
Synthia: Synthesis of Interacting Automata
targeting LUT-based FPGAs

George A. Constantinides1, Peter Y. K. Cheung1, Wayne Luk2

(george.constantinides@ieee.org)

ABSTRACT

This paper details the development, implementation, and results of Synthia, a system for
the synthesis of Finite State Machines (FSMs) to field-programmable logic. Our
approach uses a novel FSM decomposition technique, which partitions both the states of
a machine and its inputs between several sub-machines. The technique developed
exploits incomplete output specifications in order to minimize the interconnect
complexity of the resulting network, and uses a custom Genetic Algorithm to explore the
space of possible partitions. User-controlled trade-off between logic depth and logic area
is allowed, and the algorithm itself during execution determines the number of sub-FSMs
in the resulting decomposition. The results from MCNC benchmarks applied to Xilinx
XC4000 and Altera FLEX8000 devices show a typical speedup of 35% to 37%
combined with a typical area reduction of 26% to 33% over a standard one-hot encoding
of the original circuit. Final results will be available within weeks and incorporated into
the paper.

1 Dept. of Electrical and Electronic Engineering, Imperial College, London, UK.
2 Dept. of Computing, Imperial College, London, UK.

1. Introduction
Finite State Machine (FSM)

Decomposition is the implementation of a
large FSM as a network of smaller
interacting FSMs, a problem that has been
studied since the late 1960s [2]. In VLSI
architectures, FSM decomposition is useful
for a number of reasons. By controlling the
topology and manner in which the machine
is decomposed, it is possible to aim for an
implementation with characteristics such
as: high speed, as decomposition can
usually lead to a reduction in logic depth
[6]; low area, as state-encoding heuristics
will often cope more efficiently with each
of the smaller sub-FSMs than with the
large lump-FSM [3]; reduction in
interconnect complexity [7], and I/O
minimization [8].

This paper describes one such
approach to FSM decomposition, which
specifically targets LUT-based FPGA
implementations. The technique developed
heuristically partitions the states of a large
FSM between several sub-machines, while

also partitioning its inputs. Output don’t-
care conditions are exploited in order to
minimize the interconnect complexity of
the resulting network, and a custom
Genetic Algorithm is used to explore the
space of possible input partitions. A user-
controlled trade-off between logic depth
and logic area is allowed, and the state-
partitioning algorithm itself, during
execution, determines the number of sub-
FSMs in the resulting decomposition.

The following points summarise the
part of this work that is believed to be
original.
• Synthia extends and modifies the work

of Yang [7] in order to exploit
incomplete specifications in state-
machines.

• Synthia uses a novel decomposition
topology, which can be thought of as a
combination of the earlier work of
Feske [3] with the above.

• Synthia exploits a Genetic Algorithm
approach to the problem of searching
the space of possible input partitions.

The paper is subdivided into several
sections. Section 2 introduces some of the
background work into FSM decomposition
which has been built upon. Section 3
details the concepts and algorithms that
form the Synthia system. Section 4
presents experimental results obtained from
running the system on several benchmark
circuits, targeting both Xilinx XC4000
[10] and Altera FLEX8000 [12] devices.
Section 5 then presents the conclusions of
this work.

2. Background
Feske et al. [3], have developed an

approach to FSM decomposition which
operates at the State Transition Graph
level. It has been shown that decomposition
strategies that partition the STG allow a
wider solution space to be searched by the
following phases of synthesis [6]. The
work in [3] proceeds by breaking the STG
into a number of sub-STGs, each
containing an extra ‘wait’ state
representing all states outside the sub-
STG’s domain. The sub-FSMs must pass
messages to each other when a transition
occurs which would cross a sub-STG
boundary, indicating which state to enter.
Unlike most other techniques for FSM
decomposition, [3] not only allows an
arbitrary number of sub-FSMs to be
formed, but decides upon that number
itself, through adaptation as the algorithm
executes. However, the simplicity of the
messages passed means that more complex
don’t care conditions, arising from the
association of particular inputs with
particular groups of states, are not
exploited. Even so, the authors report
significant improvements compared to a
one-hot implementation: reduction in
circuit depth (29%) and number of logic
blocks (38%) when mapped to a Xilinx
XC4000 FPGA.

Yang, et al. [7], have developed an
FSM decomposition to minimize the
complexity of VLSI interconnection. The
first step of this n-way decomposition is to
partition the set of inputs between n sub-
FSMs, each containing all the states of the

lump FSM. The additional communication
between sub-FSMs necessary for each sub-
FSM to calculate its correct (next-state,
output) combination is then found. Outputs
are partitioned between sub-FSMs, leading
to possible redundancy in states. This is
followed by a state-minimization on each
sub-FSM. Because the messages passed
between sub-FSMs are only functions of
machine inputs (not states), the logic to
generate them is combinatorial and tends to
be very simple compared to the sequential
logic for the sub-FSM. This technique has
the advantage that more complex don’t-
care conditions can be exploited, leading to
a significant reduction in interconnect
complexity. This is important for FPGA
design, as routing resources tend to be
limited. However, as developed in [7], little
advantage is taken of incompletely
specified FSMs. In addition, the user is
required to specify the number of sub-
FSMs to decompose to in advance of
algorithm execution. In a later paper [9],
the authors apply their technique to FPGA
implementation on the Xilinx XC4000,
claiming a significant speedup at the cost
of a 44% increase in the number of logic
blocks.

3. Synthia
3.1 Decomposition Topology

 Our technique, which forms the basis
of the Synthia system, performs a
partitioning of both inputs and states
between sub-FSMs. The state partitioning
is performed by adapting the linear
partitioning approach described in [3]. The
constraint that each lump-FSM state is
assigned to exactly one sub-FSM is
retained. The output of the lump FSM is
produced by a mapping X x S → Y, where
X is the set of input values, S the set of
states, and Y the set of output values. Thus
to partition S across several sub-FSMs
implies that each output may need to be
produced by each sub-FSM. For this
reason, a block of logic is required to
recombine outputs from each sub-FSM, as
shown in Fig. 1(a). However, the constraint
that every input must be available to every
sub-FSM [3], is relaxed. Instead, our

approach introduces two types of messages
which may be passed between sub-FSMs.
Messages from one sub-FSM can either
instruct another sub-FSM to enter a
particular state, or inform another sub-
FSM of the status of its inputs. It is worth
noting that the two different types of
message are never needed simultaneously,
since if a given sub-FSM is in its wait-
state, then it is only waiting for next-state
type messages, whereas if it is not in its
wait-state, it will never receive next-state
type messages. This observation allows
message assignments to be shared between
the two types of message, if desired,
leading to fewer communication wires
between sub-FSMs. For our
implementation, this option was not taken,
as in order to obtain the best possible
performance, the messages were
implemented by small combinatorial sub-
circuits. Shown in Fig. 1(b) is a single sub-
FSM.

Figure 1(a): A 2-way Synthia decomposition

3.2 Input Messages
Yang [7] uses n-dimensional ‘state-

transition matrices’ in order to find what
messages need to be passed between n sub-
FSMs. In our present paper we extend the
idea of state-transition matrices to better
cope with two phenomena not present in
[7]:

• In our decomposition, states belong
to only one sub-FSM.

• The presence of incompletely
specified outputs.

Firstly, assume that the input and state
partitioning has already been performed
using the method described in section 3.3.
An (n+1)-dimensional matrix is then built
for each sub-FSM M. One dimension
corresponds to the state of M. The other n-
dimensions correspond to possible input
cubes seen by each sub-FSM, and the data
value at each co-ordinate represents a next-
state/output combination. An example will
illustrate the point. Consider the state-
machine specification shown in Fig. 2(a).
Let us assume that st0 and st1 are
contained in sub-FSM M1, the other states
belonging to other sub-FSMs. Further,
assume that the first two inputs are sent to
sub-FSM M1, the next two are sent to sub-
FSM M2, and the final one to sub-FSM
M3. A 4-D state-transition matrix is
constructed for M1 (shown in Fig. 2(b) as
two 3-D matrices).

It may now be possible to merge axis
headings on each of the (n-1) dimensions
not representing M1, while still retaining
all necessary information. This is
equivalent to reducing the number of
interconnect wires necessary between sub-
FSMs. We aim to minimize interconnect
complexity for two reasons:
1. routing resources are scarce in FPGAs
2. small sub-FSMs are likely to make

heavy use of fast local FPGA
interconnect, whereas interconnect
between sub-FSMs is likely to make
more heavy use of slower, non-local
routing resources.

When there are don’t care conditions
on some of the output specifications, it is
possible that there is no single unique

M1 M2

Inputs
I1,I2

Inputs
I3, I4

Global output logic (OR)

Outputs

passed
messages

Next-state Messages

Sub-FSM
primary
inputs

Comb.
Logic

Sequential
Logic

Input Messages

Primary Outputs

Figure 1(b): A single sub-FSM

solution to the problem. For example, the
reduced matrix could take the form of Fig
2(c) or 2(d) equally. This situation arises
because don’t-care conditions may be
expanded into concrete ‘0’ or ‘1’
specifications as a result of one merge,
which would conflict with the concrete
value arising from another possible merge.
A heuristic has been implemented, as
detailed below, to select which merges to
implement.

.i 5

.s 4

.o 2

0-1-- st0 st0 0-
0-01- st0 st1 01
1-1-- st0 st0 -0
1-01- st0 st1 01
0-1-0 st1 st2 0-
0-1-1 st1 st2 -0
0-01- st1 st3 -1
1-1-0 st1 st2 -1
1-1-1 st1 st2 0-
1-01- st1 st3 1-
...
...

Figure 2(a): Partial KISS specification

St0 1- 01
0- (st0, 0-) (st1, 01)
1- (st0, -0) (st1, 01)

St1 1- 01
0- (st2, 0-) (st3, -1)
1- (st2, -1) (st3, 1-)

St0 1- 01
0- (st0, 0-) (st1, 01)
1- (st0, -0) (st1, 01)

St1 1- 01
0- (st2, -0) (st3,-1)
1- (st2, 0-) (st3,1-)

Figure 2(b): A state-transition matrix with
output don’t-cares

St0 1- 01
{0-,1-} (st0, 00) (st1, 01)

St1 1- 01
{0-,1-} (st2, 01) (st3, 11)

St0 1- 01
{0-,1-} (st0, 00) (st1, 01)

St1 1- 01
{0-,1-} (st2, 00) (st3,11)

Figure 2(c): One possibility for optimization
of Figure 2(b).

St0 1- 01
0- (st0, 0-) (st1, 01)
1- (st0, -0) (st1, 01)

St1 1- 01
0- (st2, 00) (st3,-1)
1- (st2, 01) (st3,1-)

Figure 2(d): Another possibility for
optimization of Figure 2(b).

3.3 Primary Input and State Partitioning
The previous section answered the

question of what input messages are
necessary for communication between sub-
FSMs, given a partition of states and
inputs between them. This section will
address the problem of how to partition
states and inputs between sub-FSMs.

If there are n sub-FSMs, and p
primary inputs, then each input could be
assigned to each sub-FSM, leading to a
total of np different partitions. A Genetic
Algorithm (GA) approach is used to search
this large space of possible input partitions.
We may represent the mapping between
primary inputs and sub-FSMs by a vector
I, indexed by primary input number, and
with entries in the range 0 to (n-1),
indicating which sub-FSM that input is
assigned to. When viewing the problem in
this way, a GA approach is natural: a clear
demarcation already exists between alleles
in a chromosome - the index of the vector

M1 inputs

M2 inputs

M1
states

M3 input = 0

M1 inputs

M2 inputs

M1
states

M3 input = 1

M3 input = {0,1}

M3 input = 0

M3 input = 1

I. With a larger allele size there is not full
genetic control over the search-space,
whereas with a smaller size (say bits, more
typically used in a GA) no extra
information is present. The unusual
properties of the GA applied are listed
below:

• valid allele values are 0 to (n-1), and
n may vary during algorithm
execution

• mutation consists of randomly
choosing an allele value between 0
and (n-1)

The above has addressed the problem
of choosing a suitable input partition given
a partitioning of states between sub-FSMs.
Rather than extending the GA approach to
the partitioning of states, certain a-priori
information may be used effectively: states
that are successors or predecessors of other
states in the STG are more likely to benefit
from incorporation within a single sub-
FSM than any two states chosen at
random. Such sub-FSM networks are
likely to have fewer inter-FSM transitions,
and in addition, the results of [3] indicate
that particular inputs tend to be associated
with particular sub-graphs of the STG.
Indeed, the algorithm described in [3] is a
heuristic incorporating elegantly this prior
knowledge. The approach taken in that
paper has been modified to incorporate the
changes in decomposition topology, the two
different message types, and the presence
of an extra phase - that of input
assignment.

3.4 Algorithms
3.4.1 The Core

At the core of the algorithm employed
is the integration of the two phases: an
STG-level heuristic for state partitioning,
and a GA for input partitioning. A naive
approach is either to optimize the state
partition for each input partition or to
optimize the input partition for each state
partition. The computational load from
such an approach is unrealistic, and so the
solution taken is to interleave the two
algorithm phases in a way that is unlikely
to impact greatly on the performance.

The resulting top-level algorithm is
shown in pseudo-code below.

OptimizeFSM(stg, start_its,
 next_its, popsize, pcross, pmut)
{
 decomp=init_state_partition(stg);
 popul=ga_initpop(decomp, popsize,

 pcross, pmut);

 ga_optimize(popul, start_its);
 newCost = 1.0 / best_fitness;

 do {
oldCost = newCost;
foreach sub-FSM B {

 do {
 gain = optimize_state_part(B,
 best_chromosome);

 } while(gain > 0.0);
 }

 cleanup_popul(popul, decomp);
 ga_optimize(popul, next_its);

 newCost = 1.0 / best_fitness;
 } while(newCost < oldCost);

 write result file
 }

The algorithm starts with an initial
state partition of one state per sub-FSM (a
one-hot state-encoding on the lump-FSM).
After performing a GA optimization with
respect to that state-partition, the main
loop is entered. Optimize_state_part
works on one block of the state partition at
a time, trying to suck-in any state which
has a predecessor or successor state within
another block. If this results in a positive
gain, the move is retained. If this results in
an empty block, all references to that block
in the chromosome I are set to point
instead to the new block containing that
state. (A similar function is performed by
cleanup_popul, above). It is worth
noting that two, possibly different,
numbers of iterations are used in the GA -
one inside the main loop body and one
outside. This is because it is quite likely
that the population of input partitions
before entering the state-partitioning
heuristic is a good first-guess for the GA
after exiting the heuristic. This insight was
confirmed by the results collected, which
show good performance can be achieved at
little computational cost by having a higher
number of iterations outside the loop body.

3.4.2 Transition Matrix Manipulation
The cost estimation used by the state-

and input-partitioning algorithms has two
phases:

1. construct a transition matrix for each
interacting sub-FSM of the network

2. estimate delay and area of the
resulting network

A pseudo-code for the cost-estimation
function is shown below.

 get_cost(decomp, chromosome)
 {
 foreach sub-FSM B {
 M = construct_matrix(B, decomp);
 optimize_matrix(M, B);
 add matrix M to array ‘Matrices’
 }
 return estimate_cost_from_matrices(
 Matrices,decomp,chromosome);
 }

After constructing an unoptimized
state-transition matrix (as discussed in
section 3.2), the algorithm proceeds to
optimize that matrix by merging axis
headings as much as possible. The
heuristic designed iteratively merges axis
headings, two at a time. It is a non-
backtracking step-by-step approach: the
merge chosen at any given step is the one
judged ‘most likely’ to result in the largest
interconnect complexity reduction, and
once that choice is made it will not be
changed at a later stage. For each axis in
the given state-transition matrix, a
compatibility table is constructed. This
table indicates which axis headings are
mergible with which others (to be
determined by searching the matrix
entries). Three example compatibility
tables are shown in Fig 3. Note that these
are lower triangular matrices with binary
entries (the compatibility relation is bi-
directional and Boolean). The heuristic
proceeds by counting the number of
possible merges on each axis (3 for M0, 1
for M1 and 2 for M2). The axis with the
greatest number is chosen for merging, in
the hope that some merges will still be
possible after the current one. Then the
heuristic picks the heading H1 with the
largest number of possible merges (in this
case either -00, 011 or 010). Finally, the
pair to merge is completed by choosing the

heading with the next largest number of
possible merges H2, subject to the
constraint that H1 and H2 are mergible.
After merging the two axis headings, and
adjusting their entries (replacing don’t-
cares by ‘0’ or ‘1’) as necessary, the
heuristic is ready for its next iteration.

Figure 3: Three Compatibility Tables

 After optimization, the matrices form
a complete specification for the network of
sub-FSMs, which is then passed to a
function in order to calculate a cost
estimate. This proceeds in four stages:

1. encode input messages
2. encode state messages
3. construct STGs for each sub-FSM
4. estimate delay and area of each sub-

FSM
 The message assignments are

arbitrary minimum length encodings. The
delay and area of each sub-FSM are
estimated separately from its neighbours
for speed of execution. This is done using
SIS [5] procedures for LUT-based FPGAs,
as developed by Murgai [4], using a JEDI
[11] minimum-length state encoding on
each individual sub-FSM.

The worst-case logic depth (and
therefore the estimated worst-case delay) of
the resulting network occurs when more
than one sub-FSM is involved in a
transition. The maximum number of sub-
FSMs that may be involved in a transition

M0 -00 011 010 001
-00
011 TRUE
010 TRUE TRUE
001 FALSE FALSE FALSE

M1 --0 001
--0
001 TRUE

M2 000 100 110 111
000
100 FALSE
110 FALSE TRUE
111 TRUE FALSE FALSE

is two. Hence if the logic depths of all sub-
FSMs are written as d0, d1, ... dn, with d0 ≥
d1 ≥ ... ≥ dn, then the worst-case logic depth
is bounded above by d0 + d1 and below by
d0. Thus the returned delay estimate
returned is d0 + 0.5d1. Similarly, the area
estimate returned for the network is simply
the sum of all area estimates for the sub-
FSMs. The two costs (area and logic
depth) are combined in a linear manner
with a user-controlled factor in order to
return a single cost-function value.

4. Experimental Results
The algorithm described was

implemented and integrated within the SIS
[5] logic synthesis package. The
implementation takes an STG as input and
produces a file of hierarchical VHDL
source-code describing the network of
interacting FSMs.

A diagram illustrating a typical design
flow when using Synthia is shown on the
right in Figure 4. The format for describing
FSMs in SIS is the KISS format. This can
be acquired either directly from design
specification or through extraction from an
HDL description. Synopsys software [14]
has one possible extraction algorithm,
‘extract’. The state-machine format used
by Synopsys is another abstract
description, ‘.st’, for which we have
written a converter to KISS.

A subset of the MCNC Logic Synthesis
Workshop benchmarks was used in order
to explore the parameter-space of the
algorithm, looking for a good operating
point. Once this point was found, another
subset of the MCNC benchmark set, and
the two FSMs from the PREP [13]
benchmark set were decomposed using the
algorithm. The MCNC benchmarks are
available as KISS FSM-specification files,
whereas the PREP benchmarks were first
converted to KISS.

The resulting VHDL code was compiled
by Synplify [1] for both the Altera
FLEX8000 (EPF8282A-2) [12] and the
Xilinx XC 4000 (XC4003EPC84-1) [10],
once aiming for a high-speed result and

once for a low area result. The resulting
number of Altera LCs and Xilinx CLBs
were collected, alongside the reported
maximum clock frequencies. These
preliminary results are tabulated in the
Synthia columns of Tables 1 and 2. In
addition, run-times are reported in Table 3.

For the purposes of comparison, each
benchmark was also encoded in a one-hot
style by JEDI, automatically written as

VHDL code, and compiled as above by
Synplify. In the case of the PREP
benchmarks, the KISS file was re-encoded
in VHDL, rather than using the original
VHDL. These one-hot results are shown in
the one-hot columns of Tables 1 and 2.

The tabulated results are additionally
shown in graphical form in Figure 5.

KISS DescriptionHDL Description

Synopsys
‘extract’

.st description

.st to KISS
converter

Synopsys
FPGA Express

edif / .tdf description .xnf description

Altera
MaxPlus II

Xilinx M1

FPGA bitstream FPGA bitstream

KISS description

Synthia

VHDL source

One-hot SynthiaB’mark
Clock #LCs Clock #LCs

bbara 45.7 37 108.7 14
beecount 57.1 22 84.7 19
cse 24.8 122 47.2 94
dk14 37.9 64 66.2 46
dk27 47.8 22 79.4 13
dk512 34.2 51 73.5 27
ex6 32.9 73 57.1 54
lion 54.3 18 104.2 9
mark1 42.6 60 41.7 43
opus 39.4 53 43.5 61
s27 55.6 28 90.1 11
shiftreg 76.3 22 85.5 16
tav 70.9 14 58.5 26
PREP3 51.3 43 52.9 35
PREP4 24.9 114 62.5 68

Table 1(a): Area-optimized results for
FLEX8k

One-hot SynthiaB’mark
Clock #CLBs Clock #CLBs

bbara 51.3 53 108.7 14
beecount 59.9 26 84.7 19
cse 32.8 151 47.2 94
dk14 40.8 89 66.2 46
dk27 60.6 32 79.4 13
dk512 48.8 75 73.5 27
ex6 36.2 92 57.1 54
lion 73.0 20 104.2 9
mark1 41.8 82 41.7 43
opus 45.0 63 43.5 61
s27 65.4 28 90.1 11
shiftreg 82.6 29 85.5 16
tav 82.0 20 58.5 26
PREP3 52.6 53 78.1 37
PREP4 34.1 156 68.5 72

Table 1(b): Speed-optimized results for
FLEX8k

One-hot SynthiaB’mark
Clock #LCs Clock #LCs

bbara 69.4 15 73.0 5
beecount 63.7 10 68.0 8
cse 39.7 48 53.5 36
dk14 49.5 27 58.1 23
dk27 68.0 9 76.3 5
dk512 53.5 26 68.0 11
ex6 45.2 31 56.5 25
lion 62.5 6 88.5 3
mark1 52.9 24 38.9 26
opus 47.6 19 52.4 25
s27 69.4 11 77.5 4
shiftreg 62.9 9 74.1 5
tav 67.6 5 64.5 11
PREP3 57.5 15 62.1 14
PREP4 45.0 46 59.2 31

One-hot SynthiaB’mark
Clock #CLBs Clock #CLBs

bbara 66.7 19 73.0 5
beecount 64.5 11 68.0 8
cse 47.8 63 53.5 36
dk14 51.0 32 58.1 23
dk27 64.9 10 76.1 5
dk512 57.5 27 68.0 11
ex6 51.3 38 56.5 25
lion 70.9 7 88.5 3
mark1 58.8 29 38.9 26
opus 54.3 25 52.4 25
s27 69.0 12 77.5 4
shiftreg 73.0 9 74.1 5
tav 73.0 6 64.5 11
PREP3 62.1 22 57.5 17
PREP4 49.5 56 60.2 31

Table 2(b): Speed-optimized results for
XC4k

B’mark Run-time B’mark Run-time
bbara 4m 6s beecount 1m 44s

cse 13m 49s dk14 6m 50s
dk27 1m 57s dk512 5m 39s

ex6 To be collected lion To be collected

mark1 To be collected opus To be collected

s27 To be collected shiftreg To be collected

tav To be collected PREP3 To be collected

PREP4 To be collected

Table 2(a): Area-optimized results for XC4k

Table 3: Synthia Run-Times

Key to benchmarks
A bbara I mark1
B beecount J opus
C cse K s27
D dk14 L shiftreg
E dk27 M tav
F dk512 N PREP3
G ex6 O PREP4
H Lion

The preliminary results show an
average speedup of 35% for FLEX8k
targeting speed, and 6% for XC4k
targeting speed. These figures change to
37% and 10% respectively, when counting
negative speedups as 0 (i.e. when either
one-hot or Synthia is used, whichever is
faster). Also shown is an average area
reduction of 26% for FLEX8k and 27% for
XC4k (changing to 33% and 35%
respectively when modified as above).

Importantly, it is clear that all of the
speedups have been accompanied by a
significant reduction in area, and all of the
area reductions (except one) by a
significant speedup.

5. Conclusion
A novel algorithm for the automatic

decomposition of FSMs into networks of
interacting sub-FSMs has been presented.
The technique developed uses a
combination of a Genetic Algorithm and a
state-partitioning heuristic, along with a
further heuristic which exploits output
don’t-care conditions in order to minimize
the interconnect complexity of the resulting
network.

Synthia has significantly improved the
performance of the later stages of
synthesis, leading to a simultaneous
significant reduction in circuit area, and
significant increase in maximum
permissible clock frequency.

The speedups gained with the Xilinx
XC4k, though quite impressive, are
relatively small compared to those gained
with the FLEX8k. This is almost certainly
at least in part due to the approximation
made at the cost estimation stage, of a
circuit as a network of 4-LUTs. The Xilinx
logic block, being a combination of more

Area for FLEX8000

0
20
40
60
80

100
120
140
160
180

A B C D E F G H I J K L M N O

Benchmark

A
re

a
(#

L
C

s)

Clock Frequency for FLEX8000

0

20

40

60

80

100

120

A B C D E F G H I J K L M N O

Benchmark

C
lo

ck
 F

re
q

. (
M

H
z)

Circuit Area for XC4000

0

10

20

30

40

50

60

70

A B C D E F G H I J K L M N O

Benchmark

A
re

a
(#

C
L

B
s)

Clock Frequency for XC4000

0

20

40

60

80

100

A B C D E F G H I J K L M N O

Benchmark

A
re

a
(#

C
L

B
s)

Synthia (Area-optimized) Synthia (Speed-optimized)

One-hot (Area-optimized) One-hot (Speed-optimized)

Figure 5: Graphs of Experimental Results

than one type of LUT, is less suited to this
approximation than the Altera device.

The question of choosing an efficient
message encoding for inter-FSM
communication stands out as a missing
part of this work. If the results here can be
achieved with arbitrary message encoding,
it is clear that a more intelligent approach
could achieve even better performance.
This question is related to the ongoing
research topic of hierarchical synthesis of
sequential circuits.

6. Acknowledgements
The authors would like to acknowledge

the support of Alan Marshall, Nick
Wainwright and John Lumley of Hewlett
Packard Laboratories, Bristol, UK. In
addition, donations of software tools were
gratefully received from Xilinx and Altera.

7. References
[1] Synplify Users Manual, Synplicity.
[2] J. Hartmanis and R.E. Stearns,

“Algebraic Structure Theory of
Sequential Machines,” Prentice-Hall,
1966.

[3] K. Feske, “Technology-Driven FSM
Partitioning for Synthesis of Large
Sequential Circuits Targeting Lookup-
Table Based FPGAs,” in Proc. FPL
1997, Springer-Verlag, 1997.

[4] R. Murgai, R.K. Brayton, and A.
Sangiovanni-Vincentelli, “Logic
Synthesis for Field Programmable Gate
Arrays,” Kluwer Academic Publishers,
1995.

[5] E. M. Sentovich, et al., “SIS: A System
for Sequential Circuit Synthesis,”
UCB/ERL M92/41, May 1992.
sis@eecs.ucb.edu.

[6] P. Ashar, S. Devadas, and A. R.
Newton, “Sequential Logic Synthesis,”
Kluwer Academic Publishers, 1992.

[7] W. L. Yang, R. M. Owens, and M. J.
Irwin, “Multi-way FSM decomposition
based on interconnect complexity,” in
Proc. EURO-DAC, 1993.

[8] M. T. Kuo, L. T. Liu, and C. K. Cheng,
“Finite State Machine Decomposition
for I/O Minimization,” in Proc. ISCAS,
1995.

[9] W. L. Yang, R. M. Owens, and M. J.
Irwin, “FPGA-Based synthesis of FSMs
through Decomposition,” in Proc. 4th

Great Lakes Symposium on VLSI
Design, 1994.

[10] XC4000 Data Book, Xilinx Inc., 1991.
[11] B. Lin and A. R. Newton, “Synthesis of

Multiple Level Logic from Symbolic
High-Level Description Languages,” in
Proc. Int. Conference on VLSI, August
1989.

[12] FLEX8000 Handbook, Altera Corp.,
1994.

[13] PREP Benchmarks,
http://www.prep.org.

[14] FPGA Express Online Help, Synopsys
inc.

