
Recon�gurable Computing for Augmented Reality

W. Luk, T.K. Lee and J.R. Rice

Department of Computing

Imperial College

180 Queen's Gate

London SW7 2BZ, England

P.Y.K. Cheung

Department of Electrical Engineering

Imperial College

Exhibition Road

London SW7 2BT, England

Abstract

Augmented reality involves combining three-

dimensional real and synthetic objects for real-

time user interaction. We describe a framework

for supporting augmented reality applications by

appropriate hardware and software. The ben-

e�ts of recon�gurable computing, which allows

optimised video analysis and synthesis to adapt

to environmental changes, are explained using

this framework. Our approach is illustrated by

video mixing, image extraction, and object track-

ing. Our designs have been implemented using an

FPGA-based platform and run at video rate for

image size up to 640 by 480 pixels.

1 Introduction

Augmented reality is a technology for enhanc-
ing environmental perception and interaction by
combining real and synthetic images in real time
[3]. The enhancement may consist of virtual ar-
tifacts superposed on a real environment (Fig-
ure 4), real objects overlaying on a synthetic
background (Figure 6), or a display of non-
geometric information about objects in the scene
(Figure 9). Applications of augmented reality in-
clude surgical planning and medical image visu-
alisation, guidance for manufacturing and repair,
path planning in tele-robotics, and special e�ects
for entertainment purposes [3].

Several features of augmented reality motivate
the use of recon�gurable hardware. First, aug-
mented reality requires intensive processing since

synthetic objects have to be blended with life-
video of real objects. In contrast, applications
such as virtual reality involve only generating syn-
thetic images. Second, it is well-known that im-
age processing [1] and computer graphics [9] are
fertile areas for recon�gurable hardware acceler-
ation; advances made in these two �elds should
directly bene�t a technology requiring their com-
bination. Third, augmented reality applications
frequently involve real-time user interaction or
adaptation to environmental variations, so the
speed and exibility of run-time recon�gurable
processors would have an advantage over �xed-
function devices. Finally, augmented reality is
developing rapidly and should bene�t from re-
con�gurable platforms on which algorithms, ar-
chitectures and user interfaces can be explored.
This paper describes a framework for aug-

mented reality research based on a combination
of hardware and software. Our framework has
been used to support three basic functions for
augmented reality applications: video mixing, im-
age extraction, and object tracking. We explain
and illustrate the bene�ts of recon�gurable com-
puting, which enables optimised video analysis of
real objects and their combination with synthetic
objects, and the adaptation of the system to envi-
ronmental changes. Prototype designs have been
implemented using a low-cost platform based on a
Xilinx 6216 FPGA [4]. Previous implementations
of augmented reality applications involve work-
stations [3] or multiple digital signal processors
such as the TMS320C40 [7]; we are not aware
of comparable work based on recon�gurable com-
puting.

2 Framework

A framework supporting the production of aug-
mented reality applications should be able to han-
dle e�ciently high-level representations of real
and synthetic objects, and their combination. It
should facilitate the investigation of promising
techniques, such as run-time recon�gurability, to
improve design exibility and adaptability. The
framework should o�er a variety of implementa-
tions involving both hardware and software, since
augmented reality designs often require a range of
algorithms and data representations.

Interface
signals

Video
in

Video
out

Software
or

Hardware

Memory

PRE POST

Figure 1 A framework for structuring aug-
mented reality designs, where PRE and POST are
hardware elements. Typically PRE performs data
analysis such as feature extraction, while POST
performs synthetic image generation and mixing
of real and synthetic objects.

Our framework provides a guide for structur-
ing augmented reality platforms. It is an exten-
sion of a system for video processing [4], and
is shown in Figure 1. The hardware elements
PRE and POST are for pre-processing and post-
processing high-speed data streams, some dedi-
cated to real objects while others contain syn-
thetic scenes. The PRE element accepts one or
more video streams as input; its typical task is to
carry out low-level, high-speed processing to anal-
yse the input data. PRE has two types of output.
The �rst type of output consists of one or more
video streams passed, possibly altered or anno-
tated, to the POST element which generates the
appropriate synthetic images and combines them

with real objects. The POST element may also
further processes the resulting video to achieve
the desired e�ect, such as improved realism, in
the output video. Another purpose of PRE is to
apply data reduction techniques to information
extracted from the input, and to arrange it in
an appropriate format for other software or hard-
ware elements. Usually software is used when
complex data structures, oating-point or data-
dependent computations are involved. Such com-
putations may determine how the system com-
ponents can be recon�gured to adapt to environ-
mental changes. Other hardware elements may
be used to interface to sensors or actuators.
The computational elements described above

may contain local memories not shown in Fig-
ure 1. They may also have access to a shared
memory containing information such as knowl-
edge about real and synthetic objects, models of
how they interact, and hardware and software
data for system recon�guration.
This framework covers several possible situa-

tions. It covers the case when real objects are
captured on video, while synthetic objects are
generated within the system; an example is our
current platform (Figure 2), described later. The
framework also covers the cases when synthetic
objects are included in external video streams.
We have identi�ed several opportunities in aug-

mented reality computations that can bene�t
from run-time recon�guration. The purpose is to
use optimal data representations and operations
for various real and synthetic objects in multiple
evolving environments. The �rst two opportuni-
ties for recon�guration involve mainly PRE, while
the remaining three involving mainly POST; both
may also be supported by software. We explain
how these opportunities can be exploited in the
following sections. The particular areas that we
have identi�ed are given below.

� Analysis of the image sequences of real ob-
jects to obtain information such as their size,
colour, shape, location and motion. Recon-
�guration can be used to provide di�erent
analysis procedures at run time to produce
optimal results e�ciently (Sections 4 and 5).

� Calibration of cameras and other sensors,
and tracking of real objects of interest. The
change of background scene, noise charac-
teristics, and object shape or location may
warrant di�erent video analysis or synthesis
procedures which can be installed by recon-
�guration (Section 5).

� Generation of di�erent synthetic images or
textures. Recon�guration enables the use of
optimal generators depending on the input
video, the system state and the application
(Section 3).

� Mixing of real and synthetic objects. Di�er-
ent object representations may require dif-
ferent ways of combining them to produce
e�ects such as occlusion (Section 3).

� Techniques for improving realism of the out-
put video, such as texture mapping or pro-
duction of reections and shadows. Recon-
�guration can be used to provide the appro-
priate modules to obtain the optimal e�ect
(Section 3).

A further opportunity for recon�guration is to
replace circuits no longer needed by other useful
circuits [1]. An example will be given in Section 6.

The results reported in this paper are obtained
using a low-cost PCI platform, which has been ex-
tended with a video decoder and a video encoder
to deal with real-time video [4] (Figure 2). The
PRE and POST elements are implemented on
the XC6216 FPGA which supports partial run-
time recon�guration. The XC4013 FPGA con-
tains system control circuits and the PCI inter-
face to the PC host. Our hardware designs are
developed using the Pebble system [5], and re-
con�gurable implementations are produced using
the Con�gdi� tool [6]. Techniques used for fa-
cilitating the development of augmented reality
applications will be presented in the next section.

3 Video mixing

A critical requirement for augmented reality is
to mix three-dimensional real and synthetic ob-
jects at video rate to achieve e�ects such as oc-

PC

XC4013

XC6216

Memory

Video
decoder

Video
encoder

Figure 2 Our FPGA-based platform. The up-
per dotted box is a commercially available, low-
cost FPGA board; the lower dotted box contains
a video decoder and a video encoder interfaced to
the user-programmable FPGA, the XC6216.

clusion and deformation. We aim to meet this
requirement by adopting an object-oriented ap-
proach for representing various real and synthetic
objects in a uniform and e�cient way. This ap-
proach improves the exibility, extensibility and
portability of the system by hiding the low-level
details. It promotes re-usability by enabling new
components to inherit properties and operations
of existing components. The image objects can
be processed by hardware or software, or a com-
bination of both.

The attributes for image objects include their
size, colour, shape, degree of transparency, orien-
tation, location and motion parameters. They are
used in de�ning various image object types, each
with a speci�c set of capabilities. For instance,
objects containing images of the background do
not require motion attributes which specify how
objects move relative to the background. Also
since the background image is always opaque, the
transparency description is not required.

Object depth can be represented in several
ways. One possibility is to assign a depth value to
every pixel; this technique has been used in some
video mixing methods such as Z-keying [2]. Al-
though relatively simple, this technique requires a

Video
out

Video
in

Keyboard
input

control
images images

control,
 image data

control,
synthetic object data

control,
Video data

real object data

Software

object and display control

PRE

calibration of 3D space,
PRE of image extraction (Figure 5)

POST

synthetic object generation,
 mixing of image objects,

surface mapping,
POST of image extraction (Figure 5)

Memory

images,
video buffers

Figure 3 System organisation for video mixing. Note that PRE passes information about real ob-
jects extracted from the input video to software for further processing, while software sends control
information, such as recon�guration data, to both PRE and POST.

large store for the depth map and a large number
of computations to determine, for instance, object
occlusion. Our current implementation follows an
alternative approach, in which an image object is
given a single depth value. Composite object de-
scriptions can be used to represent objects with
varying thickness.

A typical system organisation for video mix-
ing is shown in Figure 3. Three major tasks
are involved. The �rst is to identify and char-
acterise, in a calibrated three-dimensional space,
real objects of interest from the input video; this
is performed in the PRE element which contains
hardware to implement image extraction, shown
as another PRE element in Figure 5. The sec-
ond task, performed in the POST component, is
to generate synthetic objects and surfaces. The
third task, also performed in the POST compo-
nent, is to combine the real and synthetic objects
and to perform surface mapping if required.

Our current implementation contains several
hardware pipelines for functions such as address
generation in controlling object movement, and
pattern generation in producing textures and sur-
faces. These circuits can be recon�gured so that
one design can be replaced by another which has
a di�erent function or has di�erent trade-o�s in

speed and area. As an example, a circuit for gen-
erating a black-and-white image of a simple, re-
sizable face image requires around 200 cells, or 5%
of an XC6216. Producing basic three-dimensional
geometric shapes require around 600 cells (15%
of an XC6216); these include control for size, mo-
tion and clipping. Complex objects can be built
by composing, replicating and transforming the
basic building blocks.

Software dynamically adjusts object at-
tributes, such as object depth, which are used
in occlusion calculations. Since the computa-
tional resources on the XC6216 FPGA are mem-
ory mapped, object attributes can be stored on
registers implemented in the FPGA to facilitate
hardware access.

The memory element shown in Figure 3 con-
tains video bu�ers for synthetic objects and data
for surface mapping. It may also contain real or
synthetic images of the background used in the
image extraction process; this will be explained
in Section 4.

Figure 4 shows an example of video mixing.
A frame of the input video is shown on the left.
The picture on the right shows how this frame is
augmented by synthetic images of a couple and a
square pattern. Note that image extraction tech-

Figure 4 An example showing the e�ect of mixing real and synthetic objects. A frame of the input
video is shown on the left. The picture on the right shows how this frame can be augmented by three
synthetic objects: a man, a woman and a square pattern. Note that image extraction techniques are
used to distinguish the spectacled person from the background, so that a square pattern can be placed
behind him.

niques described in Section 4 are used to distin-
guish the spectacled person from the background,
so that the pattern can be placed behind him.

4 Image extraction

The purpose of image extraction is to produce
information about real objects of interest from a
video sequence, so that they can be mixed and
interacted with synthetic objects. Various image
features can be used to guide the extraction pro-
cess, including size, colour, location, shape, and
motion. A number of feature extraction circuits
have been developed for our FPGA-based plat-
form [4]: colour detectors and edge detectors are
two types of building blocks that can be used in
image extraction. Depth detectors can also be
used: a recon�gurable engine for stereo vision [8]
is one such example.

This section describes a simple method for im-
age extraction which can be used in replacing
a real background by a synthetic image. Back-
ground replacement is commonly used in news
and weather reporting, although in such cases the

background is usually provided with a particular
colour to facilitate the extraction process: a tech-
nique known as chroma-keying.

Our image extractor is based on image di�er-
encing with noise compensation. Figure 5 shows
the organisation of the image extractor. The PRE
element captures the reference image containing
the background scene and stores it into the mem-
ory. This reference image is then used in the
POST component to compare against an input
image: if the di�erence between the correspond-
ing pixels in the incoming image and the reference
image is smaller than a given threshold, the in-
coming pixel is regarded to be the background
and will be replaced by the corresponding pixel
of another background image. Di�erent thresh-
old values can be used in di�erent parts of the
image depending on a noise model implemented
in software.

Figure 6 shows the e�ect of image extraction,
coupled with surface mapping and background re-
placement. A frame of the input video is shown
on the left. Two real objects are extracted: a
person and a mouse pad to his right labelled `IC

Video
out

Video
in

Keyboard
input

control

control
images

images

control

control,
Video data

Software

extraction control

Memory

background images

POST

background
replacement

PRE

background capture,
noise compensation

Figure 5 System organisation for image extraction.

Figure 6 An example showing the e�ect of image extraction, coupled with surface mapping and
background replacement. A frame of the input video is shown on the left. Two real objects are
extracted: a person and a mouse pad to his right labelled `IC outside'. In the corresponding output
frame on the right, the real background is replaced by a synthetic image. A surface map is applied to
the person, while a synthetic pattern is placed behind the mouse pad.

 object
labeller

POST

software
 Kalman
 filter

counter
array

counter
select

differencer

memory

video
in

video
out

PRE

Figure 7 A design for object tracking based on motion detection.

outside'. In the corresponding output frame on
the right, the real background is replaced by a
synthetic image. A surface map is applied to the
person, while a synthetic pattern is placed behind
the mouse pad.

5 Object tracking

This section outlines the structure of an ob-
ject tracker [4] and its use in calibration and in
motion-guided e�ects. The object tracker de-
scribed here is based on motion detection, and
is implemented partly in hardware and partly in
software. The PRE component of the hardware
part consists of a di�erencer and a counter array;
the POST component labels the detected moving
objects in the output video stream. The software
part contains a Kalman �lter to minimise the ef-
fect of noise on tracker performance (Figure 7).

A simple way of identifying motion is to com-
pute the di�erence between corresponding pix-
els in two consecutive video frames. The result
is thresholded to give a binary value for each
pixel. The di�erenced frame is divided into blocks
corresponding to di�erent regions of the image.
The amount of motion in each block can then be
recorded by a counter; for instance an array of
64 counters will be required for a design with 8
by 8 blocks. A counter selector keeps a record
of the current position of the incoming pixels on
the screen, and enables the appropriate counter

to increment accordingly.

The main function of the PC is to calculate the
statistically `best' estimate of the position, veloc-
ity and size of moving objects using a Kalman
�lter. Our Kalman �lter involves mainly oating-
point operations and hence is best implemented
in software. The post-processing on the FPGA
consists of hardware for labelling the detected ob-
jects in the video stream, the locations of which
are supplied by the PC.

Our object tracker can be used in various ways.
It can be used in generating e�ects related to mo-
tion, a topic which will be explained in more de-
tail below. It can also be used to detect cam-
era movement and used in camera calibration, if
a reference feature designated to be part of the
background is detected to be in motion.

Motion-guided e�ects are based on the idea
that pre-de�ned motion sequences can be used
to trigger corresponding events with observable
e�ects. Motion can be characterised by the fol-
lowing attributes: initial and �nal locations and
the corresponding time stamps, absolute or rela-
tive velocity and acceleration, and actions result-
ing in changes of the environment. A gesture can
be decomposed into a series of movements.

Motion-guided e�ects involve generating e�ects
guided by the movement of objects. There are
four major tasks: (a) search for moving objects
within each video frame; (b) characterise the
moving objects; (c) catalogue each of the iden-

ti�ed moving object; (d) perform corresponding
operations for e�ect generation.

A system organisation for producing motion-
guided e�ects using our recon�gurable platform
is given in Figure 8. The PRE element has ac-
cess to the de�nition of motion and events in a
software database. It detects object motion us-
ing the object tracker and links movements the
corresponding events in the database. The mem-
ory stores synthetic image data for the POST
element, which contains synthetic image genera-
tors and display control circuits. The POST ele-
ment executes the operations associated with the
detected events in generating the output video.
Software is used in coordinating the PRE and
POST processes as well as implementing the
Kalman �lter used in the tracker.

Figure 9 left shows a synthetic image whose
size, position and pattern are controlled by the
motion of the hand. The picture on the right
shows an instant when the hand movement trig-
gers an event. The corresponding operation is to
surface map a given pattern on all images that are
detected black in colour: these include the mon-
itor screen and the object at the bottom right-
hand corner.

When prior knowledge about possible observa-
tions is available, optimised designs can be used
for more e�ective detection and identi�cation of
objects and motion. Such designs, if implemented
in hardware, can be placed in the FPGA at the
appropriate time using run-time recon�guration.
An example of using recon�guration to overcome
hardware size limitation will be described next.

6 Run-time recon�guration example

Consider the case when an augmented real-
ity application is required to track a real ob-
ject, whose motion will be used in parametris-
ing the generation of synthetic images. However,
the FPGA that we use is not large enough to ac-
commodate the object tracker and the synthetic
object generators at the same time. Run-time
recon�guration is used to overcome this limita-
tion: when the tracking process is completed, the

object tracker is recon�gured to become the ap-
propriate synthetic object generators. The pro-
cess is repeated to emulate the behaviour of an
FPGA large enough to accommodate all required
circuits.
Figure 10 shows the FPGA oorplans for ob-

ject tracking (left) and video mixing with on-chip
synthetic object generation (right). The shaded
components in Figure 10 are common to both de-
signs, and do not need to be recon�gured. They
include bu�ers close to the left and right edges,
an image extractor and a pattern generator. The
incremental con�guration data are produced by
the Con�gdi� tool [6].
Our design is driven by a pixel clock of 9.2MHz.

It takes 600�s to recon�gure the object tracker
to become the synthetic image generators, and
710�s to recon�gure the synthetic image genera-
tors back to the object tracker. The critical path
for the object tracker is 49ns while that for the
synthetic image generators is 69ns. The com-
bined design should therefore run at 14.5MHz,
and should be capable of processing real-time
video of 30 frames per second up to a resolution
of 800 by 600 pixels.

7 Summary

This paper presents the use of hardware and re-
con�gurable computing techniques for augmented
reality applications. Let us summarise the main
novel aspects of our work. The �rst aspect is a
framework for augmented reality design using a
combination of hardware and software. The sec-
ond aspect is the elucidation of the bene�ts of
recon�gurable computing, particularly run-time
recon�guration, for augmented reality applica-
tions. The third aspect is the illustration of
our approach using three basic functions: video
mixing, image extraction and object tracking.
Our current recon�gurable implementations of
these functions, using a small FPGA running at
9.2MHz, produce images of resolution up to 640
by 480 pixels at 30 frames per second. In con-
trast, a 300MHz Pentium II PC can only support
a few frames per second.

Video
out

Video
in

Keyboard
input

control

events

control,
image data

Video data image and
video data

control

control,
Video data

Software

mixing control,
database of motion and events,
software of object tracking and

video mixing

Memory

synthetic image data,
video buffers

PRE

motion and event analysis,
PRE of object tracking (Figure 7)

and video mixing (Figure 3)

POST

synthetic image generation,
POST of object tracking (Figure 7)

and video mixing (Figure 3)

Figure 8 System organisation for motion-guided e�ects.

Figure 9 An example of motion-guided e�ects. The picture on the left shows a synthetic image whose
size, position and pattern are controlled by the motion of the hand. The picture on the right shows an
instant when the hand movement triggers an event. The corresponding operation is to surface map a
given pattern on all images that are detected black in colour: these include the monitor screen and the
object at the bottom right-hand corner.

����
�
�

im
ag

e
ex

tr
ac

to
r

�
�

pattern
generator�
�
�

pattern
generator

object tracker
���

display control

����
��
��

im
ag

e
ex

tr
ac

to
r

sy
nt

he
tic

 o
bj

ec
t

ge
ne

ra
to

r

�
�
����

display control

pattern
generator

sy
nt

he
tic

 o
bj

ec
t

ge
ne

ra
to

r

�
�
�

Figure 10 Schematics showing the FPGA oorplans for object tracking (left) and video mixing with
on-chip synthetic object generation (right). The shaded components are common to both designs and
do not need to be recon�gured. They include bu�ers close to the left and right edges, an image extractor
and a pattern generator.

Current and future work includes re�ning the
tools and applications, and exploring the adapta-
tion of our framework for interactive development
and run-time synthesis of augmented reality de-
signs. The incorporation of powerful computer
vision techniques, such as the use of stereo vision
for depth measurement [8], is also of interest.

Acknowledgements

Many thanks to Simon Haynes and Nabeel Shi-
razi for their comments and discussions. The sup-
port of the Croucher Foundation, the UK Overseas
Research Student Award Scheme, the UK Engineering
and Physical Sciences Research Council (Grant num-
ber GR/24366, GR/54356 and GR/59658), and Xilinx
Development Corporation is gratefully acknowledged.

References

[1] R.D. Hudson, D.I. Lehn and P.M. Athanas, \A
run-time recon�gurable engine for image interpo-
lation", Proc. FCCM98, IEEE Computer Society
Press, 1998, pp. 88{95.

[2] T. Kanade et. al., \Video-rate Z keying: a
new method for merging images", Technical Re-

port CMU-RI-TR-95-38, The Robotics Institute,
Carnegie Mellon University, December 1995.

[3] G.J. Klinker et. al., \Conuence of computer vi-
sion and interactive graphics for augmented real-
ity", Presence: Teleoperators and Virtual Envi-

ronments, 6(4), 1997, pp. 433{451.

[4] W. Luk et. al., \A recon�gurable engine for real-
time video processing", in Field-Programmable

Logic and Applications, LNCS 1482, Springer,
1998, pp. 169{178.

[5] W. Luk and S. McKeever, \Pebble: a language
for parametrised and recon�gurable hardware de-
sign", in Field-Programmable Logic and Applica-

tions, LNCS 1482, Springer, 1998, pp. 9{18.

[6] W. Luk, N. Shirazi and P.Y.K. Cheung, \Compi-
lation tools for run-time recon�gurable designs",
Proc. FCCM97, IEEE Computer Society Press,
1997, pp. 56{65.

[7] M. Uenohara and T. Kanade, \Vision-based ob-
ject registration for real-time image overlay",
Proc. CVRMed95, 1995, pp. 13{22.

[8] J. Wood�ll and B. Von Herzen, \Real-time stereo
vision on the PARTS recon�gurable computer",
Proc. FCCM97, IEEE Computer Society Press,
1997, pp. 201{210.

[9] A.G. Ye and D.M. Lewis, \Procedural texture
mapping on FPGAs", Proc. FPGA99, ACM
Press, 1999.

