
AUTONOMOUS MEMORY BLOCK FOR RECONFIGURABLE COMPUTING

Wim J. C. Melis, Peter Y. K. Cheung

Department of Electrical & Electronic Engineering
Imperial College London

United Kingdom
{wim.melis, p.cheung}@imperial.ac.uk

Wayne Luk

Department of Computing
Imperial College London

United Kingdom
w.luk@doc.imperial.ac.uk

ABSTRACT

Current FPGAs include large blocks of memory that require sepa-
rate address generation circuits. This not only uses logic resources
surrounding the memory blocks, but also results in unnecessary
routing congestions. This paper proposes the integration of the
address generation circuit into the block memory to form an Au-
tonomous Memory Block (AMB). Quantitative comparison be-
tween using AMB and conventional FPGA block memory archi-
tectures demonstrates that this approach is promising.

1. INTRODUCTION

The evolutionary development of FPGA and reconfigurable logic
devices has seen a gradual drift from relatively fine grain architec-
tures, mostly based around lookup tables (LUTs), to ones that in-
clude dedicated hardware blocks such as multipliers, microproces-
sors and block memories. Although the Stratix [1] and the Virtex-
II Pro [2], the latest offerings from Altera and Xilinx respectively,
have significant amount of memory, the focus of development for
these devices remain firmly grounded in their processing capabili-
ties.

One interesting observation is that many DSP applications have
inherent parallelism, making them natural targets for implementa-
tion on FPGAs instead of conventional DSP processors. However,
existing FPGA devices have one major weakness when compared
with DSP processors. Almost all DSP processors provide one or
more address ALUs in order to improve parallelism. While paral-
lel address calculations on FPGA can easily be achieved, current
architectures require this to be done in the reconfigurable logic
cells. This is not only wasteful on reconfigurable logic resources,
it also uses up valuable routing resources. Given that most DSP
algorithms access memory in a structured manner, one approach
is to integrate a configurable address generation unit (AGU) with
the FPGA’s block memory. This paper assesses the advantages and
drawbacks of such an extension to existing FPGA architectures.

The contributions of this paper are: 1) to examine the limi-
tations of the embedded memory in existing FPGA architectures;
2) to propose the Autonomous Memory Block (AMB) which in-
tegrates a configurable address generator unit (AGU) within each
block memory; 3) to evaluate quantitatively the area saving and
performance improvement of employing such an extension when
compared with existing FPGA devices.

This paper is organised as follow: after examining related
work in Section 2, detail of the proposed Autonomous Memory
Block is described in Section 3. In Section 4, the area and speed
of the Autonomous Memory Block (AMB) is compared to that of

an equivalent implementation on the Virtex-II FPGA. Section 5
concludes the paper.

2. RELATED WORK

Recent developments in FPGA architectures for DSP applications
have all been focussing on improving computation. Examples of
these are Elixent’s Reconfigurable Arithmetic Array [3], and the
Field Functional Arrays [4]. Such improvements in processing ca-
pability is not accompanied by similar advancements in dataflow.
While embedded memories are now found in most modern FPGA
devices, these are general purpose block memories that require
separate address generation units. Therefore routing of data has
to be accompanied by the routing of addresses. Careful examina-
tion of common DSP algorithms shows that the patterns in which
memory is accessed are usually repetitive and structured. This
leads to most DSP processors containing separate address and data
ALUs [5]. Such an idea could be extended to FPGA architectures.
The Configurable Logic Blocks (CLBs) found in FPGAs could
be regarded mostly as data computational resources. The block
memories, which normally serve as buffers for the data, could be
redesigned to incorporate the address ALU found in DSP proces-
sors.

The streaming architectures proposed in [6, 7] also contain
special address generation logic that helps in storing or providing
streams of data from and to the processing logic. However, the data
access model is restricted to streaming of data as found in video
signal processing. For general DSP algorithms, this streaming re-
quirement can be limiting. In contrast, the AMB proposed in this
work provides a more configurable data access model which can
be exploited in a larger class of DSP applications beyond video.

3. THE AUTONOMOUS MEMORY BLOCK (AMB)
DESIGN

The latest FPGAs such as Xilinx’s Virtex-II Pro and Altera’s Stratix
devices provide embedded block memory that can be configured
as single or dual port access, and with a variety of data widths.
The block RAMs are distributed on the FPGA amidst Configurable
Logic Blocks (CLBs). One issue that limits the usability of these
block RAMs is the routing resources required. For example, to
implement a dual-port 2Kx9 bit FIFO on a Virtex-II Pro device,
one requires 22 address wires and 18 data wires to be routed to
and from the block RAM. Furthermore, counters and control cir-
cuits necessary to implement the FIFO must be implemented in
the surrounding CLBs, using up logic resources and adding to the



Block

RAM

CLBs implementing

address generator

Routing resources for

address,data and control (a)

AMB

Larger in size

No address required

Data in Data out

(b)

Block

RAM

Block

RAM

Block

RAM

CLBs

AMB

AMB

AMB

Fig. 1. (a) Existing FPGA block RAM requiring external address generation circuit; (b) Proposed Autonomous Memory Block that includes
the Address Generation Unit (AGU)

Autonomous
memory block (AMB)

Address Generation Unit
(AGU)

Controlling FSM

Data_count
counter

Read counter

Status / Control

Block
RAM

Write addressWrite counter

Data out

Data in

Read address

Fig. 2. Address Generation Unit (AGU) in FIFO mode

routing congestion problem (see Figure 1 (a)). In the proposed
Autonomous Memory Block (AMB), a full-custom Address Gen-
eration Unit (AGU), which is highly configurable, is added to the
embedded block RAM (see Figure 1 (b)). This would inevitably
increase the size of the block memory. However, provided that the
AGU is properly designed, it would eliminate the need for external
address generation circuits for most DSP applications.

Once configured, the AMB would operate autonomously with-
out further supply of addresses. In order for such autonomous
memory to be effective, the AGU must be designed to handle the
most common data access models found in DSP algorithms. The
current version of the AMB is designed to provide the following
modes of operation:

1) first-in-first-out (FIFO) circular buffer mode - the first data
stored is the first data that is retrieved. This mode is particularly
useful when data read and write rates are different. Flow control
is implemented to detect and handle overflow and underflow con-
ditions to avoid loss of data. Figure 2 shows a simplified block
diagram of the AGU implementing the FIFO buffer mode. The
read and write counters keep track of the memory addresses for
retrieving and storing data respectively. The datacount counter
stores the number of data items currently in the FIFO. The FSM
provides the necessary control functions to the counters and causes

Block
RAM

Address
Generation

Unit
(AGU)

data_1

read
address

data_2

addr_1

addr_2

AMB in bypass mode

control

addr_2

addr_1

write
address

Fig. 4. AMB with bypass mode

the ”wrap-around” behaviour in the address counters necessary to
implement a circular buffer.

2) first-in-multiple-out (FIMO) circular buffer mode - this is
an extension to the FIFO buffer where for each data written, a
number of previously stored data are supplied in sequence. The
earliest data stored in the buffer is then overwritten. This mode
is particularly useful for implementing 1-D convolution, match-
ing and filtering. The circuit of the AGU to implement the FIMO
mode is almost the same as that of the FIFO except that the FSM
is slightly modified. An additional output-count counter is also
required.

3) last-in-first-out (LIFO) mode - this is an implementation
of a stack-based store. The AGU for the LIFO implementation is
almost the same as that of the FIFO except that the read and write
counters can move in both directions.

4) swinging buffer mode - in this mode, the AGU maintains
two identically sized buffers. While one is being filled (i.e. stor-
ing data), the other is being processed (i.e. retrieving data). When
the write buffer is full and the read buffer is exhausted, the two
buffers are automatically swapped over. This mode of data ac-



A1 A2

n

A1

A2

n

(b)(a)

Fig. 3. (a) 1-D ”Striped” access mode; (b) 2-D ”Striped” access mode

AGU as dedicated 
logic

141626 1 333 1

FIFO design on 
Virtex II

284340 2 161 0.5

Striped access 
design on Virtex II

451236 3 110 0.33

AGU on Virtex II 12918926 91 72 0.21

Area
(10E-18 m²)

Area
Factor

Speed
(MHz)

Speed
Factor

Fig. 5. Area and speed comparison between AMB and conven-
tional block memory

cess is particularly useful for block data processing (such as FFT)
where the DSP algorithm is applied to a block of data while new
data is continuously being acquired. The AGU circuit to imple-
ment this mode is again very similar to that for the FIFO. Two
counters are used to reference the two buffers. The FSM is slightly
modified to implement the ”swinging” action.

5) ”striped” access mode - in this mode the writing and read-
ing of the data can be ”striped” in any manner as shown in Figure 3.
In Figure 3 (a) n data items are accessed in sequence starting from
address A1 (forming the first stripe). The address is then adjusted
to A2 which has a fixed offset from A1 and the second stripe be-
gins. Figure 3 (b) presents a similar idea but applied to 2-D data
stored as raster scan image. This access mode is particularly useful
in processing data in overlapping windows or in image/video data,
such as 2-D convolution, block matching and 2-D filtering.

In addition to the above 5 different access modes, the AMB
can also be configured in the random access mode as shown in
Figure 4, bypassing the AGU altogether. This mode is necessary
to handle data access models not currently provided by the AGU
design.

4. RESULTS

In order to evaluate the advantages of the AMB over conventional
FPGA architectures, the address generation unit (AGU) was im-
plemented using dedicated logic and using Virtex-II CLBs. The
AGU design including all five modes of data access described in

XC2V40 XC2V1500 XC2V8000
as FIFOs 25% 10% 6%
for Striped 

Access
75% 30% 17%

Xilinx Virtex II DeviceUsing all 
memory blocks 

Fig. 6. Percentage of CLBs saved depending on memory access
mode and size of Virtex II device

Area estimate for memory and AGU as a function of address bit-width

0.0E+00

2.5E+05

5.0E+05

7.5E+05

1.0E+06

8 10 12 14 16

Address Bit-width

N
u

m
b

e
r

o
f

g
a
te

s

AGU only

mem: 4-bit data

mem: 8-bit data

mem: 16-bit data

Fig. 7. Gate count for memory and AGU as a function of address
widths

M512 9 6306 1024
M4k 12 15533 8192

MRAM 16 26943 1048576

Number of 
address bits 

for AGU

AGU size 
(gates)

Memory size 
(gates)

Type

Fig. 8. Size of AGU for the different memory types in Stratix



the last section were synthesised (from a VHDL description) to a
custom circuit using Synopsys’s Design Compiler targetting a typ-
ical 0.13 micron process. The area and speed figures for the AGU
design was taken from Synopsys’s report.

Two reduced AGU designs, one implementing the FIFO-only
mode, and another implementing the ”striped” access mode, were
synthesised for Xilinx’s Virtex-II XC2V8000 FPGA with Synplic-
ity’s Synplify synthesis software. The optimized design was then
placed and routed using Xilinx backend tools, which provided both
the logic cell usage and the estimated speed of operation. The ac-
tual area used was estimated by assuming that the XC2V8000 die
area is almost 2.5cm X 2.5cm. Such an estimate should provide
area usage for both logic cells and routing resources.

Figure 5 compares the area and speed of the AGU design as-
suming an 8-bit address width implemented in dedicated logic,
against two address generator circuits implementing the FIFO and
the ”striped” access modes on Virtex-II CLBs. It can be seen that
adding the AGU to the block RAM in an AMB provides 2 to 3
times reduction in area while improving the operating speed by a
similar factor. The speed of the AGU was deliberately designed
to match the speed of the block memory in a 0.13 micron pro-
cess [1, 2]. Both area and speed improvements should even be
higher if the AGU were designed as a handcrafted full-custom cir-
cuit instead of synthesised with Design Compiler.

For the sake of completeness, the full AGU design was also
implemented on the Virtex-II. This is of course normally not nec-
essary since the FPGA would only need to implement one specific
mode of operation instead of the full AGU. However, it is still in-
teresting to see that the CLB based implementation is almost two
orders of magnitude larger than a dedicated logic implementation.

By using AMB compared to the conventional memory blocks
a certain percentage of CLBs would therefore be saved. This per-
centage is shown in Figure 6 and is based on an 8-bit address
for each memory block of the device operating in either FIFO or
Striped Access mode. The percentages are obviously larger when
the number of CLBs is small, but even for the largest devices there
is a significant saving.

Figure 7 shows an estimate of the area of the AMB, in terms
of gate count, as a function of address width. The gate count
of the AGU is derived directly from the Design Compiler report.
The gate count for memory is estimated by assuming that each
dual-port memory bit has 8 transistors (or 2 gates). The address
decoder circuit is ignored in this estimation. Since the size of
AGU increases approximately linearly with address width, while
the memory area increases exponentially with address width, it is
not surprising that beyond 8 or 10 bit of address, the area of mem-
ory dominates. The situation is however not as straight forward as
Figure 7 suggests. Consider the case of the three different types
of block RAM in the Stratix FPGA [1]. The table shown in Fig-
ure 8 illustrates that if the AGU were designed to cope with all the
possible memory organizations down to 1-bit wide data path, the
AGU could use more gates than the memory array itself. For ex-
ample, the M4K block RAM in Stratix has 4K bit of static RAM
which can be configured with any data width from 1-bit to 36-bits,
the address width can therefore vary from 12 bits to 7 bits. The
12-bit AGU would be almost twice the size of the memory array.
However, for the larger 512K block RAM in Stratix, the AGU size
becomes relatively insignificant.

Due to the AMB architecture, a small delay to the signal paths
is added in the bypass mode. This is equivalent to 2 NAND gates
followed by a tristate buffer.

5. CONCLUSION

The various modes of data access commonly found in DSP algo-
rithms can be implemented using nearly identical address gener-
ation circuits. This leads to an efficient design of a configurable
AGU which can easily be integrated into the block memory of
FPGA devices.

It has been shown that combining an AGU with memory into
an AMB has several benefits for reconfigurable devices. Firstly,
the amount of routing resources required are reduced. Secondly,
the area consumed by the AGU is considerably smaller and the
speed of operation is faster than the implementation using Config-
urable Logic Blocks.

The AGU design reported in this paper is by no means opti-
mal. However it illustrates that it could be worthwhile to invest
time and effort in designing a handcrafted full-custom AGU that is
tightly integrated with the block memory. This should give better
improvement in both area and speed.

The design of AMB is another attempt to raise the granular-
ity of FPGA functional blocks. This should lead to a higher level
of abstraction in the hardware implementation of DSP algorithms.
However, how to map a high level description of an algorithm to
these AMBs remains an unsolved problem which will be investi-
gated in the future.

6. REFERENCES

[1] Altera, “Stratix device handbook,” 2003,
http://www.altera.com/literature/hb/stx/stratix

[2] Xilinx, “Virtex II platform FPGA user guide,” 2003,
http://direct.xilinx.com/bvdocs/publications/ds031.pdf.

[3] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and
B. Hutchings, “A reconfigurable arithmetic array for multime-
dia applications,” in Proceedings of FPGA ’99. ACM/SIGDA
Seventh International Symposium on Field Programmable
Gate Arrays., Monterey, CA, USA, 1999, pp. 135–143.

[4] P. M. Heysters, J. Smit, G. J. M. Smit, and P. J. M. Havinga,
“Mapping of DSP algorithms on field programmable function
arrays,” in Field-Programmable Logic and Applications. 10th
International Conference FPL 2000, R. W. Hartenstein and
H. Grunbacher, Eds., 2000, pp. 400–411.

[5] Motorola Inc., “DSP 56000 24-bit digital sig-
nal processor family manual,” 1995, http://e-
www.motorola.com/files/dsp/doc/inactive/DSP56000UM.pdf.

[6] Jr. V.M. Bove and J.A. Watlington, “Cheops: a reconfigurable
data-flow system for video processing,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 5, no. 2, pp.
140–149, 1995.

[7] E. Caspi, A. DeHon, and J. Wawrzynek, “A streaming multi-
threaded model,” in Workshop on Media and Stream Proces-
sors, Austin, Texas, 2001, p. 8.


	footer1: 


