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Abstract. A method for managing recon�gurable designs, which sup-

ports run-time con�guration transformation, is proposed. This method

involves structuring the recon�guration manager into three components:

a monitor, a loader, and a con�guration store. Di�erent trade-o�s can be

achieved in con�guration time, optimality of the con�gured circuits, and

the complexity of the recon�guration manager, depending on the recon-

�guration methods and the amount of run-time information available at

compile time. The proposed techniques, implementable in hardware or

software, are supported by our tools and can be applied to both partially

and non-partially recon�gurable devices. We describe the combined and

the partitioned recon�guration methods, and use them to illustrate the

techniques and the associated trade-o�s.

1 Introduction

Exploiting the run-time con�gurability of FPGAs has been regarded by many as

the key to overcoming their reduced capacity and speed compared with custom

integrated circuit implementations. The approach will, however, only be valid if

the time for recon�guring the FPGAs does not outweigh its bene�ts of increasing

capacity. Techniques are required to manage recon�gurable resources e�ciently

at run time; such techniques may also provide abstractions which hide low level

details from users when appropriate.

This paper presents a method for e�cient run-time management of recon-

�gurable designs, which involves structuring the recon�guration manager into

three components: a monitor, a loader, and a con�guration store. The method

can be implemented in hardware, software, or a combination of both. It can be

applied to dynamically recon�gurable systems containing one or more FPGAs,

which may or may not support partial recon�guration. Techniques such as run-

time transformation and partitioning the recon�guration manager can be used

to optimise con�guration store usage or to reduce recon�guration time.

Our work complements related research on tool development and run-time

support for recon�gurable systems [1], [2], [3], [4], [8], [10]. The important aspects

of our work include: (a) exploitation of compile-time information for optimising

run-time performance, (b) 
exibility of implementing the recon�guration man-

ager in hardware or software, (c) support for both partially recon�gurable and

non-partially recon�gurable FPGAs.



2 Framework Overview

This section provides an overview of our framework for recon�guration man-

agement. Details of the components in this framework will be presented later.

While the discussion below centres on one dynamically recon�gurable FPGA,

the framework can be extended to deal with multiple devices.

In this framework, the recon�guration manager contains three components:

a monitor, a loader, and a con�guration store (Figure 1). The monitor maintains

information about the con�guration state, which may include the type and lo-

cation of the circuits currently operating in the FPGAs. When the conditions

for advancing to the next con�guration state { such as receiving a request from

the application or from the FPGA { are met, the monitor noti�es the loader to

install the new circuit at particular locations on the FPGA. In situations such

as image processing, as long as the image size is �xed, the number of cycles for

many operations are data independent and can be determined at compile time.

The monitor can then be simpli�ed to contain a few counters.
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Fig. 1. Framework for recon�guration manager.

The loader, on receiving a request from the monitor, con�gures the FPGA

using data from a con�guration store. When �nished, it signals the monitor for

completion, and normal operation can resume.

The con�guration store contains a directory for the circuit con�gurations.

The con�gurations are usually stored in the form of address-data pairs, where

the data specify the con�guration for an FPGA cell while the address indicates

its location in the FPGA. A transformation agent can be used to transform or

compose circuit con�gurations at run time; such details will be discussed later.

Our framework can be used to construct generic or customised recon�gu-

ration managers. A generic recon�guration manager can deal with a variety of

applications, and is therefore likely to be more complex and less e�cient. A cus-

tomised recon�guration manager is developed for one or a few applications, and

can be optimised at compile time based on knowledge about run-time conditions.

It is often more e�cient, compact and simpler than a generic recon�guration

manager, but is not as 
exible.



3 Design Flow

The proposed run-time management techniques are supported by a model [6]

and the associated development procedure [7] for recon�gurable designs. There

are six steps in this procedure: decomposition, sequencing, partial evaluation, in-

cremental con�guration calculation, simultaneous con�guration generation, and

validation. Reusable libraries [5], prototype tools [7], [9] and FPGA-based eval-

uation platforms [6] supporting these steps have been reported.

For this paper, we shall focus on the sequencing step. In this step, the design

is captured as a network with control blocks connecting together the possible

con�gurations for each recon�gurable component, together with the sequence of

conditions for activating a particular con�guration for each control block. In the

next section, we shall describe how compile-time information captured in the

activation sequence can be used to optimise the recon�guration manager.

The above procedure can be explained using our model [6] for recon�gurable

designs. In this model, a component that can be con�gured to behave either

as A or as B is described by a network with A and B connected between two

control blocks. The control blocks, RC DMux and RC Mux, route the data and

results from the external ports x and y to either A or B at the desired instant,

depending on the value c on their select lines (Figure 2). Each control block will

be mapped either into a real multiplexer or demultiplexer to form a single-cycle

recon�gurable design, or into virtual ones which model the control mechanisms

for replacing one con�guration by another [6]. We shall see how this model can be

used in developing and optimising the recon�guration manager in later sections.
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Fig. 2. A static network modelling a design that can behave either as A or as B,

depending on the select value c to the control blocks RC DMux and RC Mux.

4 Monitor

The purpose of the monitor is to keep track of the con�gurations in the FPGA.

The monitor also contains information about possible transitions to the next

state from a particular state.

Since run-time conditions usually require rapid capture and may involve a

large amount of data, part of the monitor often resides on the dynamically

recon�gurable FPGA, and is mainly used for data-driven recon�guration. The



monitor checks for the user condition that activates recon�guration. If the user

condition for the next con�guration is met and the desired con�guration is not

in a usable form on the FPGA, the monitor noti�es the loader to introduce

the con�guration. When �nished, the monitor may signal the completion of the

con�guration process if required.

The monitor includes one or more recon�guration state machines. These

state machines can be produced from our tools automatically and are based on

the activation sequence from the user specifying the recon�guration conditions

(Section 3). A recon�guration state machine indicates which con�guration to

load from the con�guration store.

There are three possibilities for the monitor operation depending on the

information in the recon�guration sequence available at compile time.

(a) The duration for which the current con�guration remains valid is known at

compile time, and the next con�guration is also known.

(b) The duration for which the current con�guration remains valid is not known,

although the next con�guration is known.

(c) Both the duration for which the current con�guration remains valid, and the

next con�guration, is not known.

Case (a) is the simplest: a timing mechanism such as a counter could be

included in the monitor to indicate when the next con�guration will be loaded.

This happens, for instance, in video processing when the hardware recon�gures to

a known next state after a �xed number of frames whose size is also known. Recall

that RC Mux/RC DMux pairs are used to indicate the recon�gurable regions,

and that changing the value on their select lines corresponds to recon�guring

between components delimited by the RC Mux/RC DMux pair (Figure 2). For

case (a), these select lines will be connected to the timing mechanism.

For FPGAs supporting partial recon�guration such as Xilinx 6200 devices,

this means that partial recon�guration will be performed after a �xed dura-

tion; for non-partially recon�gurable FPGAs such as Xilinx 4000 devices, entire

chip con�gurations will be swapped. Provided that there is enough FPGA re-

sources, one can implement the RC Mux/RC DMux pairs and the associated

con�gurations as physical components on the FPGA to produce a single-cycle

recon�gurable design [6], [9].

Case (b) requires inputs from run-time conditions, from the FPGA or from

application software, to decide when the next con�guration is required. In this

case, the select lines of the RC Mux/RC DMux pairs are connected to the source

that triggers recon�guration. The same is true for case (c); however, since the

choice of the next con�guration is determined at run time, all possible next

con�gurations will have to be produced at compile time or at run time.

Our scheme allows an abstraction layer above the RC Mux/RC DMux level.

A mapping function can be de�ned that relates a value from the user design

to the corresponding RC Mux/RC DMux pairs. In the constant adder example

provided in Section 8, a user only needs to supply an integer constant which

is then mapped to selecting the corresponding RC Mux/RC DMux pairs that

indicate the recon�guration to be performed.



Sometimes the designer can determine whether reducing the recon�guration

time, or optimising the size or speed of the new circuit, should take priority.

For instance, one con�guration may contain circuit elements usable by its suc-

cessor, but in an suboptimal way. One can then decide whether to reduce the

recon�guration time and tolerate a suboptimal circuit, or to have a longer recon-

�guration time in return for a better circuit. Alternatively, circuit elements from

the next con�guration can be included in the current con�guration, such that

circuit behaviour is preserved while reducing recon�guration time. Facilities for

estimating recon�guration time will be useful [8].

5 Loader

The purpose of the loader is to carry out the recon�guration of the FPGA, as

speci�ed by the select value for the RC Mux/RC DMux components. On receiv-

ing a request from the monitor, the loader obtains the location of the requested

con�guration from the con�guration directory, extracts the con�guration from

the con�guration store and then initiates the con�guration process. On comple-

tion, the loader may, when appropriate, set a new clock speed for the new circuit.

It then signals the monitor for completion, and normal operation can resume.

The software version of the loader runs on the host processor. API functions

are provided to facilitate design development by hiding the mechanisms used

for performing run-time recon�guration. We follow an object-oriented approach,

treating an RC Mux/RC DMux pair as objects which load a new con�guration

when the value on their select lines change. When the object is created, the

con�guration data associated with the RC Mux/RC DMux pair are loaded into

the host's main memory to ensure fast con�guration of the FPGA. The resulting

facilities are similar to those supported by JERC [4].

To improve recon�guration speed, we have developed a scheme to implement

the loader in hardware. This enables dynamic recon�guration to be performed

at the maximum speed that the FPGA can handle. This is di�cult to achieve by

loading con�gurations from a loosely-coupled processor, for example an FPGA

co-processor board that resides on a PCI bus.

A handshaking scheme is used to synchronise the user design with the re-

con�guration manager, since the recon�guration manager can be clocked faster

than the user design. This allows multiple con�guration cycles to occur in a

single compute cycle, thus reducing recon�guration overhead.

6 Con�guration Store and Run-Time Transformations

The con�guration store contains three components: a con�guration directory, a

repository for con�guration data, and a transformation agent (Figure 3). The

con�guration directory and the con�guration data can be arranged as shown

in Figure 4. If required, the transformation agent transforms a con�guration be-

fore loading it into the FPGA; this can be used in minimising con�guration store



usage, as discussed below. For performance critical applications, the transforma-

tion agent can itself be implemented in hardware. If the next con�guration can

be predicted at compile time or at run time before it is required, there may be

su�cient time for a software transformation agent to perform its tasks.
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Fig. 3. Con�guration store architecture. The con�guration store is connected to the

loader as shown in Figure 1.
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Fig. 4. Possible data arrangement in the con�guration store, showing the con�gura-

tion directory (top left), transformation parameters (top right) and con�guration data

(bottom). Row O�set and Column O�set are examples of transformation parameters

for the con�guration data which can be produced at compile time or at run time.

Fast storage is often scarce. To minimise con�guration storage, three trans-

formation methods are explored. The �rst method covers regular circuits: if the

same con�guration information is used in two or more locations of the FPGA,

an o�set (Figure 4) can be added repeatedly to the address of the base con�gu-

ration to produce the required con�gurations. Our tools automatically calculate

these o�sets and the number of replications, and place them as transformation

parameters in the con�guration store. The replication of con�guration data at



the row and column o�sets are generated by the transformation agent during

recon�guration of the FPGA.

The second method is to maximise sharing of lower-level components in the

design hierarchy: for instance the same adder con�guration can be used in pro-

ducing di�erent kinds of multipliers. This method is an extension of the �rst

method to support hierarchical representations of con�guration data.

The third method adopts a small number of con�guration templates, which

can be transformed by operations such as stretching or partial evaluation, for

building the actual con�guration bitstreams at run time. This method is particu-

larly useful in, for example, producing constant-coe�cient adders or multipliers.

Further parameters can be included to support speci�c transformations.

All three transformation methods assume that the con�gurations are relo-

catable [10], and work best if there are minimum constraints on the placement

of the circuits. These methods can be implemented in hardware to reduce their

run-time overhead. While other con�guration store architectures may result in

greater utilisation, they may do so at the expense of increasing recon�guration

time or complicating the transformation agent.

7 Recon�guration Methods

This section presents two recon�guration methods, and assesses their impact on

our framework. An example will be considered in Section 8; further case studies,

such as arithmetic and video processing designs, are under development.

Combined recon�guration method. For a design with n con�gurations, there

are n(n�1) possibilities of changing from one con�guration to another. If the re-

con�guration sequence is known at compile time, then we can generate incremen-

tal con�gurations instead of full con�gurations [7]. At run time, the transforma-

tion agent produces the required con�guration from incremental con�gurations,

including the computation of o�sets (Section 6). For devices supporting partial

recon�guration or simultaneous recon�guration, there will be an improvement

in recon�guration time since only the parts that change need to be recon�gured.

However, if the recon�guration sequence is only available at run time, then up

to n(n�1) con�gurations will need to be generated at compile time. Alternatively

the con�gurations will have to be produced on demand at run time.

Partitioned recon�guration method. An alternative method is based on the

principle that more e�cient implementations can often be obtained by moving

the RC Muxes and RC DMuxes to a lower level of description [6]. For the above

example, this method is applicable if the n con�gurations can each be decom-

posed into m components, so that each component is controlled by its group of

RC Mux/RC DMux pairs. m recon�guration state machines are generated, one

for each group of RC Mux/RC DMux pairs, so that the design can be con�gured

to be one of the n possible con�gurations.

At run time, the required con�guration is produced by the transformation

agent from data for each of the m components. The con�guration state machine



in the monitor for each component determines if the conditions for transition

has been reached; if so, it signals the loader to load the appropriate partial

con�guration.

In this example, the partitioned recon�guration method reduces the number

of partial recon�gurations from n(n� 1) to an application-speci�c value depen-

dent on m. However, the recon�guration controller is more complex than that

for the combined recon�guration method, since there are now m recon�guration

state machines instead of one. This method may not be able to take advantage of

simultaneous recon�guration techniques, unless the relevant control information

(such as wildcard data for the Xilinx 6200 FPGA) can be computed rapidly [7].

Finally, a mapping function may be required to produce the appropriate control

information for the m state machines; this will be illustrated in the next section.

8 Constant Adder

In this example, a bitslice of a variable adder is partially evaluated, resulting in

the two circuits shown in Figure 5(a) which correspond to a constant zero adder

and a constant one adder. Our tools [9] automatically �nd the recon�gurable

regions in these two designs and insert RC Muxes and RC DMuxes to delimit

the recon�gurable regions, resulting in the bitslice in Figure 5(b). This bitslice

can then be replicated to give a constant adder of a particular size. For a Xilinx

6200 FPGA, the use of a constant adder in place of a variable adder reduces the

size by 50%, and increases the speed by 33%.
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Fig. 5. (a) Two circuit bitslices for adding a constant zero or a constant one. (b) A

circuit that can be recon�gured to implement either of the circuits in (a), by a select

value at the control inputs of the control components RC Mux and RC DMux. The

same select value is used for all four control components.

Combined recon�guration method. In this method, the user speci�es the

constants in the command �le along with the duration between recon�guration

if available. The con�guration state diagram in Figure 6(a) is produced by our

tools. If the duration between recon�guration is known at compile time, then a



timing mechanism will be included in the monitor to trigger the recon�guration

automatically. If the duration is not known, then the monitor keeps track of

the con�guration state so that, when the conditions for recon�guration occur, it

requests the loader to initiate the recon�guration.

For this method, the ease of recon�guration comes at the expense of in-

creasing the amount of con�guration data. For each bit that di�ers between two

successive constants, two con�gurations cycles are needed in the Xilinx 6200: one

for recon�guring the XNOR gate to the XOR gate, and the other for recon�gur-

ing the OR gate to the AND gate. Our tools can take advantage of device-speci�c

optimisation such as wildcarding in the Xilinx 6200, thus reducing the amount

of recon�guration cycles between the constant \1111" and \0000" [7]. There are

a total of 20 con�guration words for the recon�guration sequence in Figure 6(a).

In general, if the user would like to recon�gure between all 2n di�erent constants,

2n(2n � 1) partial con�gurations would have to be generated and stored.
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Fig. 6. (a) State diagram for incremental con�guration of a 4-bit constant adder us-

ing the combined recon�guration method. The number of con�guration words involved

in a transition is shown next to the corresponding edge. The asterisk indicates that

the number of con�guration words has been reduced by wildcarding. (b) State diagram

for con�guring each bitslice individually. RC Mux/RC DMux pairs correspond to the

ones in Figure 5(b). A dash indicates a don't care condition for a particular bit.

Partitioned recon�guration method. An alternative is to partition the adder

into bitslices, and calculate the con�guration needed for each bitslice to add a

0 or 1. To change a constant, a mapping function is de�ned that selects the

appropriate RC Muxes/RC DMuxes for each bitslice shown in Figure 5(b). The

monitor has access to a recon�guration state machine for each bitslice, which

determines if its bit of the constant has changed; if so, it signals the loader to

load the appropriate partial con�guration. The con�guration for each bitslice is

stitched together by the transformation agent to form the required con�guration.

This method signi�cantly reduces the amount of con�guration data for an n-

bit constant adder. Four con�guration words are needed for each bitslice. Apart

from the component at the least signi�cant bit position due to the external

carry input, the con�guration bits for the bitslices are the same, except for



an address o�set. Hence we only need to store the con�guration bits for the

component at the least signi�cant bit position and the repeating bitslice. During

recon�guration, the transformation agent in the con�guration store adds the

corresponding o�sets to recon�gure the bitslice. There are only 8 con�guration

words needed to be stored using this method.

9 Summary

This paper presents a framework for e�cient run-time management of recon�g-

urable designs, which exploits compile-time information for optimising run-time

performance. The recon�guration manager can be implemented in hardware or

software, and supports both partially and non-partially recon�gurable FPGAs.

Current and future work includes re�ning and extending our framework and

tools, exploring their use in multi-tasking systems, and applying them to realis-

tic applications.
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