
Framework and Tools for Run-Time
Recon�gurable Designs

Nabeel Shirazi

Xilinx, Inc.

2100 Logic Drive, San Jose, CA 95124, USA

shirazi@xilinx.com

Wayne Luk

Department of Computing

Imperial College of Science, Technology and Medicine

180 Queen's Gate, London SW7 2BZ, UK

wl@doc.ic.ac.uk

Peter Y.K. Cheung

Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine

Exhibition Road, London SW7 2BT, UK

p.cheung@ic.ac.uk

Abstract

This paper describes a framework and tools for automating the production of designs that can

be partially recon�gured at run time. The approach involves several stages, including: (i) a

partial evaluation stage, which produces con�guration �les for a given design, where the number

of con�gurations are minimised during the compile-time sequencing stage; (ii) an incremental

con�guration calculation stage, which takes the output of the partial evaluator and generates

an initial con�guration �le and incremental con�guration �les that partially update preceding

con�gurations; (iii) an optimisation stage for devices or systems supporting simultaneous con-

�guration of multiple components. While many of our techniques are independent of the design

language and device used, experimental tools have been developed that target Xilinx 6200 de-

vices. Simultaneous con�guration, for example, can be used to reduce the time for recon�guring

an adder to a subtractor from time linear with respect to its size to constant time at best and

logarithmic time at worst. Our tools have been used in developing a variety of designs, including

arithmetic, video and database applications.

1

1 Introduction

The run-time recon�gurability of FPGAs provides them an increasingly competitive edge over

microprocessors which tend to be exible but slow, and over custom-designed integrated circuits

which tend to be fast but inexible, and in addition require a long time to develop. Run-time

recon�guration has been featured in a growing list of applications, including genomic database

searching [15], neural networks [8], and boolean satis�ability solving [33]. Products incorporating

run-time recon�guration are beginning to reach the market place [4], and some predict that even

microprocessors will eventually be implemented using recon�gurable hardware [3].

While rapid advances have been made, many obstacles remain to be surmounted before run-

time recon�guration can become a common feature in FPGA-based systems in general and

recon�gurable computing in particular. The major challenge is to improve understanding of

recon�gurable systems, and to provide facilities for developing and optimising them with much

less e�ort and specialised knowledge than is required now.

Our objective is to provide a framework and tools for automating the exploitation of such

hardware features in run-time recon�gurable designs. Although there has been work on simu-

lating [28], optimising [24] and deriving [12] recon�gurable designs, the development of practical

compilation tools for such designs is still largely unexplored. Pioneering research on compilation

tools for run-time recon�gurable systems has been described by Bellows and Hutchings [1] and

by Gokhale and Marks [6]. Our approach, in contrast, is largely language independent.

Prototype version of our tools reported in this paper have been distributed to a number of

institutions. They have been used in developing a variety of designs, including computer arith-

metic [11], image interpolation [13], video processing [18], augmented reality [22], and database

searching [30].

The contributions of this paper can be seen in the context of previous work on models,

tools and devices. For instance, while partial evaluation is not a new idea, our prototype tools

are probably the �rst to apply it to run-time recon�guration based on an abstract model [24].

Similarly, although wildcarding was invented by Xilinx, we are not aware of any analysis of its

e�ects comparable to the description in Section 7. Our tools for incremental con�guration appear

unique, although there has been research on using wildcarding for con�guration compression [9].

2 Overview of Framework

We strive to develop design tools for run-time recon�guration that will become standard in future

synthesis systems. From experience, the desirable features for such tools include:

2

� the ability to produce a wide range of implementations that are globally or locally recon-

�gurable [14], covering devices that provide special hardware for rapid recon�guration;

� support for simulating, optimising and validating designs at various levels of abstraction;

� facilities assisting design reuse and performance analysis so that optimal designs can be

produced rapidly.

This section outlines a framework that meets the above requirements. There are six steps in our

framework: decomposition, sequencing, partial evaluation, incremental con�guration calculation,

simultaneous con�guration generation, and validation (Figure 1). The �rst three steps and the

last step can be applied to any recon�gurable designs; step 4 is speci�c to devices or systems

that support partial recon�guration, and step 5 is speci�c to those that support simultaneous

recon�guration. Tools are being developed for each of the six steps in our framework; a more

detailed illustration of the design ow for three of our tools is shown in Figure 2.

decomposition

sequencing

partial

evaluation

incremental

con�g. calc.

simultaneous

con�g. gen.
validation

1

2

3 4 5 6

- - - -

-

6

Figure 1 The six steps in our design framework. The dotted boxes indicate that they are

speci�c to devices or systems supporting partial recon�guration or simultaneous recon�guration.

In the �rst step of our framework, a design is decomposed into appropriate recon�gurable re-

gions. This procedure should take the following into account: (i) trade-o�s between maximising

resource usage and minimising recon�guration overhead in both space and time, and (ii) chip

boundaries when there is more than one device in the implementation. Methods [24] are available

to guide the decomposition step. We follow a library-based approach [21] to facilitate reusing

designs, and to simplify development of con�gurations with compatible size, shape and interface

constraints for partially-recon�gurable components. At the end of this step, the design is cap-

tured as a network with control blocks connecting together the possible con�gurations for each

recon�gurable component, together with the sequence of conditions for activating a particular

con�guration for each control block.

In the second step, the activation sequence is used to decide which con�gurations are required

at run time. For a component with n con�gurations, there are n(n� 1) possibilities of changing

3

Partial
Evaluation

..

.

FPGA Vendor
Tools

FPGA Vendor
Tools

FPGA Vendor
Tools

ConfigDiff

1st Configuration
File

2nd Configuration
File

Nth Configuration
File

EDIF File 1

EDIF File 2

EDIF File N

Sequencing

Command
File

Hardware Sequencer

Initial Configuration

C Routine

EDIF

1st Incremental
Configuration

Mth Incremental
Configuration

..

.

Figure 2 Our tools for developing run-time recon�gurable designs.

from one con�guration to another. All these con�gurations will need to be generated at compile

time if the activation sequence is not available, or alternatively the con�gurations will have to

be produced on demand at run time. If the number of con�gurations is too large, one can return

to the �rst step for an alternative decomposition. Each control block will be mapped onto a real

or a virtual component { further explanations will be given in the next section.

During the third step, the actual con�guration �les are produced by partially evaluating

the design according to the activation sequence. Inputs having a �xed value throughout a

con�guration can be used to simplify the hardware for that con�guration; this process involves

propagating the constant values through the circuit, and is sometimes called data folding [5].

Partial evaluation is usually carried out at compile time, and the resulting netlists are compiled

by FPGA vendor tools (Figure 2). Partial evaluation can also take place at run time if the

overheads involved can be tolerated [30].

The fourth step, incremental con�guration calculation, concerns only devices or systems sup-

porting partial recon�guration. The partial evaluation step results in complete con�guration

4

�les; the purpose of this step is to produce incremental con�guration �les to minimise their size

and recon�guration time. When this step is completed, each recon�gurable component will be

assigned an initial con�guration �le and one or more incremental con�guration �les.

The �fth step, simultaneous con�guration generation, concerns only devices or systems sup-

porting simultaneous recon�guration of multiple array cells such as Xilinx 6200 series FPGAs.

While this step is application-dependent and device-dependent, as shown later the recon�gura-

tion time can often be substantially reduced for regular circuits.

The sixth and �nal step, validation, involves checking that the design behaves as expected

and meets the constraints on performance and resource usage. A comprehensive model of the

recon�gurable component will be useful here for two reasons. First, it can be used to investigate

the detailed behaviour of the device during recon�guration, for formulating e�cient and reliable

recon�guration methods. Second, it can be used to validate more abstract models which contain

less information, but are more amenable to dealing with large designs.

Design tools for the �rst and the last steps are based on parametrised libraries [21] developed

using the Ruby and Rebecca tools [17], the Pebble system [23], and commercial VHDL tools.

These libraries and tools enable us to support a high-level and modular design approach for

design compilation [7], visualisation [20] and validation [26].

The following sections describe, in greater detail, the prototype tools that we have been

developing to support the sequencing, partial evaluation, incremental con�guration calculation

and simultaneous con�guration generation steps (Figure 2). All of our tools are functioning

and have been used in developing the examples in Section 7. While most of our techniques are

device-independent, our tools currently target Xilinx 6200 devices which support both partial

and simultaneous recon�guration { the latter by a procedure known as wildcarding [2]. Also, to

maintain compatibility with Xilinx 6200 design tools, the data �les and the results of the partial

evaluation step are captured in the EDIF format.

3 Partial Evaluation

The basic idea behind the way we specify run-time recon�gurable regions is straightforward [24].

A block that can be con�gured to behave either as A or as B is described by a network with A

and B sandwiched between two control blocks C and C
0 (Figure 3). C and C

0 are responsible

for routing the data and results from the external ports x and y to either A or B at the desired

instant; the choice can be determined by run-time conditions. Possible control inputs to C and

C
0 are not shown in the �gure. Note that x and y can be multi-bit wires.

The current implementation of our partial evaluator maps C to a fan-out and C
0 to a virtual

5

A

B

C’Cx y

Figure 3 A static network modelling a design that can behave either as A or as B, depending

on the control blocks C and C
0.

X

RC_Mux

Y
D0

D1

0

S

MUX_SEL

AX Y

BX Y

(a)

(c)

(b)

B

A

Figure 4 (a) Original circuit using an RC Mux to specify a recon�gurable region. (b) Partially

evaluated circuit when MUX SEL = 0. (c) Partially evaluated circuit when MUX SEL = 1.

multiplexer, called an RC Mux (Figure 4), which is used to select between components A and

B. At compile time the select value, MUX SEL, can be speci�ed; as a result, either block A or B

is instantiated, and the RC Mux is removed. If the MUX SEL value is not speci�ed at compile

time, a netlist in the EDIF format for each block will be produced and compiled separately, and

each will then be loaded into the FPGA on demand at run time. The RC Mux can have more

than one input in order to describe recon�guration between multiple components, and each input

and output can be a multi-bit bus.

One advantage of using the RC Mux to model run-time recon�guration is that the circuit

can be simulated without modi�cation, since the behaviour of RC Muxes can be modelled by

normal multiplexers. This approach also covers the possibility that the RC Muxes are mapped

onto actual multiplexers, provided that enough chip area is available [24]. Since we adopt a

library-based approach, the locations of input and output ports of the components connected to

6

the RC Mux are known and will be extended to match those for the largest component.

At compile time, the partial evaluator searches for an instance of an RC Mux. When one

is found, the instance is removed. If the value of the select line of the RC Mux is given, the

unselected block is only removed if it is connected to just the RC Mux; that is if it has a fan-out of

one. The output of the selected block is then connected to the component that was connected to

the output of an RC Mux, and the net names are resolved. The initial con�guration is compiled

using the largest component connected to the RC Mux, so that su�cient chip area is reserved

for the recon�gurable units. Since the connected components are selected from a parametrised

library, their sizes, shapes and interface constraints are known before the design is processed by

vendor tools. This process is continued until all the RC Muxes have been dealt with.

4 Compile-Time Sequencing

If the sequence of con�gurations is known at compile time, the number of di�erent incremental

con�gurations that need to be generated can be reduced from n(n � 1) to m, where m is the

number of times an RC Mux select line is changed. As shown in Figure 2, a command �le is

used to specify the sequence of con�gurations. Additional commands can be given in order to

use this �le for simulation as well as for compilation.

The con�guration sequence is speci�ed in the command �le by assigning a value to a net in

the circuit connected to the select lines of an RC Mux or to registers within the FPGA. If the

net is connected to one or more select inputs of an RC Mux, this means that a new con�guration

corresponding to the selected hardware should be loaded into the FPGA. If the net is connected

to a register within the FPGA, a register read or register write should be performed. The number

of clock cycles can also be speci�ed so that the time between recon�guration is known.

The output of the sequencer tool is either a C routine or a hardware sequencer. The C routine

is generated by translating the commands in the command �le to their equivalent C functions.

At run time, the C routine can be used as a template and other functions can be added. If

very fast recon�guration is needed, the sequencer can be generated partially or completely in

hardware as a state machine [30].

5 Calculating Incremental Con�gurations

Since Xilinx 6200 FPGAs support partial recon�guration, it is possible to minimise the size of

con�guration �les and to reduce recon�guration time by calculating incremental con�guration

�les. A program called Con�gDi� (Figure 2) was written to calculate the incremental con�gu-

7

rations between two successive con�gurations for the Xilinx 6200 FPGA.

Suppose we need to recon�gure a design from con�guration current to con�guration next. For

this purpose, the incremental con�guration will consist of two parts. The �rst will obviously be

the regions which are speci�ed in next but not in current; these correspond to functions which are

not in the current con�guration, and the cells involved will therefore need to be included in the

incremental con�guration. The regions in current but not in next correspond to functions which

are no longer required, so the cells involved should be con�gured to unused logic. Since in most

cases the sequence of con�gurations is known at compile time, only the necessary incremental

con�gurations are calculated.

6 Simultaneous Con�guration Generation

Xilinx 6200 FPGAs have a feature called `wildcarding' that allows more than one cell within

a column to be written to simultaneously with the same data [2]. This is performed by sup-

plementing the address decoder with a wildcard register. During con�guration, a logic one in

the wildcard register indicates that the corresponding bit in the row address is to be taken as a

`don't-care'; in other words, the address decoder will match addresses where this bit is a one or

a zero.

An extension to Con�gDi� was written to take advantage of the wildcarding feature. Wildcard

optimisation was performed by �rst building a look-up table. For the Xilinx 6216 device, this

table was constructed by enumerating each of its 64 row addresses with all 64 wildcard values.

Each location of the look-up table is a 64-bit value; each bit indicates which of the 64 rows would

be written, given an address and a wildcard value. A function is provided to search the look-up

table for the best wildcard value, given the rows which need to be written to simultaneously

with the same data. Since there may not always be an exact match between the rows that need

to be written to and the rows that actually will be written to, this function returns a 64-bit

value indicating which rows will be a�ected. The con�guration �le is processed by repeatedly

applying the best match function on a column of cells, until there are three cells or fewer that are

con�gured with the same data { because of the overheads involved, it is not economical to apply

wildcarding to three or fewer cells. Since the current implementation applies wildcarding to a

single column of cells, the number of combinations is small enough that the optimal wildcard

value can be obtained by exhaustive search.

8

7 Run-Time Recon�gurable Design Examples

To evaluate the e�ectiveness of simultaneous recon�guration, we tested wildcard optimisation

using two examples from our parametrised design libraries [21] which have very di�erent proper-

ties. The �rst example illustrates recon�guration from one regular structure, an n-bit adder, to

another regular structure, an n-bit subtractor. In the worst case, simultaneous recon�guration

reduces the recon�guration time from linear to logarithmic time; in the best case, the recon-

�guration time is constant (Figure 5). The second example illustrates recon�guration between

irregular designs using a 64-bit pattern matcher. These examples, both of which have been tested

on a Xilinx 6200 FPGA in a PCI-based platform [24], will be described in more detail below.

7.1 Adder/Subtractor Example

In a Xilinx 6200 FPGA, an n-bit ripple adder/subtractor using only localised routing can be

implemented using 6n cells. The size of this adder/subtractor can be reduced by 33%, if the adder

is changed into a subtractor using run-time recon�guration; this can be achieved by inverting

one of the input bits of each adder component, and also changing the carry-in to the adder array

from a logic zero to a logic one.

Without wildcarding, it takes n cycles to recon�gure the n-bit adder to the n-bit subtractor.

This linear con�guration time is shown in Figure 5. When using wildcard optimisation, the

best-case recon�guration time, which takes a constant time of 4 cycles, occurs when n can be

expressed in the form 2m. The worst-case recon�guration time, occurs when n = 2m � 1, is due

to the inability to apply a single wildcarding to a large number of address bits, and multiple

wildcarding is needed. An expression can be derived for the worst-case recon�guration time

in terms of the number of con�guration cycles [25]; for our adder/subtractor example, this

expression is 3log2(n + 1) � 2 where n is the adder size. This logarithmic con�guration time

is shown in Figure 5 by a dashed line above the actual results. Since the best case occurs

when n = 2m and the worst case occurs when n = 2m � 1, the worst case can be improved by

recon�guring an additional cell to maximise wildcarding.

7.2 Pattern Matcher Example

Our second example is a 64-bit pattern matcher. The structure of the recon�gurable version of

our pattern matcher is shown in Figure 6 [5]; this design takes up 64 � 2 = 128 FPGA cells,

whereas a design including an additional shift register for storing the pattern and an additional

row of comparators will be twice as large.

The test for the worst-case con�guration time is performed by changing the pattern matcher

9

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Size of Adder/Subtractor

Co
nfi

gu
ra

tio
n C

yc
les

Without Wildcarding

Max (with wildcarding)

Min (with wildcarding)

Figure 5 Variation of time against design size for recon�guring a multi-bit adder to become a

subtractor.

to match the one's complement of the number it was previously matching, so that all 64 cells in

the column are recon�gured. An experiment involving 10,000 test cases was conducted, during

which the pattern matcher was constructed to match a 64-bit random constant. The results from

this test are shown in Figure 7. Without wildcarding it takes 64 write cycles to recon�gure the

pattern matcher. With wildcarding, it takes on average around 53 cycles, saving around 17%

of the recon�guration time. Since this analysis assumes the worst case, in practice there will

usually be some regularity in the matching pattern to remove the need for recon�guring every

bit of the pattern matcher, resulting in a shorter recon�guration time. However, it will be harder

to apply a wildcard of 32 or 16 bits if there are fewer cells to recon�gure.

This example illustrates a common technique for dealing with irregular designs. Since it is

impractical to generate the circuits for matching all possible 64-bit patterns, we produce instead

the two possible con�gurations for each of the 64 gates in the design (Figure 6). We then

compute the wildcarding for the complete con�guration �le from con�guration data for each of

the 64 gates. This technique reduces the number of con�gurations from 264(264�1) ' 3:4�1038

to 64 � 2 = 128. Sometimes the wildcard computation cannot be carried out at compile time

because, for instance, the matching pattern is not available. Under these circumstances it may

be possible to compute the wildcarding at run time, provided that this can be achieved with

acceptable e�ciency.

8 Concluding Remarks

We have presented a framework and the associated tools for developing run-time recon�gurable

designs, and their bene�ts and costs are demonstrated in two applications. The framework is

capable of supporting a wide variety of FPGAs, including those with special support for rapid

recon�guration such as facilities for partial and simultaneous recon�guration. Our tools are com-

10

D Q D Q D Q D Q

'1'

Serial
Data In

Match

...

...

Z

X

Y

D0

D1

MUX_SEL

RC_Mux

0

S

Figure 6 A multi-bit pattern matcher.

patible with existing industry-standard tools for simulation and synthesis, and their e�ectiveness

has been illustrated using two examples. A library-based approach is adopted which simpli�es

physical conformance of con�gurations for a recon�gurable component; it also facilitates design

reuse and performance analysis. Our framework is supported by the Rebecca [17] and Pebble [23]

systems, which provide (i) a path for formally verifying recon�gurable design optimisations, and

(ii) additional tools such as those for mixed-level symbolic simulation and visualisation [19].

To be successful, such toolsets for run-time recon�gurable designs must include facilities that

can exploit device-speci�c features whenever possible. For instance, our work has shown that the

wildcard capability of Xilinx 6200 devices can result in substantial reduction of recon�guration

time.

In related work, we have developed a tool that automates the identi�cation of recon�gurable

regions and mapping of recon�gurable regions [29]. Two successive circuit con�gurations for a

partially recon�gurable system are matched to locate the components common to them. Such

components will not be recon�gured when the second con�guration replaces the �rst, hence

reducing recon�guration time. This tool has been integrated with the tools described in this

paper.

Current and future work is focused on re�ning and extending our framework and tools to

cover further applications and devices, such as Xilinx Virtex FPGAs [16]. We are also improving

run-time support [31], providing an interface to higher-level tools [32], including support for

11

35 40 45 50 55 60 65
0

200

400

600

800

1000

1200

Configuration Cycles

S
a

m
p

le
s

Figure 7 Worst-case analysis of recon�guring a 64-bit pattern matcher using wildcarding.

platforms containing multiple and heterogeneous processing elements [10] as well as systems

with both hardware and software [27].

Acknowledgements

Many thanks to Peter Athanas, Anjit Chaudhuri, Mike Dean, John Gray, Tony Hoare, Tom

Kean, John O'Leary, Richard Sandiford, Mehdi Shirazi, Bill Wilkie and the anonymous reviewers

for their comments and discussions, and to Stuart Nisbet for help with the PCI-based 6200

Development System. We also thank Hamish Fallside for his help with the EDIF parser and

questions regarding wildcarding. The support of Xilinx Inc., the UK Engineering and Physical

Sciences Research Council (Grant GR/L24366, GR/54356 and GR/59658), and a UK Overseas

Research Student Award is gratefully acknowledged.

References

[1] BELLOWS, P. and HUTCHINGS, B.: `JHDL { an HDL for Recon�gurable Systems', IEEE

Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press,

1998, pp. 175{184.

[2] CHURCHER, S., KEAN, T. and WILKIE, B.: `The XC6200 FastMap Processor Interface',

Field Programmable Logic and Applications, LNCS 975, Springer, 1995, pp. 36{43.

[3] FAGGIN, F.: `The Future of Microprocessors', ASAP Forbes, http://www.forbes.com/asap

/120296/html/federico faggin.htm, 1996.

12

[4] FAWCETT, B.: `Recon�gurable Computing Comes of Age', Xcell, Issue 22, 1996.

[5] FOULK, P.W.: `Data-Folding in SRAM Con�gurable FPGAs', IEEE Symposium on FPGAs

for Custom Computing Machines, IEEE Computer Society Press, 1993, pp. 163{171.

[6] GOKHALE, M. and MARKS, A.: `Automatic Synthesis of Parallel Programs Targeted

to Dynamically Recon�gurable Logic Arrays', Field Programmable Logic and Applications,

LNCS 975, Springer, 1995, pp. 399{408.

[7] GUO, S. and LUK, W.: `Compiling Ruby into FPGAs', Field Programmable Logic and

Applications, LNCS 975, Springer, 1995, pp. 188{197.

[8] HADLEY, J. and HUTCHINGS, B.: `Design Methodologies for Partially Recon�gured Sys-

tems', IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer

Society Press, 1995, pp. 78{84.

[9] HAUCK, S., LI, Z. and SCHWABE, E.: `Con�guration Compression for the Xilinx XC6200

FPGA', IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 18, (8),

August 1999, pp. 1107-1113.

[10] HAYNES, S., CHEUNG, P.Y.K., LUK, W. and STONE, J.: `SONIC { a Plug-In Archi-

tecture for Video Processing', Field Programmable Logic and Applications, LNCS 1673,

Springer, 1999, pp. 21{30.

[11] HERON, J. and WOODS, R.: `Accelerating Run-Time Recon�guration on Custom Com-

puting Machines', Proc. SPIE, 1998.

[12] HOGG, J.: `A Dynamic Hardware Generation Mechanism based on Partial Evaluation',

Designing Correct Circuits, Springer Electronic Workshops in Computing, 1996.

[13] HUDSON, R.D., LEHN, D.I. and ATHANAS, P.: `A Run-Time Recon�gurable Engine for

Image Interpolation', IEEE Symposium on FPGAs for Custom Computing Machines, IEEE

Computer Society Press, 1998, pp. 88{95.

[14] HUTCHINGS, B. and WIRTHLIN, M.J.: `Implementation Approaches for Recon�gurable

Logic Applications', Field Programmable Logic and Applications, LNCS 975, Springer, 1995,

pp. 419{428.

[15] LEMOINE, E. and MERCERON, D.: `Run Time Recon�guration of FPGAs for Scanning

Genomic DataBases', IEEE Symposium on FPGAs for Custom Computing Machines, IEEE

Computer Society Press, 1995, pp. 90{98.

13

[16] LUDWIG, S., SLOUS, R. and SINGH, S.: `Implementing Photoshop Filters in Virtex', Field

Programmable Logic and Applications, LNCS 1673, Springer, 1999, pp. 233{242.

[17] LUK, W.: `A Declarative Approach to Incremental Custom Computing', IEEE Symposium

on FPGAs for Custom Computing Machines, IEEE Computer Society Press, 1995, pp. 164{

172.

[18] LUK, W., ANDREOU, A., DERBYSHIRE, A., DUPONT-DE-DINECHIN, F., RICE, J.,

SHIRAZI, N. and SIGANOS, D.: `A Recon�gurable Engine for Real-Time Video Processing',

Field Programmable Logic and Applications, LNCS 1482, Springer, 1998, PP. 169{178.

[19] LUK, W. and CHEUNG, P.Y.K.: `A Framework for Developing Hardware/Software Sys-

tems', Veri�cation of hardware-software Codesign, IEE Digest 95/169, 1995, pp. 6/1-6/5.

[20] LUK, W. and GUO, S.: `Visualising Recon�gurable Libraries for FPGAs', Proc. 31 Asilomar

Conf. on Signals, Systems, and Computers, IEEE Computer Society Press, 1998, pp. 389{

393.

[21] LUK, W., GUO, S., SHIRAZI, N. and ZHUANG, N.: `A Framework for Develop-

ing Parametrised FPGA Libraries', Field-Programmable Logic, Smart Applications, New

Paradigms and Compilers, LNCS 1142, Springer, 1996, pp. 24{33.

[22] LUK, W., LEE, T.K., RICE, J., SHIRAZI, N. and CHEUNG, P.Y.K.: `Recon�gurable

Computing for Augmented Reality', IEEE Symposium on Field-Programmable Custom Co-

mouting Machines, IEEE Computer Society Press, 1999, pp. 136{145.

[23] LUK, W. and MCKEEVER, S.: `Pebble: A Language for Parametrised and Recon�gurable

Hardware Design', Field Programmable Logic and Applications, LNCS 1482, Springer, 1998,

pp. 9{18.

[24] LUK, W., SHIRAZI, N. and CHEUNG, P.Y.K.: `Modelling and Optimising Run-Time

Recon�gurable Systems', IEEE Symposium on FPGAs for Custom Computing Machines,

IEEE Computer Society Press, 1996, pp. 167{176.

[25] LUK, W., SHIRAZI, N. and CHEUNG, P.Y.K.: `Compilation tools for run-time recon-

�gurable designs', IEEE Symposium on FPGAs for Custom Computing Machines, IEEE

Computer Society Press, 1997, pp. 56{65.

[26] LUK, W., SIGANOS, D. and FOWLER, T.: `Automating Quali�cation of Recon�gurable

Cores', Recon�gurable Systems, IEE Digest, 99/061, 1999.

14

[27] LUK, W., WU, T. and PAGE, I.: `Hardware-Software Codesign of Multidimensional Pro-

grams', IEEE Computer Society Press, 1994, pp. 82{90.

[28] LYSAGHT, P. and STOCKWOOD, J.: `A Simulation Tool for Dynamically Recon�gurable

Field Programmable Gate Arrays', IEEE Trans. VLSI, September 1996.

[29] SHIRAZI, N., LUK, W. and CHEUNG, P.Y.K.: `Automating Production of Run-Time

Recon�gurable Designs', IEEE Symposium on FPGAs for Custom Computing Machines,

IEEE Computer Society Press, 1998.

[30] SHIRAZI, N., LUK, W. and CHEUNG, P.Y.K.: `Quantitative Analysis of Run-Time Re-

con�gurable Database Search', Field Programmable Logic and Applications, LNCS 1673,

Springer, 1999, pp. 253{263.

[31] SHIRAZI, N., LUK, W. and CHEUNG, P.Y.K.: `Run-Time Management of Dynamically

Recon�gurable Designs', Field Programmable Logic and Applications, LNCS 1482, Springer,

1998, pp. 59{68.

[32] WEINHARDT, M. and LUK, W.: `Pipeline Vectorization for Recon�gurable Systems',

IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society

Press, 1999.

[33] ZHONG, P., MARTONOSI, M., ASHAR, P. and MALIK, S.: `Solving Boolean Satis�ability

with Dynmaic Hardware Con�gurations', Field Programmable Logic and Applications, LNCS

1482, Springer, 1998, pp. 326{335.

15

