and bottommost nodes are the initial node (input node) and
terminal node (output node), respectively. In general, a DFG may have more
than one terminal node, corresponding to the different constant coefficients.
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Each intermediate node (an adder in standard MCM), has two input edges and
at least one output edge. Each DFG represents a way of sequencing addition
operations such that the required coefficients are produced. We may then ask
the optimization question: What is the minimum number of nodes required to
compute a given set of constant coefficients? This is the problem addressed by
existing work on MCM [7)§], which we extend here to the case of MRM.

3 MRM with Adder/Multiplexer Nodes

We now extend the DFG model from using adder nodes to using adder/multi-
plexer nodes. Each node’s internal structure now consists of not only an adder,
but also a 4-1 multiplexer, as shown in Fig. [.

0
]
s

v

Fig. 3. An adder/multiplexer node

Using such circuit provides operations that perform adding (a + b), passing
one of two input values (a,b) through the multiplexer, and generating a zero
to output value. Each operation is selected by a 2-bit selector s. Applying this
technique provides the flexibility to move from MCM to MRM. Each node may
perform a different operation at each different time frame. For instance, when
applied to Fig. 2] the multiplicand can be 10100101 (lower node and upper node
adding), 10000100 (lower node adding, upper node passing through the left-hand
input) or some other coefficients; depending on what the selectors are. The DFG
structure, and the shift quantities, remain constant over all time steps. This
means that the structure can be directly mapped into a circuit, and the shifts
remain cost-free.

4 An Efficient Xilinx Virtex / Virtex-II Implementation

This section describes an efficient adder/multiplexer implementation in a Xil-
inx Virtex / Virtex-II device. The Virtex series utilizes a Configurable Logic
Block (CLB) architecture. Each CLB consists of two slices, each containing two
logic cells (LCs). A diagram shown in Fig. @] is a simplified Virtex-1I architec-
ture; more information can be found in [9]. An LC has several logic components
including one 4-input look-up table (LUT), some MUXes and some dedicated
logic, including one MUXCY, one XORCY, and one MULT_AND gate.

The adder/multiplexer node is designed using a similar idea to the way a
ripple-carry adder is implemented using the Virtex carry chain. A full adder/mul-
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Fig. 4. Simplified Virtex-II structure (top half of a slice)

tiplexer can be efficiently implemented using the same logic hardware resources
as a common adder. The key is leveraging MULT_AND gate, an additional
2-input dedicated AND gate (typically used to implement an efficient 1-bit mul-
tiplier), and the carry-chain logic.

Fig. Bl(a) illustrates a simple 1-bit full-adder which performs addition two
inputs a,b and carry-in ¢;, and results the summation s and carry-out c,. We
can extend this structure to perform a bit-slice of the entire function shown in
Fig.[B The four operations are controlled by a 2-bit selector (sely, sely) absorbed
into the 4-input LUT. A 1-bit adder/multiplexer can fit in one LC as depicted

in Fig. BI(b).
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Fig. 5. 1-bit adder and adder/multiplexer implementation in an LC

In order to obtain the operation of generating logic “0” at all bit outputs of
an adder/multiplexer node, an extra AND gate is required. Two selector signals,
sely and sely, are the inputs of this gate. When both signals are “1”, we make use
of a “1” on its output to force on the carry-in of LC that computes the LSB of
adder/multiplexer, and thus also on an input of the XOR gate (XORCY) in the
carry-chain logic. Meanwhile, a logic “1” is obtained on LUT output connected to
the other input of each XORCY gate. This yields “0” at the output s. The logic
of LUT output also selects carry-in value pass through multiplexer (MUXCY)
for forcing the carry-in of the next upper cell to operate in a similar manner.
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B one-bit adder/multiplexers are implemented vertically providing a B-bit
adder/multiplexer to perform fast carry-chain addition and multiplexing. The
carry-in signal is applied to at the bottom LC of the structure, and is cascaded
upwards by the Virtex architecture. This allows the design to have minimum
propagation delay.

The proposed structure is an efficient implementation on the Virtex device
by fully utilizing the resources of the cell. This provides more functionality with
minimal extra cost required. Although an additional AND gate is required, this
is a very small logic overhead compared to the size of B-bit add/multiplexer.

5 Transformation into ILP Formulation

A given set of MRMSs may or may not be implementable using a fixed number N
of computational nodes. In this section, we propose an ILP model, the solution
to which corresponds to a time-ordered sequence of multiplexer select lines to
implement the required behaviour, if one exists.

5.1 Representing General DFGs

Fig. [fl(a) depicts a general structure for describing all computations containing
three adder/multiplexer nodes (higher node structures can be developed in a
similar fashion). For clarity, we use a square box to represent each input and
output node, and a path with a big black dot to perform shift operation. The
multiplexers in Fig. [6(a), labelled “model multiplexers”, will not be realized in
the final circuit; they provide a model for ILP problem thus allowing all DFGs
of N nodes to be modelled. Once implemented, these multiplexers are replaced
by wires, as only one value of the select lines is active, for all time. The proposed
model therefore contains three main components: shifter, adder/multiplexer and
model multiplexer. This structure can perform various operations depending on
path selection of all adder/multiplexers and model multiplexers. The number of
outputs, which we shall denote C, corresponds to the number of sets of time-
varying coefficient(s).

5.2 Encoding the Problem

An instance of the problem is encoded as a T x C matrix, where T is the
number of rows corresponding to the number of time steps and C is number
of columns representing outputs. This implies that a 1 x C matrix corresponds
to the standard MCM problem. For example, Fig. [Mis a 7' x 2 problem. Since
the MRM problem includes a time element, the first step of our algorithm is to
unroll over time. This is accomplished by repeating the general graph. For T-time
steps, we require overall T repetitions; all signals that control each corresponding
shifter and model multiplexer are tied together. This ensures that shifting and
routing for all graphs (all T') are the same. The only select line allowed to change
with the time is the select line internal to each adder/multiplexer node, which
can be changed to achieved the desired output values.
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Fig. 6. (a) A general DFG of three adder/multiplexer nodes. (b) A portion of general
structure.

5.3 ILP Modelling

ILP models are able to provide a formal method to describe and solve the MRM
problem. Our approach is to model the N-node problem as an ILP for fixed IV,
and then to iterate ILP solver to find the lowest value of N resulting in a feasible
solution. For minimizing the T" x C' matrix problem, suppose that there are total
N add/multiplexer nodes operating in a B-bit number system.

A portion of the general structure is depicted in Fig.[6(b) and its notations,
described below, will be required for understanding the ILP model.

Both integer and binary variables are used within the model:

— The integer variables a;: and b;; are the inputs of ith adder/multiplexer
node at step ¢t and its output is represented by variable x;;. The model
multiplexer has ¢ inputs, corresponding to the previous node outputs, and
its own output is represented by variable c; ;.

— The binary decision variables o0;;, represent which of the four operations
to be performed at adder/multiplexer node ¢ during time step ¢, where
p € {0,1,2,3}. Variables m;, represent the selection of input z,; to the
model multiplexer, where r € {0,1,...,7 — 1}. Finally, variables ¢; j, repre-
sent the degree of shifting : ¢; , = 1 means that this input of node i should
be shifted left by & bits, where k € {0,1,...,B —1}.

We therefore have the following constraints, which are not yet in linear form:
1. Model multiplexer function

Cijt = Tt if Mg = 1. (1)

2. Shifter function
aie =2"cit if g = 1. (2)
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3. Adder/multiplexer function

bi ¢ if 0,10=1 (operation 0)

o = Qi }f 0it1 =1 (operat}on 1) (3)
a;t+biy ifo;2=1 (operation 2)
0 if 0,43 =1 (operation 3).

A problem now arises since all above constraints are nonlinear problems, due
to the “if” selectors. However, these constraints can be reformulated as linear
constraints in the following way. For example, in the model multiplexer,

Cit = Tpt if mir = 1 = Cit — Trt = 0 if mir = 1 (4)

which is equivalent to
Cit — Trp < a(l —my,) (5)

and
Cit — Tyt > 6(1 - mi,r)' (6)

where a and 3 are known finite lower and upper bound on the left-hand side
of (B) and (@), respectively. For the unsigned binary number system, a = 28 — 1
and = —28 4+ 1 are sufficient. We can see that m = 1 reduces (&) and (©)
to @). When m = 0, ¢;; and x,; can be any values (0 to 2B — 1) and still
satisfy (B) and (@). Extending this approach to other constraints results the
reduction of ({)— (@) to linear constraints problem to be an ILP.

There are a number of additional equality constraints that need to be added:

i—1
For all nodes i, me =1 (7)
r=0
B-1
For all nodes 1, Z Gk =1 (8)
r=0
3
For all nodes ¢ and time steps t, Z Oitp=1 9)
p=0

where constraint (7)) states that multiplexer has to select only one input, (8)
states that shifter must be shifted by only one k, (@) states that only one oper-
ation has to be performed at any one time step.

The minimum area solution for a 7" x C' problem can be obtained by pro-
ceeding as follows:
1. Set N = 1.
2. Determine whether a feasible solution exists.
3. If it does, terminate the process, otherwise increase N and repeat from step 2.
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6 Results

We compare our approach to two methods: the ROM and general multiplier ap-
proach shown in Fig. 1(b), and the unfolded use of MCM. The latter approach
consists of using MCM to create the optimum implementation of all T'C' coeffi-
cients (for T' x C problem), and then using T-to-1 MUXes to select the output
at each time step.

Note that both comparative approaches can be considered as special cases of
the general MRM structure used. N x M general multiplier can be considered as
a cascade of M N-bit adder/multiplexer nodes, where the shift is always unity
and the select line, controlled by the equivalent bit in the multiplicand, selects
between options 1 and 2 in (3). The MCM-MUX comparative approach is also a
special case, where MCM is performed by adder/multiplexer nodes always fixed
at option 2 of (B), and the multiplexing is performed by adder/multiplexer nodes
which can choose between options 0 and 1 of (B).

These approaches were tested using sets of 4-bit coefficients generated ran-
domly. All ILP models are solved using the MOSEK optimization software [11].
Table [[] shows the synthesis results of average area and delay targeting Xilinx
Virtex-IT XC2V1000-4 device [9].

As with the MCM problem, it is expected that the area improvement grows
with problem size [8]. However, even for the small benchmarks, our approach
compared to MCM-MUX provides less area for the larger instances shown in
Table [[l Compared to ROM and multiplier, the crossover point occurs at the
3 x 3 problem which results in a 24% improvement. It is likely that for large
problems, even greater saving will be possible.

Table 1. Average area and propagation delay. The upper figure is the area (in slices),
the lower figure is the delay (nanoseconds)

ROM & Multiplier our approach MCM-MUX
Number of outputs C'||Number of outputs C'||Number of outputs C
1 [ 2 [ 3 1 [ 2 [ 3 1 [ 2 [ 3

33, |47, (64, 5.9, |65, [89, 5.9, [6.5, 8.9,
12.27 [11.66 |11.71 |[16.65 [16.51 [17.71 ||16.59 [15.92 |17.32
6.6, |11.4, [19.4, |[[10.2, |12.6, |21.1, ||1L.2, [15.7, |23.6,
15.22 |17.18 |16.91 ||18.26 [19.14 [19.99 ||18.15 |18.17 |19.15
9.9, |18.7, [290.5, |[10.8, |18.7, [22.3, ||14.0, |23.0, [30.5,
17.05 |16.82 |18.04 |[18.89 [20.47 [20.70 |/18.53 |18.24 |18.02

Number of |1

time steps T'|2

Since we do not explicitly target delay, the maximum average delay of our ap-
proach is 51% longer than that of ROM and general multiplier and 22% of MCM-
MUX approach. However, it would be straight-forward to incorperate DFG path
length based delay into the ILP objective function, if this were a problem.
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Conclusion

To our knowledge, there is no existing algorithm to directly deal with the MRM
problem. We introduce a new approach to optimize this multiplication problem
by formulation into ILP one and employ an efficient ILP software to find the solu-
tion. Although such technique have limitations when the problem becomes very
large, the results obtained give us important measures of optimality for future
developments of a heuristic approach. We also present how to take advantage of
all of the hardware present in the Virtex / Virtex-II family to ensure optimal
area results. Our further work aims to develop such heuristic approaches, and
to exploit dedicated registers for further time-step based optimization.
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