
Automating Production of Run-Time Recon�gurable Designs

Nabeel Shirazi and Wayne Luk

Department of Computing

Imperial College

180 Queen's Gate

London, England SW7 2BZ

Peter Y.K. Cheung

Department of Electrical Engineering

Imperial College

Exhibition Road

London, England SW7 2BT

Abstract

This paper describes a method that automates

a key step in producing run-time recon�gurable

designs: the identi�cation and mapping of recon-

�gurable regions. In this method, two successive

circuit con�gurations are matched to locate the

components common to them, so that recon�gu-

ration time can be minimized. The circuit con-

�gurations are represented as a weighted bipar-

tite graph, to which an e�cient matching algo-

rithm is applied. Our method, which supports

hierarchical and library-based design, is device-

independent and has been tested using Xilinx 6200

FPGAs. A number of examples in arithmetic,

pattern matching and image processing are se-

lected to illustrate our approach.

1 Introduction

Hardware designers are used to develop cir-

cuits over space. Recon�gurable devices, such

as SRAM-based FPGAs, provide an additional

dimension: circuits can be spread over time as

well. This 
exibility enables a new design style

of `hardware-on-demand' or `just-in-time process-

ing' where circuit con�gurations are only loaded

in the device when required. Such implementa-

tions are usually described as run-time recon�g-

urable (RTR).

While the advantages of recon�gurability are

increasingly recognized, incorporating recon�g-

urable components into designs has yet to become

routine for most FPGA users. Many found that,

for instance, developing e�ective RTR designs is

time-consuming and error-prone, and the design

trade-o�s involved are often unclear. This paper

is intended to address such concerns by:

� presenting a method that automates the

identi�cation and mapping of recon�gurable

components in RTR designs;

� illustrating the method using a number of ex-

amples in arithmetic and image processing;

� evaluating the design trade-o�s involved in

various recon�gurable implementations.

An outline of the paper is as follows. Sec-

tion 2 provides an overview of a framework that

we are developing. Section 3 covers an auto-

matic method for extracting and mapping re-

con�gurable regions. Section 4 illustrates our

method using a simple adder/subtractor example.

Several more complex examples are discussed in

Section 5, and concluding remarks are presented

in Section 6.

2 Overview of Approach

The purpose of this paper is to describe a

method for combining two or more designs into

one recon�gurable design, based mainly on the

identi�cation of components common to these de-

signs. The following explains how this method �ts

into a framework for developing RTR designs.

Previously we reported a model [4] and the as-

sociated development framework [6] for RTR de-

signs. There are six steps in this framework: de-



decomposition

sequencing

partial

evaluation

incremental

con�g. calc.

simultaneous

con�g. gen.
validation

1

2

3 4 5 6

- - - -

-

6

Figure 1 The six steps in our design framework [6]. The dotted boxes indicate that they are speci�c

to devices or systems supporting partial recon�guration or concurrent recon�guration.

composition, sequencing, partial evaluation, in-

cremental con�guration calculation, simultane-

ous con�guration generation, and validation (Fig-

ure 1). Prototype tools supporting the last �ve

steps have been presented [6].

This paper focuses on the �rst step of the pro-

posed development framework. The purpose of

this step is to decompose a design into recon�g-

urable regions, each of which will be activated at

the appropriate time during operation. It is a

complex and di�cult step. One challenge is to

maximize resource usage while minimizing recon-

�guration overhead, both in space and in time.

Another challenge is to enable users to guide

the selection of recon�guration regions, while au-

tomating the low-level optimizations. To simplify

this step, we divide it into two stages.

In the �rst stage, possible components for re-

con�guration are identi�ed, and a sequence of

conditions for activating an appropriate compo-

nent at a particular time is found. Most of the

e�ort can be concentrated on selecting the top-

level components in the design hierarchy for re-

con�guration, and on producing the associated

activation sequence.

In the second stage, successive con�gurations

will be optimized to achieve the desired trade-

o�s in recon�guration time, operation speed and

design size. Components and connections com-

mon to two or more successive con�gurations will

be identi�ed and will not be recon�gured. Since

the e�ectiveness of the second stage depends on

the e�ectiveness of the �rst, several iterations be-

tween the two stages may be required to obtain

an optimal decomposition.

X

Y

A

RC_Mux

RC_DMux

B

Figure 2 A static network modelling a design

that can behave either as A or as B, depending on

the control blocks RC DMux and RC Mux. The

select input for these control blocks is not shown.

The above procedure can be explained using

our model [4] for recon�gurable designs. In this

model, a component that can be con�gured to

behave either as A or as B is described by a

network with A and B connected between two

control blocks. The control blocks, RC DMux

and RC Mux, route the data and results from

the external ports x and y to either A or B at

the desired instant (Figure 2). The select input

for these control blocks is not shown. Each con-



trol block will be mapped either into a real mul-

tiplexer or demultiplexer to form a single-cycle

recon�gurable design, or into virtual ones which

model the control mechanisms for replacing one

con�guration by another [4]. Some examples of

these two styles can be found in Section 5. In

the �rst stage of the decomposition step described

above, control blocks are placed between compo-

nents close to the top of the design hierarchy. In

the second stage, the design hierarchy is trans-

formed such that the control blocks are moved to-

wards the lower levels to reduce the size of recon-

�gurable regions. This technique, together with

the optimizations in other steps in Figure 1, can

be applied to minimize recon�guration time.

The proposed method, which complements the

low-level tools described previously [6], can be

used in three di�erent ways. First, it can be

used to introduce recon�guration in an exist-

ing circuit with placement information, since the

matching procedure, presented in the next sec-

tion, takes such information into account when it

is available. Two designs can be combined into a

new circuit, with compatible placement informa-

tion, using RC Mux and RC DMux. Second, our

method can still be used when placement infor-

mation is not available; placement constraints will

be added to the generated con�gurations for sub-

sequent placement. Placement constraints can

also be produced for designs based on relocatable

parametrized libraries [3]. Finally, if placement

information is available for some but not for all

of the components in a design, our method can

be used to generate appropriate placement con-

straints for components without them.

To facilitate designers to control the recon�g-

uration process at a relatively high level and to

enable experiments on initial identi�cation of re-

con�gurable regions and activation sequences, the

�rst stage of the decomposition step has not been

automated at the time of writing. In the following

sections, we describe a method that principally

automates the second stage: combining multiple

designs to form a single RTR design, and gener-

ating its description with control blocks in a form

suitable for further processing by other tools [6].

3 Producing Recon�gurable Compo-

nents

In this section, we �rst present an overview of

the matching procedure using a simple example.

The principal steps will then be described in de-

tail.

3.1 Overview

Given two successive circuit con�gurations, the

matching procedure is to identify the components

common to both con�gurations so that only the

parts that are di�erent need to be recon�gured.

A combined circuit description is then produced

with the recon�gurable components connected by

RC Mux and RC DMux, as discussed in the pre-

vious section.

Our method contains three steps:

1. representing the components in the two cir-

cuit con�gurations as nodes in a bipartite

graph { a graph whose vertices can be cov-

ered by two independent sets { with weighted

edges indicating the strength of possible

matches between components of the two con-

�gurations;

2. computing the best match for each node in

one con�guration with a node in the other

con�guration, taking into account the value

of the weights;

3. inserting RC Mux and RC DMux to pro-

duce a combined circuit with explicit recon-

�gurable regions.

A simple example of possible matches is shown

in Table 1, where con�guration P has four com-

ponents p1; : : : ; p4, and con�guration Q has �ve

components q1; : : : ; q5. Figure 3(a) contains the

representation of Table 1 as a bipartite graph

showing possible matches after weights have been

assigned. The result of the graph after matching

is shown in Figure 3(b).

Since designs are usually organized hierarchi-

cally, the weight assignment and matching steps

are carried out recursively down the levels of the



Con�guration P Con�guration Q

p1 q1; q4

p2 q1

p3 q3; q4

p4 q2; q5

Table 1 Possible matches between components

p1; : : : ; p4 in P and q1; : : : ; q5 in Q.

q1

q2

q3

q4

p1

p2

p3

p4

q5

(a) (b)

p1 q1

q2

q3

q4

p2

p3

p4

q5

2

5

3

6
1

3

1

5

3

6
3

Figure 3 Weighted bipartite graphs for con�g-

urations P and Q before and after matching.

design hierarchy for components of di�erent types

but with the same ports. Since the hierarchy of

two designs may not always be the same, the user

may need to explore the extent to which the de-

sign should be 
attened. We are currently ex-

ploring automatic techniques for determining how

designs can be 
attened.

In the following, we describe how a weighted

bipartite graph can be built from two circuit con-

�gurations, and how the graph can be matched

and how the resulting combined con�guration is

produced.

3.2 Graph Weighting

The netlists of the two circuits that are to

be matched are processed to produce data
ow

graphs. The internal nodes of these data
ow

graphs make up the elements of two independent

sets V1 and V2 for the bipartite graph. To indi-

cate the strength of the correspondence between

two components, three di�erent criteria are used

to produce weights for the edges of the bipartite

graph: component type, position in the FPGA,

and depth from matched ports.

The �rst and the most obvious criterion used in

weighting the graph is the type of the two compo-

nents. There are two possibilities: exact matches

and similarity matches. For example, the struc-

ture of a ripple adder is similar to that of a ripple

subtractor. A sample list of Xilinx 6200 library

components [3] that have similar structure has

been compiled. An exact match or a similarity

match leads to the assignment of a weight be-

tween the two components belonging to di�erent

con�gurations. Two similar components will be

labelled so that the matching can terminate at

this level, provided that another tool, such as the

Con�gDi� tool [6], will be able to extract the re-

con�gurable parts automatically.

Position information, if available, can reinforce

the weights when the component types are iden-

tical or similar. A position match occurs if the

locations of two components are the same in the

FPGA. Position information can be a relative lo-

cation in a level of hierarchy, or an absolute loca-

tion depending where in the netlist hierarchy the

location attribute is given.

Weighting components by type and position

does not take their connectivity into consider-

ation. To deal with this important aspect, we

need to �nd the corresponding ports for the two

data
ow graphs to be matched. We can then

calculate the depth of a node from an input or

an output port, which is the number of nodes

reachable from that port to this node, and the

maximum depth will be recorded. To deal with

cyclic data
ow graphs, we �rst �nd the strongly-

connected components, which correspond to feed-

back loops. The depth calculation for a strongly-

connected node will terminate if a component is

encountered twice. Nodes in the two sets with

the same depth from two matched ports will be

assigned a weight value, which will be used later

in the matching algorithm. The weights for nodes

of the same depth will be given a relatively lower

value than component type weights, since multi-



ple components may have the same depth.

The graph weighting procedure will be illus-

trated by an adder/subtractor example in Sec-

tion 4.2.

3.3 Graph Matching and Combination

Once the edges of the bipartite graph are

weighted, the matching can be performed. Our

graph matching algorithm is adapted from a well-

known algorithm proposed by Hopcroft and Karp

[2]. It is chosen because it runs in O((m+n)
p
n)

computational steps, where m is the number of

edges and n is the number of nodes in the bi-

partite graph. The details of this algorithm have

been covered in many textbooks [7], and will not

be described here. In our implementation, we

keep a list of components which have already been

matched to avoid unnecessary re-matching.

Once the matching has been performed, the

two circuits are combined by including RC DMux

and RC Mux components [6] following the rules

below.

� If two matched components are of the same

type, only the component from the set V1 is

added.

� If two matched components are of di�erent

types, then both components are added and

are connected in parallel to an RC DMux

and an RC Mux, forming a recon�gurable re-

gion. If the positions of the two components

are di�erent, a procedure for determining the

optimal positions will be invoked.

� If there are remaining unmatched compo-

nents from either graph, they will be paired

with a wiring component from the other

graph and both are then combined to form

the new graph as in the previous step.

The graph matching and combination proce-

dure will be illustrated by an adder/subtractor

example in Section 4.3.

4 Adder/Subtractor Example

In a Xilinx 6200 FPGA [1], an n-bit ripple

adder/subtractor using only localized routing can

be implemented using 6n components. The size

of this adder/subtractor can be reduced by 33%,

if the adder is changed into a subtractor using

run-time recon�guration [6].

This design can be implemented by inverting

one of the input bits of each full adder compo-

nent, and also changing the carry-in to the adder

array from a logic zero to a logic one. The re-

peating unit of the ripple adder/subtractor con-

sists of a two by two array of components, and

the gate that inverts one of the inputs is located

at every other component. The schematic for the

repeating component is shown in Figure 4. The

inversion can be performed by recon�guring the

XOR gate at u1 to become an XNOR gate.

B

A

CIN
SUM

u2

COUT

u1

I0

I1
O D0

D1
O

S0

I0

I1
O

u3

RLOC=X0Y0

RLOC=X1Y0

RLOC=X0Y1

Figure 4 A full adder circuit. A full subtractor

circuit can be obtained by replacing the XOR gate

at u1 by an XNOR gate, with the same position

attribute RLOC=X0Y0.

4.1 Overview

To illustrate the graph matching procedure,

we apply our algorithm to the repeating com-

ponents of the ripple adder/subtractor and au-

tomatically �nd that the recon�gurable region

is the XOR/XNOR gate. The data
ow graph

(DFG) for the repeating component for the adder

is shown in Figure 5. In the DFG, input/output

ports are denoted by oval shaped nodes and inter-

nal components are denoted by rectangular boxes.



A : Input Port B : Input Port CIN : Input Port

SUM : Output PortCOUT : Output Port

u1 : XOR2

u2 : XOR2u3 : M2_1

Figure 5 DFG representation of a full adder.

The DFG of a full subtractor can be obtained by

replacing the node u1:XOR2 by u1:XNOR2.

Only the internal components from each cir-

cuit are added to the weighted bipartite graph

shown in Figure 6. The three components from

the full adder graph are captured by the set V1,

and are placed on the left-hand side of the bi-

partite graph. Similarly, components from the

full subtractor are captured by the set V2 and

are placed on the right-hand side of the bipar-

tite graph. The weights are added using the rules

discussed in the previous section.

u1 : XOR2

u2 : XOR2

u3 : M2_1

u1 : XNOR2

u2 : XOR2

u3 : M2_1

Position, Depth(2x) : Weight = 2

Comp. Type : Weight = 3

Comp. Type, Position, Depth(3x) : Weight = 9

Comp. Type, Position, Depth(3x) : Weight = 9

Depth(3x) : Weight = 3

Depth(3x) : Weight = 3

Figure 6 Weighted bipartite graph before

matching. The nodes on the left are from the

set V1 for the adder, and those on the right are

from V2 for the subtractor. The type of match is

indicated on each edge. Depth(nx) indicates that

n depth matches have occured.

4.2 Graph Weighting

Let us illustrate the graph weighting procedure

described in Section 3.2. Note that there are two

XOR gates in the vertex set V1, and only one

XOR gate in V2. Both XOR gates in V1 produce a

component type match with the XOR gate in V2.

The edge between u1:XOR2 of V1 and u2:XOR2

of V2 shows the component type match and is

given a weight value of 3.

The gates u1:XOR2 in V1 and u1:XNOR2 in V2
are both placed at x = 0, y = 0 in the FPGA as

shown by the RLOC attribute in Figure 4. Since

the component types do not match, a position

match weight has not been added to the edge

between the two nodes. A position match has

been obtained between nodes u2:XOR2 in V1 and

u2:XOR2 in V2, since they are positioned at the

same location x = 1 and y = 0 and are of the

same component type. The position match is in-

dicated on the edge between the two nodes, and

a weight of 3 has been added.

A depth match is performed by �rst calculat-

ing depth information from each of the matched

input ports. When port A is used as the start-

ing point for the adder component, u1:XOR2 has

a maximum depth of 1, and both u2:XOR2 and

u3:M2 1 have the maximum depth of 2. Depth in-

formation from the other input ports is calculated

as well. This information is used to match com-

ponents reachable from the matched ports. For

instance, port A of the adder is matched with

port A of the subtractor. A depth match start-

ing from this port results in one depth match be-

tween each of the �ve node pairs (Figure 7). The

second depth match from port B results in �ve

more depth matches between the nodes that are

matched when port A is used. Finally the third

depth match starting from the CIN port results in

a match between only four components and not

�ve, because node u1:XOR2 (Figure 5) cannot be

reached from the CIN port in the adder graph,

and similarly u1:XNOR2 cannot be reached from

the CIN port in the subtractor circuit.

After the weights have been added to the edges,

the edge between u2:XOR2 in V1 and u2:XOR2

in V2 has a weight of 9 (Figure 6). This is due to

a weight of 3 from the component type match, 3

from the position match and 1 from each of the

three depth matches.



u1 : XOR2

u2 : XOR2

u3 : M2_1

u1 : XNOR2

u2 : XOR2

u3 : M2_1

Depth(1x) : Weight = 1

Depth(1x) : Weight = 1

Depth(1x) : Weight = 1

Depth(1x) : Weight = 1

Depth(1x) : Weight = 1

Figure 7 Weighted bipartite graph after depth

matching for Port A.

4.3 Graph Matching and Combination

We can now illustrate the procedure for match-

ing and combining graphs discussed in Section 3.3

using the adder/subtractor example. The match-

ing is carried out by the Hopcroft/Karp al-

gorithm, taking into account the value of the

weights. For instance, since the gate u2:XOR2

in V2 is weighted stronger to u2:XOR2 in V1 than

to u1:XOR2 in V1, u2:XOR2 in V2 is matched

with u2:XOR2 in V1. The resulting weighted bi-

partite graph after matching is shown in Figure 8.

Note that the same graph can be obtained even

if position information is not available for match-

ing. Once we know which nodes are matched, we

build the new DFG shown in Figure 9 using the

method discussed in Section 3.3, which combines

the repeating components from the adder and the

subtractor.

u1 : XOR2

u2 : XOR2

u3 : M2_1

u1 : XNOR2

u2 : XOR2

u3 : M2_1

Position, Depth(2x) : Weight = 2

Cell Type, Position, Depth(3x) : Weight = 9

Cell Type, Position, Depth(3x) : Weight = 9

Figure 8 Weighted bipartite graph after match-

ing.

The recon�gurable region is delimited by the

RC DMux and the RC Mux. The select value for

the RC DMux and the RC Mux is given during

the partial evaluation stage in our compilation

tools [6], and either the XNOR or XOR gate is

deleted along with the RC Mux and the corre-

sponding RC DMux.

In this example we are able to identify the re-

con�gurable region automatically. We combine

the adder and subtractor DFGs, so that the re-

con�gurable components can be selected either at

run time or at compile time. Finally the compo-

nents in the recon�gurable region are positioned

so that recon�guration time will be minimized.

5 Examples and Evaluation

Our previous work involves several hand-

crafted RTR designs using the Xilinx 6200 FP-

GAs [4], [6]. Much e�ort went into �nding the

smallest recon�gurable region and the placement

of the components in order to minimize recon�g-

uration time.

In the following, we evaluate our approach to

automating RTR designs using several pattern

matchers and image �lters. The results (Table 2)

from our tools are the same as the hand-crafted

versions. For each application, two RTR designs

are produced: a single-cycle recon�gurable (SCR)

design, and a partial RTR design.

Example Size Speed Recon�g.

(cells) (ns) Cycles

Adder/Subtractor:

SCR design 48 63 1

Partial RTR design 32 47 4

Pattern Matcher:

SCR design 128 190 1

Partial RTR design 64 90 32

1-D Image Filters:

SCR design 126 67 1

Partial RTR design 90 52 22

Table 2 Statistics for some applications.

In each of the examples, there is a reduction in

size and an increase in operation speed when par-



Design1_A : Input PortDesign1_B : Input PortDesign1_CIN : Input Port

Design1_SUM : Output Port Design1_COUT : Output Port

Design1_u1 : XOR2 Design2_u1 : XNOR2

Design1_u2 : XOR2 Design1_u3 : M2_1

RC_Mux_0 : RC_Mux

RC_DMux_0 : RC_DMuxRC_DMux_1 : RC_DMux

Figure 9 Resulting DFG by combining a full adder and a full subtractor. Note that the recon�gurable

region is delimited by the RC DMux and the RC Mux.

tial run-time recon�guration is carried out by the

FPGA { these are the partial RTR designs in Ta-

ble 2 which take multiple recon�guration cycles.

As long as the circuits are not recon�gured too of-

ten, this kind of partial run-time recon�guration

is bene�cial. In each example, the recon�guration

time is less than 2�s if the partial con�guration

is loaded at the maximum con�guration speed of

the Xilinx 6200. The recon�guration time is rela-

tively low compared to the number of clock cycles

the design would have to run in data processing

mode to justify run-time recon�guration. When

appropriate, a \break-even" point can be calcu-

lated; for instance, the break-even point proposed

by Wirthlin and Hutchings [8], based on their

functional density metric, is less than 32 clock

cycles for each of the examples in Table 2.

The single-cycle recon�gurable (SCR) designs

are produced by combining two designs together

automatically using the procedure described in

Section 3, and the result is optimized further by

hand. For example, an adder is combined with

a subtractor by adding circuitry to calculate the

two's complement of one of the inputs based on

a control signal. The SCR design can be recon-

�gured in one clock cycle by changing the value

of the control signal. The partial RTR designs

are also produced by combining two designs, and

then the compilation tools presented in [6] are

used to produce the initial and incremental con-

�gurations that are loaded during run time.

5.1 Pattern Matcher Example

Our �rst example is a 32-bit pattern matcher

(Figure 10). The partial RTR version of this de-

sign takes up 32 � 2 = 64 FPGA cells, whereas

a design including an additional shift register for

storing the pattern and an additional row of com-

parators will be twice as large [6]. By adding the

register and comparator to the repeating cell of

the pattern matcher, it also increases the propa-

gation delay by 52%. In the worst case, if wild-

carding cannot be used, it takes 32 con�guration

cycles to recon�gure the 32-bit pattern matcher,

i.e. one cycle for each repeating cell.

The partial RTR design for the pattern

matcher is generated automatically by combining

two circuits that were designed speci�cally to gen-



erate a match for a particular constant value. If

the individual bits of the constant value are di�er-

ent, an RC Mux/RC DMux pair is inserted to re-

con�gure between the gates used to cause a match

at the particular bit. If the two circuits that are

to be matched are designed to cause a match for

the two extreme constant values, i.e., all 1's or

all 0's, then each of the repeating cells can ei-

ther match for a 1 or a 0, depending on the select

value of the inserted RC Mux/RC DMux at the

partial evaluation stage. By matching these two

`extreme' designs, not only can we match the all

1's or all 0's cases, but also any of the 2n con-

stants since the RC Muxes/RC DMuxes can be

individually controlled.

D Q

’1’

Serial
Data In

Match

Z
X

Y

I0

I1

MUX_SEL

RC_Mux

0

S

RC_DMux

O0

I0

S

I1
O2
O3

O1

D Q D Q D Q

Figure 10 A multi-bit pattern matcher.

Furthermore, if the pattern matcher is

pipelined by inserting a register in the carry

chain between each stage, the computation and

recon�guration can be overlapped by using the

\morphing" technique [5]. The pipelined circuit's

propagation delay is reduced to 2.8ns from 90ns

and the recon�guration time is still 32 cycles if

morphing is used. The size will also remain the

same since a register and a gate can be combined

in one cell in the Xilinx 6200 [1].

5.2 Image Filter Example

Our second example involves recon�guration

between two one-dimensional image �lters. The

�rst �lter is a Sobel edge detector for locating ver-

tical edges in an image, and the second �lter is

a Gaussian �lter for removing noise in an image.

The DFG for these �lters are shown in Figure 11

and the functionality is described in more detail

in [4].

This example shows the advantage of hierarchi-

cal matching instead of matching on a single level.

While descending the design hierarchy to match

the components Sub1 and Add2, it can be found

that the recon�gurable region is just a single gate

in the repeating unit in the new component De-

sign1 Add2 : RC Mux Adder Subtractor which is

highlighted in Figure 12. Component Add1 is not

matched and therefore recon�guration occurs be-

tween the adder and a set of wires. Space is also

allocated in the FPGA so that there is room for

Add1 to be swapped without having to move the

other components.

(a) (b)

X : Input Port

Y : Output Port

Reg1 : Register

Reg2 : Register

Sub1 : Subtractor

X : Input Port

Y : Output Port

Reg1 : Register

Add1 : Adder

Reg2 : Register

Add2 : Adder

Figure 11 (a) 1-D Edge Detector, (b) 1-D

Gaussian Filter.

The �lters are set up so that when the result is

read, a clock pulse would be generated and new

data will be clocked into the �lter. This involves

a feedback circuit with the register containing the

result. Our matching algorithm is able to handle

feedback circuits, since the depth-matching pro-

cedure can deal with cyclic graphs (Section 3.2).

The partial RTR versions of the image �lters

are 29% smaller and 22% faster than the SCR

design and the recon�guration time is only 22 cy-

cles.



Design1_X : Input Port

Design1_Y : Output Port

Design1_Reg1 : Register

Design1_Reg2 : Register

Design1_Add2 : RC_Mux_Adder_Subtractor

Design1_Add1 : Adder

RC_Mux_0 : RC_Mux RC_Mux_1 : RC_Mux

RC_DMux_0 : RC_DMux RC_DMux_1 : RC_DMux

Figure 12 Combined Edge Detector and Gaus-

sian Filter.

6 Concluding Remarks

This paper describes a method for automat-

ing the identi�cation and mapping of recon�g-

urable regions for RTR designs. The method

is based on an e�cient algorithm for matching

weighted bipartite graphs. Several examples for

Xilinx 6200 FPGAs have been used to illustrate

our approach. Current and future work includes

re�ning the tools and applications, investigating

the automation of the initial decomposition stage

and the optimization for three or more sequen-

tial con�gurations, and exploring the adaptation

of the proposed techniques for interactive design

and run-time synthesis.

Acknowledgments

Many thanks to John Gray, Tom Kean, Mehdi

Shirazi, Dimitrios Siganos, Markus Weinhardt,

and Bill Wilkie for their comments and discus-

sions. The support of UK Engineering and Phys-

ical Sciences Research Council (Grant number

GR/24366, GR/54356 and GR/59658), Xilinx

Development Corporation and a UK Overseas Re-

search Student Award is gratefully acknowledged.

References

[1] S. Churcher, T. Kean and B. Wilkie, \The

XC6200 FastMap Processor Interface", in

Field Programmable Logic and Applications,

W. Moore and W. Luk (eds.), LNCS 975,

Springer, 1995, pp. 36{43.

[2] J.E. Hopcroft and R.M. Karp, \An n5=2 Al-

gorithm For Maximum Matchings in Bipar-

tite Graphs", in SIAM Journal of Comput-

ing, Vol. 2, No. 4, December 1973, pp. 225{

231.

[3] W. Luk, S. Guo, N. Shirazi and N. Zhuang,

\A Framework for Developing Parametrised

FPGA Libraries", in Field-Programmable

Logic, Smart Applications, New Paradigms

and Compilers, R. Hartenstein and

M. Glesner (eds.), LNCS 1142, Springer,

1996, pages 24{33.

[4] W. Luk, N. Shirazi and P.Y.K. Cheung,

\Modelling and Optimising Run-Time Re-

con�gurable Systems", in Proc. FCCM96,

K.L. Pocek and J. Arnold (eds.), IEEE Com-

puter Society Press, 1996, pp. 167{176.

[5] W. Luk, N. Shirazi, S.R. Guo and

P.Y.K. Cheung, \Pipeline Morphing and

Virtual Pipelines", in Field Programmable

Logic and Applications, W. Luk, P.Y.K. Che-

ung and M. Glesner (eds.), LNCS 1304,

Springer, 1997, pp. 111{120.

[6] W. Luk, N. Shirazi and P.Y.K. Che-

ung, \Compilation Tools for Run-Time Re-

con�gurable Designs", in Proc. FCCM97,

K.L. Pocek and J. Arnold (eds.), IEEE Com-

puter Society Press, 1997, pp. 56{65.

[7] D.B. West, Introduction to Graph Theory,

Prentice Hall, 1996.

[8] M.J. Wirthlin and B.L. Hutchings, \Improv-

ing Functional Density Through Run-Time

Constant Propagation", in FPGA'97, ACM

Press, 1997, pp. 86{92.


