
Compilation Tools for Run-Time Recon�gurable Designs

Wayne Luk and Nabeel Shirazi

Department of Computing

Imperial College

180 Queen's Gate

London, England SW7 2BZ

Peter Y.K. Cheung

Department of Electrical Engineering

Imperial College

Exhibition Road

London, England SW7 2BT

Abstract

This paper describes a framework and tools for

automating the production of designs which can

be partially recon�gured at run time. The tools

include: (i) a partial evaluator, which produces

con�guration �les for a given design, where the

number of con�gurations can be minimised by a

process known as compile-time sequencing; (ii) an

incremental con�guration calculator, which takes

the output of the partial evaluator and generates

an initial con�guration �le and incremental con-

�guration �les that partially update preceding con-

�gurations; (iii) a tool which further optimises

designs for FPGAs supporting simultaneous con-

�guration of multiple cells. While many of our

techniques are independent of the design language

and device used, our tools currently target Xilinx

6200 devices. Simultaneous con�guration, for ex-

ample, can be used to reduce the time for recon-

�guring an adder to a subtractor from time linear

with respect to its size to constant time at best

and logarithmic time at worst.

1 Introduction

The run-time recon�gurability of FPGAs pro-

vides them an increasingly competitive edge over

microprocessors which tend to be exible but

slow, and over custom-designed integrated cir-

cuits which tend to be fast but inexible, and

in addition require a long time to develop. Run-

time recon�guration has been featured in a grow-

ing list of applications, including computer vision

[14], neural networks [6] and database searching

[5]. Products incorporating run-time recon�gura-

tion are beginning to reach the market place [3],

and some predict that even microprocessors will

eventually be implemented using recon�gurable

hardware [2].

While rapid advances have been made, many

obstacles remain to be surmounted before run-

time recon�guration can become a common fea-

ture in FPGA-based systems in general and re-

con�gurable computing in particular. The major

challenge is to improve understanding of recon-

�gurable systems, and to provide facilities for de-

veloping and optimising them with much less ef-

fort and specialised knowledge than is required

now. For instance, one way to optimise per-

formance is to reduce the recon�guration time.

Some FPGAs, such as the Xilinx 6200 series de-

vices, provide hardware support for fast recon-

�guration by partially recon�guring only the re-

gions which changed, and by simultaneous con�g-

uration of multiple FPGA cells, a feature known

as wildcarding [1]. Our objective is to provide

a framework and tools for automating the ex-

ploitation of such hardware features in run-time

recon�gurable designs. Although there has been

work on simulating [15], optimising [13] and de-

riving [7] recon�gurable designs, the development

of practical compilation tools for such designs is

still largely unexplored. Pioneering research on

compilation tools for run-time recon�gurable sys-

tems, based on the dbC language, was described

by Gokhale and Marks [5]. Our approach, in con-

trast, is largely language independent and seems

to cover a wider variety of implementations.

decomposition

sequencing

partial

evaluation

incremental

con�g. calc.

simultaneous

con�g. gen.
validation

1

2

3 4 5 6

- - - -

-

6

Figure 1 The six steps in our design framework. The dotted boxes indicate that they are speci�c to

devices or systems supporting partial recon�guration or simultaneous recon�guration.

The contributions of this paper can be seen in

the context of previous work on models, tools and

devices. For instance, while partial evaluation is

not a new idea, our prototype tools are probably

the �rst to apply it to run-time recon�guration

based on an abstract model [13]. Similarly, al-

though wildcarding was invented by Xilinx, we

are not aware of any analysis of its e�ects com-

parable to the description in Section 7 below.

An outline of the paper is as follows. Section 2

identi�es the desirable features that a framework

should have for producing recon�gurable designs,

and also provides an overview of a framework that

we are developing. Section 3 covers a method

that we use to generate con�guration �les by par-

tially evaluating a design. Section 4 describes

a technique called compile-time sequencing that

can be used to minimise the number of con�gu-

ration �les. Section 5 describes how incremental

con�gurations can be created and optimised, and

Section 6 explains wildcarding, a mechanism for

con�guring multiple FPGA cells simultaneously.

Two examples are discussed in Section 7, and con-

cluding remarks are presented in Section 8.

2 Overview of Framework

We strive to develop design tools for run-time

recon�guration that will become standard in fu-

ture synthesis systems. From experience, the de-

sirable features for such tools include:

� the ability to produce a wide range of imple-

mentations that are globally or locally recon-

�gurable [8], covering devices which provide

special hardware for rapid recon�guration;

� support for simulating, optimising and val-

idating designs at various levels of abstrac-

tion;

� facilities assisting design reuse and perfor-

mance analysis.

This section outlines a framework that meets the

above requirements. There are six steps in our

framework: decomposition, sequencing, partial

evaluation, incremental con�guration calculation,

simultaneous con�guration generation, and vali-

dation (Figure 1). The �rst three steps and the

last step can be applied to any recon�gurable de-

signs; step 4 is speci�c to devices or systems which

support partial recon�guration, and step 5 is spe-

ci�c to those which support simultaneous recon-

�guration. Tools are being developed for each of

the six steps in our framework; a more detailed il-

lustration of the design ow for three of our tools

is shown in Figure 2.

In the �rst step of our framework, a design is

decomposed into appropriate recon�gurable re-

gions. This procedure should take the follow-

ing into account: (i) trade-o�s between maximis-

ing resource usage and minimising recon�gura-

tion overhead in both space and time, and (ii)

chip boundaries when there is more than one de-

vice in the implementation. Methods [13] are

Partial
Evaluation

..

.

FPGA Vendor
Tools

FPGA Vendor
Tools

FPGA Vendor
Tools

ConfigDiff

1st Configuration
File

2nd Configuration
File

Nth Configuration
File

EDIF File 1

EDIF File 2

EDIF File N

Sequencing

Command
File

Hardware Sequencer

Initial Configuration

C Routine

EDIF

1st Incremental
Configuration

Mth Incremental
Configuration

..

.

Figure 2 Our tools for developing run-time recon�gurable designs.

available to guide the decomposition step. We

follow a library-based approach [12] to facilitate

reusing designs, and to simplify development of

con�gurations with compatible size, shape and

interface constraints for partially-recon�gurable

components. At the end of this step, the design

is captured as a network with control blocks con-

necting together the possible con�gurations for

each recon�gurable component, together with the

sequence of conditions for activating a particular

con�guration for each control block. The activa-

tion sequence can be used to determine the num-

ber of con�guration �les in the sequencing step

which comes next; it can also be used to pro-

duce a recon�guration controller in hardware or

software, adopting a centralised or a distributed

implementation.

In the second step, the activation sequence is

used to decide which con�gurations are required

at run time. For a component with n con�gura-

tions, there are n(n� 1) possibilities of changing

from one con�guration to another. All these con-

�gurations will need to be generated at compile

time if the activation sequence is not available,

or alternatively the con�gurations will have to be

produced on demand at run time. If the num-

ber of con�gurations is too large, the designer

may wish to return to the �rst step for an al-

ternative decomposition. Each control block will

be mapped onto a real multiplexer or demulti-

plexer, or onto virtual ones which model the con-

trol mechanisms for replacing one con�guration

by another. A design which only recon�gures

globally will have a pair of virtual multiplexing

elements for each of its inputs and outputs { fur-

ther explanations will be given in the next section.

During the third step, the actual con�guration

�les are produced by partially evaluating the de-

sign according to the activation sequence. Inputs

having a �xed value throughout a con�guration

can be used to simplify the hardware for that con-

�guration; this process involves propagating the

constant values through the circuit, and is some-

times called data folding [4]. Partial evaluation

is usually carried out at compile time, and the

resulting netlists are compiled by FPGA vendor

tools (Figure 2). Partial evaluation can also take

place at run time if the overheads involved can

be tolerated; it is likely that a design description

more e�cient than EDIF will have to be used,

and the vendor tools and the Con�gDi� routine

(Figure 2) will have to be optimised.

The fourth step, incremental con�guration cal-

culation, concerns only devices or systems sup-

porting partial recon�guration. The partial eval-

uation step results in complete con�guration �les;

the purpose of this step is to produce incremental

con�guration �les to minimise their size and re-

con�guration time. When this step is completed,

each recon�gurable component will be assigned

an initial recon�guration �le and one or more in-

cremental con�guration �les.

The �fth step, simultaneous con�guration gen-

eration, concerns only devices or systems sup-

porting simultaneous recon�guration of multi-

ple array cells such as Xilinx 6200 series FP-

GAs. While this step is application-dependent

and device-dependent, as shown later the recon-

�guration time can often be substantially reduced

for regular circuits.

The sixth and �nal step, validation, involves

checking that the design behaves as expected and

meets the constraints on performance and re-

source usage. A comprehensive model of the re-

con�gurable component will be useful here for two

reasons. First, it can be used to investigate the

detailed behaviour of the device during recon�g-

uration, for formulating e�cient and reliable re-

con�guration methods. Second, it can be used to

validate more abstract models which contain less

information, but are more amenable to dealing

with large designs.

Design tools for the �rst and the last steps

are based on parametrised libraries [12] devel-

oped using the Rebecca system [10] and com-

mercial VHDL tools. These libraries and tools

enable us to support a high-level and modular

design approach, and will be described in a sepa-

rate publication. The following sections describe,

in greater detail, the prototype tools that we

have been developing to support the sequencing,

partial evaluation, incremental con�guration cal-

culation and simultaneous con�guration genera-

tion steps (Figure 2). All of our tools are func-

tional and have been used in developing the ex-

amples in Section 7. While most of our techniques

are device-independent, our tools currently target

Xilinx 6200 devices which support both partial

and simultaneous recon�guration { the latter by

a procedure known as wildcarding [1]. Also, to

maintain compatibility with Xilinx 6200 design

tools, the data �les and the results of the partial

evaluation step are captured in the EDIF format.

3 Partial Evaluation

The basic idea behind the way we specify

run-time recon�gurable regions is straightforward

[13]. A block that can be con�gured to behave ei-

ther as A or as B is described by a network with

A and B sandwiched between two control blocks

C and C
0 (Figure 3). C and C

0 are responsible

for routing the data and results from the external

ports x and y to either A or B at the desired in-

stant; the choice can be determined by run-time

conditions. Possible control inputs to C and C
0

are not shown in the �gure. Note that x and y

can be multi-bit wires.

A

B

C’Cx y

Figure 3 A static network modelling a design

that can behave either as A or as B, depending

on the control blocks C and C
0.

The current implementation of our partial eval-

uator maps C to a fan-out and C
0 to a virtual

multiplexer, called an RC Mux (Figure 4), which

is used to select between components A and B.

At compile time the select value, MUX SEL, can

be speci�ed; as a result, either block A or B is

instantiated, and the RC Mux is removed. If the

MUX SEL value is not speci�ed at compile time,

a netlist in the EDIF format for each block will be

produced and compiled separately, and each will

then be loaded into the FPGA on demand at run

time. The RC Mux can have more than one in-

put in order to describe recon�guration between

multiple components, and each input and output

can be a multi-bit bus.

X

RC_Mux

Y
D0

D1

0

S

MUX_SEL

AX Y

BX Y

(a)

(c)

(b)

B

A

Figure 4 (a) Original circuit using an RC Mux

to specify a recon�gurable region. (b) Partially

evaluated circuit when MUX SEL = 0. (c) Par-

tially evaluated circuit when MUX SEL = 1.

One advantage of using the RC Mux to model

run-time recon�guration is that the circuit can

be simulated without modi�cation, since the be-

haviour of RC Muxes can be modelled by normal

multiplexers. This approach also covers the pos-

sibility that the RC Muxes are mapped onto ac-

tual multiplexers, provided that enough chip area

is available [13]. Since we adopt a library-based

approach, the locations of input and output ports

of the components connected to the RC Mux are

known and will be extended to match those for

the largest component.

At compile time, the partial evaluator searches

for an instance of an RC Mux. When one is

found, the instance is removed. If the value of the

select line of the RC Mux is given, the unselected

block is only removed if it is connected to just the

RC Mux; that is if it has a fan-out of one. The

output of the selected block is then connected to

the component that was connected to the output

of an RC Mux, and the net names are resolved.

The initial con�guration is compiled using the

largest component connected to the RC Mux, so

that su�cient chip area is reserved for the recon-

�gurable units. Since the connected components

are selected from a parametrised library, their

sizes, shapes and interface constraints are known

before the design is processed by vendor tools.

This process is continued until all the RC Muxes

have been dealt with.

4 Compile-Time Sequencing

If the sequence of con�gurations is known at

compile time, the number of di�erent incremental

con�gurations which need to be generated can be

reduced from n(n�1) to m, where m is the num-

ber of times an RC Mux select line is changed.

As shown in Figure 2, a command �le is used

to specify the sequence of con�gurations. Addi-

tional commands can be given in order to use this

�le for simulation as well as for compilation. In-

formation such as when to read or write to user-

de�ned registers within the FPGA, the number

of clock cycles to execute or simulate for, and the

speci�cation of interrupt service routines can be

given. The format of our command �le is compat-

ible with commercial simulation tools, such as the

schematic simulator from Viewlogic or the VHDL

simulator from Synopsys.

If the number of clock cycles between recon-

�guration is known at compile time, a static se-

quencer can be generated. Many image process-

ing algorithms can use this type of sequencing,

since the computation is being performed on a

�xed image size.

The sequence is speci�ed in the command �le

by assigning a value to a net in the circuit con-

nected to the select lines of an RC Mux or to reg-

isters within the FPGA. If the net is connected

to one or more select inputs of an RC Mux, this

means that a new con�guration corresponding to

the selected hardware should be loaded into the

FPGA. If the net is connected to a register within

the FPGA, a register read or register write should

be performed. The number of clock cycles can

also be speci�ed so that the time between recon-

�guration is known.

If recon�guration is data dependent, then a

data-driven sequencer is generated. For example,

if recon�guration depends on a speci�c register

within the FPGA reaching a certain value, this

register will be polled every cycle until it acquires

the value, and then the new con�guration will

be swapped in by the recon�guration controller.

If the recon�guration control is performed by a

microprocessor, more e�cient methods such as

interrupt-driven sequencing are also supported.

The output of the sequencer tool is either a C

routine or a hardware sequencer. The C routine

is generated by translating the commands in the

command �le to their equivalent C functions. At

run time, the C routine can be used as a template

and other functions can be added. If very fast re-

con�guration is needed, a hardware sequencer can

be generated. The hardware sequencer can be im-

plemented as a state machine in the same FPGA

if partial run-time recon�guration is supported;

its function is to direct the recon�guration of ap-

propriate regions on the FPGA by loading a new

incremental con�guration from an external stor-

age component. It is also possible to produce a

recon�guration controller which is partly imple-

mented in hardware and partly in software.

5 Calculating Incremental Con�gura-

tions

Since Xilinx 6200 FPGAs support partial re-

con�guration, we need to calculate incremental

con�guration �les to minimise the size of con�gu-

ration �les and to reduce recon�guration time. A

program called Con�gDi� (Figure 2) was writ-

ten to calculate the incremental con�gurations

between two successive con�gurations for the Xil-

inx 6200.

Suppose we need to recon�gure a design from

con�guration current to con�guration next. For

this purpose, the incremental con�guration will

consist of two parts. The �rst will obviously be

the regions which are speci�ed in next but not

in current; these correspond to functions which

are not in the current con�guration, and the cells

involved will therefore need to be included in the

incremental con�guration. The regions in current

but not in next correspond to functions which are

no longer required, so the cells involved should be

con�gured to unused logic.

Since in most cases the sequence of con�gura-

tions is known at compile time, only the necessary

incremental con�gurations are calculated. In ad-

dition, to verify at run time that the correct cells

are being recon�gured, the current con�guration

of the cells to be recon�gured can be included

in the incremental con�guration �le. If veri�ca-

tion is necessary, there will be a minor overhead

involved in checking that a cell's current con�gu-

ration is as expected before it is recon�gured.

6 Simultaneous Con�guration Genera-

tion

Xilinx 6200 FPGAs have a feature called `wild-

carding' that allows more than one cell within a

column to be written to simultaneously with the

same data [1]. This is performed by supplement-

ing the address decoder with a wildcard register.

There are 64 columns in a Xilinx 6216 device, so

the wildcard register is six bits wide with each bit

in the wildcard register corresponding to one bit

in the row address. During con�guration, a logic

one in the wildcard register indicates that the cor-

responding bit in the row address is to be taken as

a `don't-care'; in other words, the address decoder

will match addresses where this bit is a one or a

zero. For example, if the row address is `010101'

and the wildcard register is set to `000111', rows

16 to 23 will be written to since the bottom three

bits of the row address are `don't-cares'.

An extension to Con�gDi� was written to take

advantage of the wildcarding feature. Wildcard

optimisation was performed by �rst building a

look-up table. This table was constructed by enu-

merating each of the 64 row addresses with all

64 wildcard values. Each location of the look-up

table is a 64-bit value; each bit indicates which

of the 64 rows would be written, given an ad-

dress and a wildcard value. A function is provided

to search the look-up table for the best wildcard

value, given the rows which need to be written to

simultaneously with the same data. Since there

may not always be an exact match between the

rows that need to be written to and the rows that

actually will be written to, this function returns

a 64-bit value indicating which rows will be af-

fected. The con�guration �le is processed by re-

peatedly applying the best match function on a

column of cells, until there are three cells or fewer

that are con�gured with the same data. We shall

explain further in the next section that, because

of the overheads involved, it is not economical to

apply wildcarding to three or fewer cells.

7 Run-Time Recon�gurable Design

Examples

To evaluate the e�ectiveness of simultaneous

recon�guration, we tested wildcard optimisation

using two examples from our parametrised design

libraries [12] which have very di�erent properties.

The �rst example illustrates recon�guration from

one regular structure, an n-bit adder, to another

regular structure, an n-bit subtractor. In the

worst case, simultaneous recon�guration reduces

the recon�guration time from linear to logarith-

mic time; in the best case, the recon�guration

time is constant (Figure 5). The second exam-

ple illustrates recon�guration between irregular

designs using a 64-bit pattern matcher. These

examples, both of which have been tested on a

Xilinx 6200 FPGA in a PCI-based platform [13],

will be described in more detail below.

7.1 Adder/Subtractor Example

In a Xilinx 6200 FPGA, an n-bit ripple

adder/subtractor using only localised routing can

be implemented using 6n cells. The size of this

adder/subtractor can be reduced by 33%, if the

adder is changed into a subtractor using run-time

recon�guration.

This design can be implemented by inverting

one of the input bits of each adder component,

and also changing the carry-in to the adder array

from a logic zero to a logic one. The repeating

unit of the ripple adder/subtractor consists of a

two by two array of cells, and the gate that inverts

one of the inputs is located at every other cell.

The inversion can be performed by recon�guring

the gate from an XOR gate to an XNOR gate.

It takes one con�guration cycle to set up the

wildcard register in the 6200 FPGA, and another

cycle to reset the register if it is not going to

be set again in the following con�guration cycle.

For simplicity, in this example the wildcard reg-

ister was set, the data were written to con�gure

a group of cells, and the wildcard register was al-

ways reset. Therefore each con�guration write,

when using wildcarding, takes three cycles.

Without wildcarding, it takes n cycles to re-

con�gure the n-bit adder to the n-bit subtrac-

tor. This linear con�guration time is shown in

Figure 5. When using wildcard optimisation, the

best-case recon�guration time, which takes a con-

stant time of 4 cycles, occurs when n can be ex-

pressed in the form 2m; further explanations will

be given later using an example. The worst-case

recon�guration time, occurs when n = 2m � 1, is

due to the inability to apply a single wildcarding

to a large number of address bits, and multiple

wildcarding is needed.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Size of Adder/Subtractor

C
on

fig
ur

at
io

n
C

yc
le

s

Without Wildcarding

Max (with wildcarding)

Min (with wildcarding)

Figure 5 Variation of time against design size

for recon�guring a multi-bit adder to become a

subtractor.

As an example, it only takes 4 cycles to recon-

�gure a 32-bit adder to a subtractor; however it

takes 13 cycles to recon�gure a 31-bit adder to

a subtractor. It only takes 4 cycles in the 32-bit

case because the gates of the adder that are re-

con�gured are in rows 1,3,5,...,63 of one column.

They are recon�gured by wildcarding the top 5

bits of the address register. The wildcard write

of 32 cells takes 3 cycles and an additional cycle

is needed to change the carry-in from a logic zero

to a logic one. Clearly the same method can be

applied to wildcard adders of size 2m. In contrast,

the direct way of recon�guring a 31-bit adder to a

subtractor takes 13 cycles: 3 cycles for setting up

the wildcard register to wildcard 16 cells, 3 cycles

for wildcarding 8 cells, another 3 cycles for wild-

carding 4 cells, and 4 cycles for recon�guring 3

other cells and the carry-in without wildcarding.

To derive an expression for the worst-case re-

con�guration time, let w denote the number of cy-

cles needed to perform a wildcard con�guration

write, d denote the number of cycles needed to

perform a non-wildcard con�guration write, and

c denote a constant corresponding to the num-

ber of extra cycles needed to perform recon�g-

uration on di�erent areas of the circuit. The

number of con�guration cycles, n, in the worst

case happens when n = 2m � 1: this design takes

(m�(w�d))w+w+c number of cycles to recon�g-

ure. Note that this result holds when m � w� d.

When m = w � d, the wildcarding method takes

the same number of cycles to recon�gure as the

non-wildcardingmethod. The worst-case con�gu-

ration time for the wildcarding method can be de-

scribed as a function of n, denoted by f(n). Since

m = log2(n+1), we have f(n) = wlog2(n+1)+c
0,

where c0 = w(d� w + 1) + c.

In our adder/subtractor example, we have w

= 3, d = 1 and c = 1, therefore the equation for

the maximum number of con�guration cycles for

wildcarding is f(n) = 3log2(n+ 1)� 2. This log-

arithmic con�guration time is shown in Figure 5

by a dashed line above the actual results.

Since the best case occurs when n = 2m and

the worst case occurs when n = 2m�1, the worst

case can be improved by recon�guring an addi-

tional cell to maximise wildcarding. The addi-

tional resources consumed will be minimal espe-

cially whenm is large; moreover, it may be possi-

ble to save the con�guration of the additional cell

before recon�guration so that it can be restored

afterwards.

This example illustrates that wildcarding pro-

vides a tremendous improvement in shortening

the time required for recon�guring from one reg-

ular structure to another. The use of wildcarding

for irregular con�guration will be considered next.

7.2 Pattern Matcher Example

Our second example is a 64-bit pattern

matcher. The structure of the recon�gurable ver-

sion of our pattern matcher is shown in Figure 6

[4]; this design takes up 64�2 = 128 FPGA cells,

whereas a design including an additional shift reg-

ister for storing the pattern and an additional

row of comparators will be twice as large. In

the recon�gurable pattern matcher, the pattern

to match is determined by a gate that is selected

by an RC Mux for each bit. Each RC Mux is

controlled individually to form the pattern to be

matched, so the con�guration can be highly ir-

regular. The circuit is implemented vertically in

a Xilinx 6200 FPGA so that wildcarding can be

used.

D Q D Q D Q D Q

'1'

Serial
Data In

Match

...

...

Z

X

Y

D0

D1

MUX_SEL

RC_Mux

0

S

Figure 6 A multi-bit pattern matcher.

The test for the worst-case con�guration time

is performed by changing the pattern matcher to

match the one's complement of the number it was

previously matching, so that all 64 cells in the col-

umn are recon�gured. An experiment involving

10,000 test cases was conducted, during which the

pattern matcher was constructed to match a 64-

bit random constant. The results from this test

are shown in Figure 7. Without wildcarding it

takes 64 write cycles to recon�gure the pattern

matcher. With wildcarding, it takes on average

around 53 cycles, saving around 17% of the re-

con�guration time. Since this analysis assumes

the worst case, in practice there will usually be

some regularity in the matching pattern to re-

move the need for recon�guring every bit of the

pattern matcher, resulting in a shorter recon�gu-

ration time. However, it will be harder to apply

a wildcard of 32 or 16 bits if there are fewer cells

to recon�gure.

35 40 45 50 55 60 65
0

200

400

600

800

1000

1200

Configuration Cycles

S
am

pl
es

Figure 7 Worst-case analysis of recon�guring a

64-bit pattern matcher using wildcarding.

This example illustrates a common technique

for dealing with irregular designs. Since it is im-

practical to generate the circuits for matching

all possible 64-bit patterns, we produce instead

the two possible con�gurations for each of the 64

gates in the design (Figure 6). We then com-

pute the wildcarding for the complete con�gu-

ration �le formed by the appropriate con�gura-

tion �les, each corresponding to one bit of the de-

sired pattern, for each of the 64 gates. This tech-

nique reduces the number of con�gurations from

264(264 � 1) ' 3:4 � 1038 to 64 � 2 = 128! Some-

times the wildcard computation cannot be carried

out at compile time because, for instance, the

matching pattern is not available. Under these

circumstances it may be possible to compute the

wildcarding at run time, provided that this can

be achieved with acceptable e�ciency.

8 Concluding Remarks

We have presented a framework and the as-

sociated tools for developing run-time recon�g-

urable designs, and their bene�ts and costs are

demonstrated in two applications. The frame-

work is capable of supporting a wide variety of

FPGAs, including those with special support for

rapid recon�guration such as facilities for partial

and simultaneous recon�guration. Our tools are

compatible with existing industry-standard tools

for simulation and synthesis, and their e�ective-

ness has been illustrated using two examples. A

library-based approach is adopted which simpli-

�es physical conformance of con�gurations for a

recon�gurable component; it also facilitates de-

sign reuse and performance analysis. Our frame-

work is supported by the Ruby notation and the

Rebecca system [10], which provide (i) a path for

formally verifying recon�gurable design optimisa-

tions, and (ii) additional tools such as those for

mixed-level symbolic simulation and visualisation

[11]. We have a vision of a coherent toolset which

will be expounded in a future publication.

To be successful, such toolsets for run-time re-

con�gurable designs must include facilities that

can exploit device-speci�c features whenever pos-

sible. For instance, our work has shown that

the wildcard capability of Xilinx 6200 devices can

result in substantial reduction of recon�guration

time. We believe that analyses like this one jus-

tify our decision to devote a reasonable amount of

our research to what may be considered by some

to be low-level details.

Current and future work is focused on re�n-

ing the tools described earlier, on developing new

tools for the �rst step and the last step in our

framework, and on improving run-time support.

For the decomposition step, it will be desirable

to have a tool that automates the identi�cation

of recon�gurable regions and the selection of ap-

propriate library parts to meet user constraints

in performance and resource usage. This tool will

be integrated with our current compilation tools

based on the Ruby and VHDL languages. For

the validation step, we are investigating a hier-

archical model based on a comprehensive VHDL

description of the Xilinx 6200 series device. Fur-

ther application studies are also being developed

which are more complex than the examples de-

scribed in this paper.

Acknowledgements

Many thanks to Peter Athanas, Anjit Chaudhuri,

Mike Dean, John Gray, Tony Hoare, Tom Kean,

John O'Leary, Richard Sandiford, Mehdi Shirazi, Bill

Wilkie and the anonymous reviewers for their com-

ments and discussions, and to Stuart Nisbet for help

with the PCI-based 6200 Development System. We

also thank Hamish Fallside for his help with the EDIF

parser and questions regarding wildcarding. The sup-

port of Xilinx Development Corporation, the UK

Engineering and Physical Sciences Research Council

(Grant GR/L24366) and the UK Overseas Research

Student Award Scheme is gratefully acknowledged.

References

[1] S. Churcher, T. Kean and B. Wilkie, \The

XC6200 FastMap Processor Interface", in Field

Programmable Logic and Applications, W. Moore

and W. Luk (eds.), LNCS 975, Springer, 1995,

pp. 36{43.

[2] F. Faggin, \The Future of Microprocessors",

ASAP Forbes, http://www.forbes.com/asap

/120296/html/federico faggin.htm, 1996.

[3] B. Fawcett, \Recon�gurable Computing Comes

of Age", Xcell, Issue 22, 1996.

[4] P.W. Foulk, \Data-Folding in SRAM Con�g-

urable FPGAs", Proc. FCCM93, D.A. Buell and

K.L. Pocek (eds.), IEEE Computer Society Press,

1993, pp. 163{171.

[5] M. Gokhale and A. Marks, \Automatic Synthe-

sis of Parallel Programs Targeted to Dynami-

cally Recon�gurable Logic Arrays", in Field Pro-

grammable Logic and Applications, W. Moore

and W. Luk (eds.), LNCS 975, Springer, 1995,

pp. 399{408.

[6] J. Hadley and B. Hutchings, \Design Method-

ologies for Partially Recon�gured Systems", in

Proc. FCCM95, P. Athanas and K.L. Pocek

(eds.), IEEE Computer Society Press, 1995,

pp. 78{84.

[7] J. Hogg, \A Dynamic Hardware Generation

Mechanism based on Partial Evaluation," in De-

signing Correct Circuits, M. Sheeran and S. Singh

(eds.), Springer Electronic Workshops in Com-

puting, 1996.

[8] B. Hutchings and M.J. Wirthlin, \Implementa-

tion Approaches for Recon�gurable Logic Appli-

cations", in Field Programmable Logic and Ap-

plications, W. Moore and W. Luk (eds.), LNCS

975, Springer, 1995, pp. 419{428.

[9] E. Lemoine and D. Merceron, \Run Time Re-

con�guration of FPGAs for Scanning Genomic

DataBases", in Proc. FCCM95, P. Athanas and

K.L. Pocek (eds.), IEEE Computer Society Press,

1995, pp. 90{98.

[10] W. Luk, \A Declarative Approach to Incre-

mental Custom Computing", Proc. FCCM95,

P. Athanas and K.L. Pocek (eds.), IEEE Com-

puter Society Press, 1995, pp. 164{172.

[11] W. Luk and P.Y.K. Cheung, \A Framework for

Developing Hardware/Software Systems", in Ver-

i�cation of hardware-software Codesign, IEE Di-

gest 95/169, 1995, pp. 6/1-6/5.

[12] W. Luk, S. Guo, N. Shirazi and N. Zhuang, \A

Framework for Developing Parametrised FPGA

Libraries", in Field-Programmable Logic, Smart

Applications, New Paradigms and Compilers,

LNCS 1142, Springer, 1996, pages 24{33.

[13] W. Luk, N. Shirazi and P.Y.K. Cheung, \Mod-

elling and Optimising Run-Time Recon�gurable

Systems", in Proc. FCCM96, K. L. Pocek and

J. Arnold (eds.), IEEE Computer Society Press,

1996, pp. 167{176.

[14] W. Luk, T. Wu and I. Page, \Hardware-Software

Codesign of Multidimensional Programs", in

Proc. FCCM94, D. Buell and K.L. Pocek (eds.),

IEEE Computer Society Press, 1994, pp. 82{90.

[15] P. Lysaght and J. Stockwood, \A Simulation

Tool for Dynamically Recon�gurable Field Pro-

grammable Gate Arrays", IEEE Transactions on

VLSI, Vol. 4, No. 3, September 1996.

