
Pipeline Morphing and Virtual Pipelines

W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung

Department of Computing, Imperial College, 180 Queen's Gate,

London SW7 2BZ, UK

Abstract. Pipeline morphing is a simple but e�ective technique for re-

con�guring pipelined FPGA designs at run time. By overlapping com-

putation and recon�guration, the latency associated with emptying and

re�lling a pipeline can be avoided. We show how morphing can be applied

to linear and mesh pipelines at both word-level and bit-level, and explain

how this method can be implemented using Xilinx 6200 FPGAs. We also

present an approach using morphing to map a large virtual pipeline onto

a small physical pipeline, and the trade-o�s involved are discussed.

Introduction

Pipeline architectures are commonly used in high-performance designs. This pa-

per introduces morphing, a technique for enhancing the e�ciency of recon�g-

urable pipelines at run time. We shall also describe the use of morphing in the

emulation of large virtual pipelines by small physical pipelines, and explain how

temporary storage can be used to improve performance.

Implementing pipeline architectures using recon�gurable devices is attractive

for several reasons. Many FPGAs facilitate the realisation of pipelines, since they

have a regular structure and an abundance of registers. Moreover, leading-edge

FPGAs often provide built-in support for fast recon�guration. An example is the

wildcarding facility for Xilinx 6200 devices [1], which allows concurrent recon�g-

uration of a block of FPGA cells. With such facilities, it is possible to recon�gure

each pipeline stage rapidly at run time to implement multiple functions. For a

system operating in an unpredictable environment, this possibility enables the

selection of functions adaptively.

Partial recon�guration [4] is a powerful method of exploiting the 
exibility

of FPGAs such as the Xilinx 6200: one part of the FPGA can be recon�gured

while other parts are continuing to function. Pipelines provide a simple but

e�ective scheme for partial recon�guration, since pipeline registers isolate one

pipeline stage from another so that computation and recon�guration can take

place at the same time without interference. The regular structure of pipelines

also simpli�es the development of hardware operators which can be relocated to

di�erent regions of a pipeline, maximising the re-use of design e�ort.

An obvious method for recon�guring an n-stage pipeline involves three steps.

First, one needs to complete the current computation and clear the pipeline,

which takes n cycles. Then recon�guration can take place. Finally one has to

wait for n cycles for the result to 
ow through the newly-con�gured pipeline. This



method of recon�guring a pipeline leads to a latency of 2n cycles, in addition

to the time for recon�guring all the pipeline stages. In highly-pipelined systems

when n is large, the pipeline latency cycles and recon�guration time will have a

signi�cant impact on performance.

Pipeline Morphing

We present a method, called pipeline morphing, for reducing the latency involved

in recon�guring from one pipeline to another. The basic idea is to overlap compu-

tation and recon�guration: the �rst few pipeline stages are being recon�gured to

implement new functions so that data can start 
owing into the newly-con�gured

stages of the pipeline, while the rest of the pipeline stages are completing the

current computation. Instead of changing the entire pipeline at once, our method

involves morphing one pipeline to another, just as one can morph two images by

interpolating them. In our case, the pipeline registers isolate one pipeline stage

from its neighbours, enabling computation and recon�guration to take place

concurrently in di�erent stages.

Figure 1 shows how a �ve-stage pipeline F can be morphed into a pipeline

G in �ve steps. It should be clear from this example that during morphing,

the 
ow of recon�guration is synchronous with the 
ow of data, and hence the

pipeline latency cycles are eliminated. If the time for recon�guration is longer

than the pipeline processing time, the pipeline will need to include 
ow control

mechanisms to slow down the rate of data 
ow while morphing is taking place.

We shall explain later how this can be achieved in Xilinx 6200 FPGAs.

f3g2 f4 f5

(c)

g1 g1 g3g2 f4 f5

(d)

g
1

g
3

g
2

g
4

f
5

(e)

g
1

g
3

g
2

g
4

g
5

(f)

f1 f3f2 f4 f5

(a)

g1 f3f2 f4 f5

(b)

Fig. 1. Given the pipeline F with stages f1; : : : ; f5 and the pipeline G with stages

g1; : : : ; g5, the diagram shows how F can be recon�gured into G in �ve steps using the

morphing technique. Only one stage of the pipeline is being recon�gured in each step.

Whether morphing is used or not, a designer's task is to ensure that the

slowing down due to run-time recon�guration will not a�ect system performance.

For instance in video processing, there may be su�cient time for recon�guration

between the end of one image frame and the beginning of the next frame.



Because of the elimination of latency cycles, pipeline morphing will improve

the performance of systems that recon�gure at run time. It is particularly suit-

able for devices supporting rapid recon�guration, and it works best when recon-

�guration time is comparable to the pipeline computation time. To meet this

condition, the user can build single-cycle recon�gurable structures in an FPGA

[7]. FPGAs specially-designed for supporting rapid recon�guration [10], [11] will

particularly bene�t from pipeline morphing. Morphing can also be applied to

systems with multiple FPGAs arranged as a pipeline.

f3 f6

f2 f5 f8

f4 f7 f9

(a)

f1 f3 f6

f2 f5 f8

f4 f7 f9

(b)

g1

g3 f6

g2 f5 f8

f4 f7 f9

(c)

g1 g3 g6

g2 g5 f8

g4 f7 f9

(d)

g1

g3 g6

g2 g5 g8

g4 g7 f9

(e)

g1 g3 g6

g2 g5 g8

g4 g7 g9

(f)

g1

Fig. 2. Given the square mesh F with components f1; : : : ; f9 and the mesh G with

stages g1; : : : ; g9, the diagram shows how F can be recon�gured into G in �ve steps

using the morphing technique.

Our method is not con�ned to linear pipelines. It can be applied to pipelines

of other shapes, such as two-dimensional meshes or tree-shaped designs. Fig-

ure 2 shows the steps of morphing from one mesh to another, given that every



component in the mesh has a pipeline register at each of its two outputs. This

approach can also be applied to bit-level operators. In the next section, we shall

explain how a pipelined adder can be morphed into a pipelined subtractor.

Morphing Pipelines on Xilinx 6200 Devices

We illustrate the morphing recon�guration technique by showing how it can

be applied to recon�gure a six-bit, three-stage pipelined adder to a pipelined

subtractor of the same size on a Xilinx 6200 FPGA. The pipelined adder is

shown in Figure 3a and the resulting pipelined subtractor is shown in Figure 3d.

fadd faddfadd fadd faddfadd

fsub faddfsub fadd faddfadd

fsub fsubfsub fsub faddfadd

fsub fsubfsub fsub fsubfsub

(a)

(c)

(b)

(d)

Key: Input/Output Register for Addition
Input/Output Register for Subtraction

Fig. 3. Morphing a pipelined adder to become a subtractor.



As explained above, if all n stages of a pipelined adder (n=3 in the above

example) are recon�gured into a pipelined subtractor at once, an additional 2n

clock cycles would be needed in order to 
ush the pipeline and to re�ll it. In

order to avoid this delay, the recon�guration is performed in three steps where

each stage of the pipelined adder is recon�gured followed by one clock cycle of

computation. These three recon�guration steps are shown in Figures 3b, 3c and

3d. The partial con�guration information involved in these steps was obtained

using tools described in [8].

A dual clocking scheme is used in order not to clock invalid data values into

the pipeline registers during recon�guration. The two operand values for the

adder are stored in two six-bit registers. When using the processor interface [1]

on the Xilinx 6200 FPGA, a pulse is produced whenever a register is written with

a value, and this pulse can be used as a clock for the registers within the design.

The input registers are set up so that a clock pulse is generated when the second

operand is written into the register. An additional con�guration clock is used to

control the recon�guration of the logic in each pipeline stage. The recon�guration

sequence is therefore broken down into three steps. First, a stage of the pipeline

is recon�gured; on completion the operands are written into the input registers;

the write action then triggers the clock for the pipeline registers. This sequence

is continued until all the stages are recon�gured.

In the above example, it takes four cycles to recon�gure the pipelined adder

to a pipelined subtractor. Without morphing it takes an additional three cy-

cles to 
ush the pipeline and three cycles to re�ll it; hence a total of ten cycles

are needed to perform the recon�guration and to begin producing correct re-

sults. The morphing technique therefore improves the recon�guration time by

2.5 times; Table 1 summarises these results. Clearly the higher the degree of

pipelining, the larger the improvement that can be obtained using the morphing

technique, since it takes more cycles to evacuate and to re�ll the pipeline.

Table 1. Comparing morphing and non-morphing recon�guration of a pipelined

adder into a pipelined subtractor. N/A is short for \not applicable".

With morphing Without morphing

(number of cycles) (number of cycles)

Recon�gure Figure 3a to Figure 3b 2 N/A

Recon�gure Figure 3b to Figure 3c 1 N/A

Recon�gure Figure 3c to Figure 3d 1 N/A

Recon�gure Figure 3a to Figure 3d N/A 4

Time to 
ush and re�ll the pipeline N/A 6

Total recon�guration time 4 10

Speedup factor 2.5 1



Virtual Pipelines

An advantage of adopting a pipeline structure is the ease of mapping a large

virtual pipeline onto a small physical pipeline. Our approach involves feeding

back partial results to the physical pipeline which morphs between di�erent

sections of the virtual pipeline. The performance of such a system can often be

enhanced by a temporary storage (Figure 4), as we shall discuss later.

Let us begin with an example: the mapping of a six-stage virtual pipeline onto

a three-stage physical pipeline (Figure 4). The �rst three stages of the virtual

pipeline are time-multiplexed with the last three stages. Morphing is used to

replace one of the two pipeline con�gurations by the other.

This design operates as shown in Figure 4. Note that the physical pipeline

operates in two modes: the \�ll" mode and the \feedback" mode. In the �ll

mode, the �rst pipeline stage is connected to the external input and data start

�lling up the pipeline. Once the pipeline is �lled up, partial results will emerge

and will be stored in the temporary storage. When all input data have been

processed by the �rst three stages of the virtual pipeline or when the temporary

storage is full, the pipeline will operate in the feedback mode.

When an n-stage physical pipeline �rst starts in the feedback mode, its �rst

stage will be recon�gured to become the (n+ 1)-th stage of the virtual pipeline

(Figure 4b). After recon�guration is completed in the �rst pipeline stage, it is

provided with the partial results from the temporary storage. When the compu-

tation is completed, the second stage of the physical pipeline will be recon�gured

to become the (n+2)-th stage of the virtual pipeline (Figure 4c), and so on. For

the example in Figure 4, eventually the partial results will 
ow through the phys-

ical pipeline con�gured to be the last three virtual pipeline stages (Figure 4d).

When the virtual pipeline has been emulated once, the result will start to

emerge at the external output. When new data can be accepted, the physical

pipeline will operate in �ll mode again and will morph back to the �rst three

virtual pipeline stages. Note that adequate 
ow control is necessary to stop the

external input while the pipeline is operating in feedback mode. The next section

will describe the use of the temporary storage to optimise pipeline performance.

Temporary Storage

First, note that if the physical pipeline only supports global recon�guration, the

temporary storage shown in Figure 4 is needed to hold partial results while the

entire pipeline is being recon�gured. If the pipeline can be partially recon�gured

at run time, then the temporary storage is not necessary as the pipeline itself

can provide storage of partial results.

However, a small temporary storage will result in frequent recon�guration,

since the physical pipeline has to operate in \feedback" mode (see previous

section) once the temporary storage is full. It will remain in the \feedback"

mode until outputs are ready which will then free up space for further inputs. If

the combined storage in the pipeline and the temporary storage is large enough



f
3

f
2

(a)

Temporary
Storage

f4 f3f2

(b)

Temporary
Storage

f4 f3f5

(c)

Temporary
Storage

f4 f6f5

(d)

Temporary
Storage

f1

Fig. 4. Emulating a six-stage virtual pipeline f1; : : : ; f6 using a three-stage physical

pipeline. The pipeline is in the �ll mode for Step (a), and it is in feedback mode for

Steps (b) to (d). The control to the switch that selects the external or the feedback

data is not shown.



to contain all input data, then each virtual pipeline stage will only need to be

emulated once. Having su�cient temporary storage is particularly important for

pipelines which require a long recon�guration time, since it would be desirable

to minimise the frequency of recon�guration for these pipelines.

Let us now consider di�erent ways of implementing the temporary storage. If

a large amount of temporary storage is required, then external memory can be

used; otherwise on-chip registers or embedded memories within the FPGA may

be su�cient. As explained above, pipelines supporting rapid recon�guration can

a�ord a small temporary storage. When this happens, the feedback connections

can be made entirely on-chip, possibly using global connections in the FPGA so

that output data from the last stage can be fed back to the �rst stage in the feed-

back mode. Global connections are provided in most FPGAs; such connections

can themselves be pipelined to ensure high performance.

Another way of implementing a physical pipeline with little or no tempo-

rary storage is to partition the physical pipeline into half, and \fold" one half

of the pipeline onto the other half by interleaving the components (Figure 5).

This method avoids global connections at the expense of requiring an e�cient

integration of non-neighbouring elements in a pipeline structure.

f1 f2

f3

Fig. 5. A folded version of the physical pipeline in Figure 4a, which does not have

temporary storage and avoids using global connections.

Virtual Pipelines on Xilinx 6200 PCI System

The viability of virtual pipelines has been demonstrated by a PCI board supplied

by Xilinx Development Corporation, which contains a Xilinx 6216 or a Xilinx

6264 device and four 8-bit wide memories organised into two banks [7]. Each

bank of memory can be accessed from either of the two separate address busses

(Figure 6), and each of the four memories can be controlled individually. This

memory architecture allows multiple modes of operation to be set-up by selecting

multiplexers and bus switches for 
ow control in the desired manner.

This system provides a 
exible platform for implementing virtual pipelines.

One possibility is to use the two memory banks to provide the temporary storage

(Figure 4) for a virtual pipeline. Partial results can be stored into one memory

bank, and they can be used later when the FPGA has been recon�gured to



8
SRAM

8
SRAM

8
SRAM

8
SRAM

PCI Bus

19

East Data

17

East Address

West Address

Bank 2

Bank 1

West Data

32

32

Mezzanine Board Connectors

65

Xilinx 6216 or
6264

Xilinx 4013E
(PCI Interface)

Fig. 6. Xilinx 6200 PCI system.

implement a di�erent region of the virtual pipeline. Another possibility is to

use the on-chip registers of the Xilinx 6200 FPGA to implement the temporary

storage. If registers or global connections are at a premium, the folded structure

(Figure 5) may prove to be an appealing alterative in implementing a physical

pipeline.

Summary

This paper introduces morphing, an e�ective technique for recon�guring pipelines.

We explain how morphing can be applied to linear and mesh pipelines at word-

level and bit-level, and how it can be implemented in Xilinx 6200 FPGA technol-

ogy. We also describe the mapping of large virtual pipelines onto small physical

pipelines, and how the resulting implementations can bene�t from morphing.

Current and future work includes extending the scope of morphing to cover

various architectural templates; this extension will enable us to morph between

pipelines with di�erent number of pipeline stages, or to morph a linear pipeline

into a tree-shaped architecture. Frequently there are multiple ways of morphing

between designs, and it will be important to evaluate the trade-o�s involved.



The use of languages such as Ruby [2] and VHDL [9] for modelling hardware

morphing is also being explored; we expect such work to result in techniques

and tools for automating the implementation of morphing and virtual pipelines.

Acknowledgements

The authors are indebted to John Gray, Douglas Grant, Hamish Fallside, Tom

Kean, Steve McKeever, Stuart Nisbet and Bill Wilkie for their constructive com-

ments. The support of Xilinx Development Corporation, the UK Engineering and

Physical Sciences Research Council (Grants GR/L24366 and GR/L54356) and

the UK Overseas Research Student Award Scheme is gratefully acknowledged.

References

1. S. Churcher, T. Kean and B. Wilkie, \The XC6200 FastMap Processor Interface",

in Field Programmable Logic and Applications, W. Moore and W. Luk (eds.),

LNCS 975, Springer, 1995, pp. 36{43.

2. S. Guo and W. Luk, \Compiling Ruby into FPGAs", in Field Programmable

Logic and Applications, W. Moore and W. Luk (eds.), LNCS 975, Springer, 1995,

pp. 188{197.

3. J. Hadley and B. Hutchings, \Design Methodologies for Partially Recon�gured

Systems", in Proc. FCCM95, P. Athanas and K.L. Pocek (eds.), IEEE Computer

Society Press, 1995, pp. 78{84.

4. B. Hutchings and M.J. Wirthlin, \Implementation Approaches for Recon�gurable

Logic Applications", in Field Programmable Logic and Applications, W. Moore and

W. Luk (eds.), LNCS 975, Springer, 1995, pp. 419{428.

5. W. Luk, \A Declarative Approach to Incremental Custom Computing", Proc.

FCCM95, P. Athanas and K.L. Pocek (eds.), IEEE Computer Society Press, 1995,

pp. 164{172.

6. W. Luk, S. Guo, N. Shirazi and N. Zhuang, \A Framework for Developing

Parametrised FPGA Libraries", in Field-Programmable Logic, Smart Applications,

New Paradigms and Compilers, LNCS 1142, Springer, 1996, pages 24{33.

7. W. Luk, N. Shirazi and P. Y. K. Cheung, \Modelling and Optimising Run-Time

Recon�gurable Systems", in Proc. FCCM96, K.L. Pocek and J. Arnold (eds.),

IEEE Computer Society Press, 1996, pp. 167{176.

8. W. Luk, N. Shirazi and P. Y. K. Cheung, \Compilation Tools for Run-Time Re-

con�gurable Designs", in Proc. FCCM97, K.L. Pocek and J. Arnold (eds.), IEEE

Computer Society Press, 1997.

9. P. Lysaght and J. Stockwood, \A Simulation Tool for Dynamically Recon�gurable

Field Programmable Gate Arrays", IEEE Transactions on VLSI, Vol. 4, No. 3,

September 1996.

10. H. Schmit, \Incremental Recon�guration for Pipelined Applications", in

Proc. FCCM97, K.L. Pocek and J. Arnold (eds.), IEEE Computer Society Press,

1997.

11. S. Trimberger, D. Carberry, A. Johnson and J. Wong, \A Time-Multiplexed

FPGA", in Proc. FCCM97, K.L. Pocek and J. Arnold (eds.), IEEE Computer So-

ciety Press, 1997.


