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Abstract. This work addresses the design of a novel complex steerable
wavelet construction and its implementation on reconfigurable logic. The
wavelet decomposition uses pairs of bandpass filters that display symme-
try and antisymmetry about a steerable axis of orientation. The design is
targeted for implementation in hardware, thus one of the desired proper-
ties is the small number of unique kernels. A detailed description of the
implementation of the design in hardware is given. Moreover, results re-
garding the speed of our design compared to a software implementation,
and the error in the filter responses due to fixed point representation, are
reported. To show the applicability of the design to real life situations,
a corner detection algorithm is illustrated.

1 Introduction

The applications of wavelets to signal and image compression are well researched
[1,2,3]. The work described here contains several points of departure in both the
construction and application of steerable filters to feature detection. The main
point of departure is that the filter kernels are specified by separable angular and
radial functions in the frequency domain which have not been jointly reported in
a multi-rate scheme. In addition, an implementation of the algorithm in hardware
is performed, targeting real-time applications.

The need for more flexibility and fast prototyping of signal processing al-
gorithms has lead the FPGA community to investigate tools for easy mapping
of signal processing algorithms to FPGAs. One approach is to provide the de-
signers with building blocks that are common in DSP applications [5]. Another
approach is to provide tools that allow the engineers to describe their design in
a high level language [6]. In this work, Handel-C [9] is used as the main tool to
describe the steerable complex wavelet pyramid on hardware. Handel-C is based
on the syntax of ANSI C with additional extensions in order to take advantage
of the specific characteristics of the hardware. It is independent of the targeting
platform which makes the design easily transferable to other hardware plat-
forms. The originality of this work is in the design of a novel steerable wavelet
construction and the investigation of mapping such a design to reconfigurable
logic, targeting real-time applications.
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The paper is organized as follows. In section 2.1 the motivation for imple-
menting a complex wavelet decomposition is given. In section 2.2 a detailed
description of the pyramid is given as well as how this design differs from other
constructions. In section 3, the application of the pyramid to feature detection is
demonstrated using as example a corner detection algorithm. The implementa-
tion of the design on FPGA is described in section 4. Finally, the impact of the
quantization of the variables on the overall performance of the algorithm and a
comparison between the hardware implementation to the software implementa-
tion of the algorithm regarding the speed is given.

2 The Pyramid Design

2.1 Motivation

The motivation for a new pyramidal decomposition has been a subband decom-
position of images into orientation and scale-selective channels that can then be
used for analysis purposes. Although there are numerous decompositions that
satisfy such a requirement, we are seeking a construction that utilises polar sepa-
rable functions, so that the orientation selectivity can be specified independently
of radial frequency (or scale selectivity), and at the same time a small number
of unique kernels for construction is required for implementation of the design
in hardware. To provide a variety of scale-selective channels, we have chosen to
rely on standard multi-rate techniques, which enhance the computational and
representational efficiency of such decompositions. Within each orientation and
frequency channel, we wish to estimate the local image symmetry/antisymmetry
about an axis. Using a small number of kernels, the axis should be tunable, de-
pending on the local image content. These requirements are met by a steerable
quadrature wavelet decomposition, of which some examples can be found in
[3,7].

2.2 Design Overview

The design of the pyramid employs decimation in the lowpass channel in order
to achieve the scaling of filter response through repeated application. The nature
of the decomposition is illustrated in Figure 1. The decomposition is repeated
four times in order to detect symmetric and antisymmetric regions in the image
in different scales. The design of the filter kernels is performed in the Fourier
domain and the inverse two-dimensional Fourier Transform is applied to com-
pute the spatial impulse responses. For convenience in tuning angular and radial
characteristics of the filters, we impose Fourier domain polar separability, so
that a filter G0,k(ω, φ) in the kth direction in a filter set can be specified as the
product of a radial frequency function Ω0(ω) and an angular frequency function
Φ0,k(φ), i.e. G0,k(ω, φ) = Ω0(ω)Φ0,k(φ).
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Fig. 1. Pyramid layout. The boxes with the dotted lines illustrate a single level of
decomposition. The full decomposition consists of four levels. The responses of the
bandpass filters detect symmetric and antisymmetric features in the image.

2.3 Radial Frequency Response

For the isotropic lowpass radial frequency response we have used the following
function in the radial frequency domain on the interval −π < ω ≤ π.

H0(ω, φ) = H0(ω) =
1

1 + (ω/ωc)6
(1)

where ωc = 3π/8. It was chosen to provide a reasonably flat power response,
when used in combination with the bandpass radial frequency response, defined
later, for radial frequency components in the range [0, ωmax]. ωmax is the peak
frequency of the bandpass radial frequency response.

The radial response of the bandpass filters, Ω0(ω), is based on Erlang func-
tions which are one sided, smooth, and have the property that Ω0(0) = 0. The
joint localisation of Gaussian kernels in both spatial and frequency domain causes
transform coefficients to fall off in magnitude as scale is increased [4]. This is un-
desirable for a hardware implementation since more coefficients are required to
represent the kernels of the pyramid. Using an α value smaller than one (Poisson
and Erlang, α = 0.5) biases the localisation towards the frequency domain and
provides an increased stability of transform coefficients across scales. The filters
employed here have radial frequency response

Ω0(ω) =
( e

14

)7
ω7e−ω/2U(ω) (2)

where U(ω) is the unit step function.
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2.4 Angular Frequency Response

The prototype general angular frequency characteristic

Ω0(φ) = cos3(φ)rect(φ/π) (3)

has been used, where rect(φ) = U(φ+ 1
2 )U( 1

2 −φ). This is a generalization of the
sin and cosine angular characteristics used in derivative of Gaussian processing,
but with tunable angular selectivity. The prototype angular frequency is rotated
to generate the angular characteristics of oriented filters for a full filter set by
the following:

Φ0,k(φ) = Ω0(φ − φk) (4)

In our design four orientations are used at 0, π/4, π/2 and 3π/4.

2.5 Filter Kernels

For each of the filter prototypes in the Fourier domain, a sampling on the two-
dimensional interval [−π, π]× [−π, π] was performed, with a grid spacing of π/64
in each cartesian direction. The choice of an odd matrix size for constructing the
Fourier domain representation is tied to the symmetry of the filter kernels, which
we have observed to be better on odd-sized grids.

The inverse two dimensional discrete Fourier Transform was computed to
extract 65 × 65 spatial frequency responses. These responses were each truncated
to fit a set of four 7 × 7 complex arrays. The larger the size of the kernels the
better the properties of the filters are preserved, but more area is required to
implement these kernels on hardware. The kernels thus extracted are illustrated
in Figure 2. The first row corresponds to the real component of the kernels
which detect even-symmetric features in the image such as lines. The second row
corresponds to the imaginary component responsible for detecting the parts of
the image with odd-symmetric content, such as edges. The symmetry properties
of the filters fall into various classes. We have identified five classes of coefficient
symmetries. More details about kernel construction, the symmetry classes of the
filters and the coefficients of the filter blocks can be found in [10,11]. However, the
current hardware design has not been optimized with respect to these symmetric
properties. Future work will take into account these properties in order to reduce
the computational load in the FPGA.

3 Generating Feature Maps

3.1 Corner Likelihood Response

The output of the filters may be used to generate a measure that may be treated
as being proportional to the likelihood of a particular location in an image being
the corner of some structure. We construct the following feature map

C�(m, n) =
∏3

k=0 |f (�)
k (m, n)|

p +
∑3

k=0 |f (�)
k (m, n)|4

(5)
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Fig. 2. Real and Imaginary parts of complex bandpass filter kernels. Top row shows
the real part of the kernels, where the bottom row shows the imaginary part.

f
(�)
k (m, n) denotes the response of the filter k of level �. m, n denote the in-

dexes inside the image. p is fixed to be 4% of the maximum pixel intensity
in the image preventing the feature map to take large values for small val-
ues of

∑3
k=0 |f (�)

k (m, n)|4. The denumerator normalizes the response to a local
anisotropic energy. Moreover, we may choose to weight the corner response by
anisotropic energy computed at the same, or another scale.

4 Implementation on FPGA

The complex steerable wavelet was designed to be “hardware-friendly” by tar-
geting to a minimum number of distinct and symmetric kernels. A hardware
implementation using reconfigurable logic was investigated to accelerate the de-
composition part of the algorithm which leaves “high-level” decisions such as
the implementation of the feature maps to the host CPU. Only one level of
the pyramid is implemented in hardware, and the full decomposition is realised
through reuse of the same hardware, having as input the decimated image from
the previous iteration.

The target board that is used for implementation is the RC1000-PP from
Celoxica. It is a PCI bus plug-in card for PC’s with a Virtex V1000 FPGA and
four memory banks of 2 MBytes each. All four memory banks are accessible by
both the FPGA and any device on the PCI bus. However, at any time instance
only one device can access a memory bank. The Handel-C language is used to
describe the design.

4.1 FPGA Design

The quantization of the variables in the design is as follows: eight bits are used
to represent a pixel in the image and ten bits are used to represent the coeffi-
cients of each filter and also the output of each convolution. The impact to the
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final accuracy of the algorithm by selecting these numbers of bits to represent
the variables is discussed in section 4.3. In order for the decomposition to be
performed as fast as possible, the whole design is pipelined in order to produce
three convolution results per clock cycle.

Figure 3(a) shows an overview of the design. The pixels are stored in a raster
scan in sets of four in the memory allowing the FPGA to fetch four pixels per
read cycle. The ManageBuffer process is responsible to buffer the data such as
to provide a region of the image to the next process in the design. The FIFOs are
mapped to block RAMs in the FPGA for a more effective use of resources. The
next process, the ProcessWindow, performs the convolution between a window in
the image and the appropriate masks. It contains three programmable processes
FilterBankA (FBA), FilterBankB (FBB) and FilterBankC (FBC) that each one
can apply three different filters by loading a specific set of coefficients. A shift
register and a RAM to store the coefficients is selected to form the appropriate
masks for each level of the pyramid. The final results are concatenated and stored
in the external RAM. Figure 3(b) shows a detailed diagram of the FilterBank
process. Moreover, the result from the last filter, which represents the input
image for the next level of the pyramid, is decimated, saturated in the range
[0, 255] and stored in the external memory by the NextLevelImage process.

ManageBuffer
ProcessWindow

FBA FBB FBC

RAM
0

RAM
1

RAM
2

RAM
3

SelectRAM 0/1 SelectRAM 2/3

NextLevel
Image

FIFO
147x10 7

7

coefficients

address
counter

Filter mask

(a) (b)

Fig. 3. (a) shows the top level diagram of the design. (b) shows the FilterBank process.
The FIFO contains the coefficients for the three kernels that are realised in the filter
bank.

4.2 Host Control

The CPU controls the operation of the FPGA by a handshake protocol. Due
to the associated latency of each transfer through the PCI bus, the data are
transferred using DMA access between the CPU and the board [12]. In order to
speed up the process, the decomposition of the image and the transfer of the
data to/from the host are performed in parallel. The following scheme is used.
Out of the four memory banks, the first two are used to store the new frame that
is sent by the host for processing, the previous frame that is being processed by
the FPGA, and the decimated images that are used for the different levels of the
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pyramid. The other two banks are used by the FPGA to store the result of the
convolutions. The handshake protocol operates as follows. When a new frame is
available, the CPU sends the data to RAM 0 or 1 and signals to the FPGA that
a new frame is waiting for processing. In the meantime, the FPGA processes the
previous frame from RAM 1 or 0 respectively. The results from the convolutions
are stored in RAMs 2 and 3. The output data are distributed between RAMs 2
and 3 such that while the FPGA writes the results from a convolution to one
RAM the CPU performs a DMA transfer to the already calculated results from
the other RAM. The distribution of the results is necessary, since the design
should be able to handle images with size 640 by 480 pixels.

4.3 Implementation Analysis

Experiments were performed to investigate the impact of the number of bits
that are used to represent the kernel coefficients (Nc) and the bits that are
used to represent the result of the convolution (No) to the filter responses. The
mean square error of the estimation of each filter response between full precision
and fixed point for each combination of Nc and No is estimated using the Lena
image. Figure 4 shows the average mean square error over all filters using the
same combination of Nc and No. In our design, No is set to 10 in order to be
able to store the results of three parallel convolutions by performing only one
32-bit access to the external memory. From the figure, it can be concluded that
the number of bits used for the coefficients has a small effect on the error of
the response compared to the number of bits used to represent the result of
the filters. Also, it should be mentioned that the error in the filter responses
increases after changing levels since the decimated result of the low-pass channel
is reused for the next bandpass decomposition.

8

9

10

11

12

13

14

15

8
10

12
14

16
18

20

2

3

4

5

6

7

N
c

N
o

lo
g 10

M
S

E

Fig. 4. Mean square error in the filters’ response using the Lena image between fixed-
point and floating-point arithmetic.

The overall design uses 12,286 slices. Due to the large size of the design
compared to the available space in Virtex V1000, the optimum clock rate can not
be achieved. The synthesis results of the design using Xilinx ISE 6.1 gives 99%
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usage of slices. It is clear that there is not enough available space for optimum
routing, which reduces the optimal clock frequency. Furthermore, the slow RAMs
that are available on the board reduce the effective speed of the design. Due to
the nature of the decomposition, the data that are generated correspond to an
equivalent size of 14.6 times the input image. This amount of data cannot be
stored in the internal memory of the FPGA and should be transferred to the
external RAMs. The available bandwidth to the external memories reduces the
effective speed of the current design. The required memory bandwidth by the
design for VGA resolution (640x480) at 25 frames per second is 109 MBytes/sec,
where the available bandwidth is 66 MBytes/sec assuming only one available
memory bank. A rate of 16.6MHz was achieved giving 13.1 frames per second in
VGA resolution.

5 Results

5.1 Performance Analysis

Experiments were performed to compare the speed of the new design to a soft-
ware implementation. A decomposition with four orientations and four levels is
performed on two test images with size 256x256 and 512x512. Table 1 shows
a summary of the results. The first row of the table corresponds to a machine
with Dual Hyperthreading Xeons at 2.66GHz with 2GB of RAM. The software
runs under MATLAB and it is optimized using the Intel SIMD Integrated Per-
formance Primitives library which also takes advantage of multiprocessors. The
second row corresponds to a similar machine but without hyperthreading tech-
nology. The software version of the design was implemented using single, dual
and quad threads. The RC1000-PP board is placed on a Dual Pentium III ma-
chine at 450MHz and 512MB of RAM. The results for the software is the average
over 40 frames, where for the hardware the results is the average of 4000 frames.
The timing for the FPGA include the DMA transfers. In both cases the required
time to read the data from the hard disk is excluded. The speed up factor is
calculated with respect to the best performance of the software implementation
in each row. It can be seen that an average improvement of 2.6 times in the speed
can be achieved. Moreover, we placed our design in an XC2V6000 to investigate
how fast the current design can be clocked without any restrictions from the
size of the FPGA device or by the timing constraints of the external memories.
The synthesis tool showed that the design can be clocked up to 50MHz giving
an average speed up factor of 8 compared to the software implementations.

5.2 Corner Detection

Further experiments are performed to assess the performance of the design to
real-life situations. The application under consideration is corner detection using
the algorithm described in section 3. We investigate how precisely the corner of a
structure in the image is detected given the limited number of bits that are used
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Table 1. Comparison results in speed between software and hardware implementation.
Using a XC2V6000 device a speed up factor of 8 is achieved.

Image size HT Single Thr. Dual Thr. Quad Thr. FPGA Accel. Speed up factor
Lena 256x256 Yes 0.06035s 0.04897s 0.05088s 0.0170s 2.88

No 0.05953s 0.04737s - 2.78
Boats 512x512 Yes 0.21074s 0.21281s 0.16113s 0.0653s 2.46

No 0.20720s 0.15724s - 2.40

to represent the coefficients and the response of the filters. Figure 5 shows the
performance of the above design compared to a software implementation. The
image on the left is the result of the corner detection when the whole algorithm
is implemented in software. The image on the right is the result of the corner
detection when the decomposition of the image is performed in the FPGA. It
can be seen that most of the features have been detected correctly except of 8
mismatches. Further investigation revealed that by assigning 16 bits to represent
the output of the filters gives zero mismatches. However, a 16 bit representation
for the results would involve access to two memory banks simultaneously, forcing
the FPGA to wait for each DMA transfer to finish. This results in a reduction
in performance by a factor of 1.5, using the RC1000-PP board.
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Fig. 5. (a) shows the result of the corner detection using software. (b) shows the same
result using the hardware implementation.

6 Conclusions

In this paper we have presented a novel steerable pyramid for image decomposi-
tion and feature detection. For speeding up the algorithm, a mapping to recon-
figurable logic was performed. We investigated the impact of the quantization
of the variables to the filter responses and pointed out potential problems in the
design of such multi-level transforms. Due to the nature of the algorithm, a huge
amount of data is produced and can be stored only in the external RAMs. The
current design is limited by the available bandwidth to the external memories.
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The current prototype will be used as a platform for research in word-length
optimization [8] over multiple coefficient masks that use the same paths. More-
over, future work involves the investigation of automated tools that optimize the
design of wavelet transforms taking into account the symmetry properties of the
filters in the case where the same part of hardware is used by different kernels.
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