
A Structured Methodology for
System-on-an-FPGA Design

P. Sedcole, P.Y.K. Cheung, G.A. Constantinides, and W. Luk

Imperial College, London SW7 2BT, UK

Abstract. Increasing logic resources coupled with a proliferation of in-
tegrated performance enhancing primitives in high-end FPGAs results
in an increased design complexity which requires new methodologies to
overcome. This paper presents a structured system based design method-
ology, centred around the concept of architecture reuse, which aims to
increase productivity and exploit the reconfigurability of high-end FP-
GAs. The methodology is exemplified by the Sonic-on-a-Chip architec-
ture. Preliminary experimental investigations reveal that while the pro-
posed methodology is able to achieve the desired aims, its success would
be enhanced if changes were made to existing FPGA fabrics in order to
make them better suited to modular design.

1 Introduction

Field Programmable Gate Arrays are an increasingly attractive choice for highly
integrated digital systems due to their significantly lower design costs when com-
pared to semi-custom integrated circuit design. The trade-off in FPGA-based
systems is an increase in unit cost and a degradation of performance (power,
speed, size), which vendors mitigate by embedding into the FPGA silicon per-
formance enhancing primitives such as memories and multipliers. Inevitably, the
increasing transistor density and heterogeneity of FPGAs leads to a complexity
challenge necessitating new design methodologies to increase productivity.

This paper presents a structured system design methodology for FPGA based
system-on-a-chip development, based on a paradigm of architecture reuse; in-
stead of designing a monolithic FPGA configuration by connecting together
blocks of predesigned intellectual property (IP) the system is constructed by
defining the its logical and physical structure first. Increased productivity is
achieved through (a) modularity, (b) abstraction, and (c) orthogonalisation of
concerns, such as the separation of communication and computation. Signifi-
cantly, system-level timing is pre-determined avoiding iterative design and veri-
fication cycles normally necessary to achieve timing closure.

Since the methodology is based on architectural reuse, the choice of archi-
tecture is critical; the architecture must be suited to the applications which will
be implemented on it as well as being well matched to the FPGA structure at
which it is targeted. In this paper the methodology is exemplified with a single
architectural instance described in [1] called Sonic-on-a-Chip.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1047–1051, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



1048 P. Sedcole et al.

2 Related Work

A popular area of research for improving designer productivity is the investiga-
tion of direct synthesis from existing software languages, e.g. [2], in an attempt
to increase the level of abstraction. While this approach has had some measure
of success, it is limited by the mismatch between logic and languages designed
to abstract the execution of code for a sequential processor. An alternative is to
use novel algorithm description formats, in which the algorithm designer explic-
itly identifies task-level parallelism [3,4]. Often the representation uses a dataflow
graph format; invariably some form of modularity is used. These techniques suffer
from a lack of a clear macro-architecture within the target FPGAs to which the
modules may be mapped. This problem can be circumvented by using a custom
modular or coarse-grained reconfigurable fabric instead of a traditional FPGA;
the SCORE system [5] is one such example. The work in this paper focuses
on an alternative, platform based approach, in which a hardware infrastructure
is designed within an FPGA to be reused by many application instances. An
FPGA based platform that employs an AMBA bus has been reported by Kalte
et al. [6]. Rather than use a general purpose bus, our work assumes an infras-
tructure optimised for a specific domain. Moreover, the architecture is part of a
larger methodology which includes precepts for hardware, software and operating
system interactions.

3 Structured System Design

In a structured system design, a complex system is built by defining an architec-
ture and then filling it with IP. The architecture can be envisaged as an interface
between the form of the application algorithm and the unstructured resources of
the FPGA. The architecture includes a modular logical layer which can be cus-
tomised to the application, and a physical infrastructure layer, which describes
how the logical modules are implemented and connected in the FPGA fabric.

The architecture design is exemplified by Sonic-on-a-Chip [1], an embed-
ded video processing platform targeted at the Virtex II Pro family of FPGAs
from Xilinx. The logical architecture is shown in Figure 1. In terms of the design
methodology, the salient and necessary features of the logical model are that it is
highly modular, extensible, and application implementation is achieved through
customisation of modules. Moreover, the computation and communication are
separated (via routers in this case) such that the topology of the application is
independent of the intermodular communication infrastructure. This is impor-
tant, since the infrastructure must remain fixed between applications.

The physical layer of the architecture must define how the logical system
structure is implemented on the FPGA, including the location of inter-modular
interconnect and the positioning of the modules. Existing design flows (includ-
ing the Modular Design flow from Xilinx) integrate the modules and infras-
tructure together at design time, which we term early integration. In our design
methodology the integration point is at run-time. This late integration affords the



A Structured Methodology for System-on-an-FPGA Design 1049

buffer

stream
buffer

stream
buffer

stream
buffer

E
ng

in
e

R
ou

te
r Chain BusChain Bus

to external RAM

to Global Bus

Global routing

FPGA

Controller
Subsystem

SDRAM

I/O
PE

PE 1 PE n
Bus

Chain

SRAM x 2SRAM x 2

stream

Fig. 1. General logical structure and processing element internals of Sonic-on-a-Chip.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
��� �������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

T
o 

SD
R

A
M

macro

PE module design

Global Bus connection

T
o 

SD
R

A
M

Inactive
I/O module

PowerPC
based

module

connection

Active
connection

RAM signals

To SRAMI/O

To SRAMI/O

Global Bus routes

RAM routing module

Processing element System

Controller

Fig. 2. Physical implementation of Sonic-on-a-Chip on a XC2VP100. Note that pro-
cessing element designs must incorporate the Global Bus wiring.

maximum design productivity advantage from modularity by separating mod-
ule development down to the bitstream level, since design, implementation and
verification of different modules can be executed independently. In addition, dif-
ferent functionality can be obtained at run-time by combining fully developed
modules in different permutations and combinations, allowing applications to be
customised from instance to instance without re-synthesis, re-implementation
and re-verification each time.

The example Sonic-on-a-Chip physical infrastructure for a Xilinx Virtex II
Pro target is illustrated in Figure 2. Note that the modularity of the logical design
is preserved at the physical level. In late integration the position of each module
is not fixed until run-time, implying modules must be bitstream-relocatable and
that both the FPGA and the infrastructure exhibit translational symmetry.

Importantly, the location of the Global Bus interconnect is fully pre-
determined. This is necessary for module relocatability; moreover, the overall
bus timing is constant and can be characterised, enabling modules to be physi-
cally implemented independently. The interconnect and relocatability is inspired
by the DISC system [7].



1050 P. Sedcole et al.

Application development for Sonic-on-a-Chip begins by specifying the pro-
cessing algorithm to be implemented as a number of parallel tasks, connected
in a dataflow graph format. Each task-node of the dataflow graph needs to be
implemented in a processing element. Overall system control is handled in ap-
plication software, which loads processing element module bitstreams into the
configuration memory of the FPGA fabric and programs the routers within each
processing element to direct dataflow appropriately.

In a stand-alone software environment, it is left to the application developer
to manage the allocation of space and the positioning of modules within the
fabric. In systems where two or more applications execute concurrently an op-
erating system is usually employed to manage shared resources. In the case of
Sonic-on-a-Chip, physically adjacent modules can communicate directly, so the
relative positioning of modules must be considered by the operating system.

In order to represent the parallel processing and the topology of the hardware
modules, in our methodology the application spawns a new software process
for each hardware module. These processes are termed ghost processes, since
they do not perform any processing but are a representation of the hardware.
The communication between hardware modules is represented by redirecting the
inputs and outputs of the ghost processes to named pipes (FIFOs). This provides
a means to encode the logical topology of the algorithm dataflow as well as a
mechanism for software to interact seamlessly with hardware entities.

4 Design Evaluation

A functional simulation model has been constructed and a prototype is under
development based on the Xilinx ML300 evaluation board. The characteristics
of two computational element designs is given in Table 1. The approximately 8x
difference in resource usage is a simple but clear justification for the necessity of
variable-sized PEs.

Table 1. Processing element characteristics (designs run at 50MHz).

Type Slices Block MOPS Throughput Estimated no. per device
RAMs Msamples/s XC2VP30 XC2VP100

Image difference 345 3 50 50 peak 39 127
3x3 convolution 2450 32 528 59.3 peak 5 18

The physical implementation of processing element modules and RAM rout-
ing modules has been investigated using the partial reconfigurable design flow [8],
which uses hard macros to ensure signals entering and exiting a reconfigurable
module are always routed on the same wires. The standard bus macro in this
flow is unsuitable for our implementation since it is only designed to pass signals
across vertical module boundaries. New hard macro objects have been developed,
including one to constrain Global Bus routing to specific tristate lines.



A Structured Methodology for System-on-an-FPGA Design 1051

These investigations exposed routing issues with both the FPGA fabric and
the routing tool (Xilinx PAR F.31). The FPGA interconnect is optimised for
use as a global resource and therefore includes features such as global clock trees
and longlines, which are not well suited to partial modular reconfiguration. In
particular, horizontal longlines are not used when implementing a reconfigurable
module. In addition, the place and route tool currently recognises vertical module
boundaries only, and routing violations were observed for horizontal boundaries.

5 Conclusion

This paper introduced an architecture reuse based methodology for FPGA SoC
design, which uses modularity and abstractions to enhance productivity. The
architecture, which includes physical and logical constructs, is exemplified by
the Sonic-on-a-Chip instance. Applications comprise hardware IP modules and
control-level software; in an OS-based software environment the hardware pro-
cessing is represented by spawned software processes connected via IPC FIFOs.

Investigations into the implementation of the methodology have exposed a
dissonance between the globally optimised FPGA interconnect design and the
requirements for modular reconfigurable routing; this is an area we plan to ad-
dress in future work.

Acknowledgements. The authors thank the Commonwealth Scholarship Com-
mission in the UK, the New Zealand Vice Chancellors’ Committee and Xilinx
Inc. for financial support.

References

1. Sedcole, N.P., Cheung, P.Y.K., Constantinides, G.A., Luk, W.: A reconfig-
urable platform for real-time embedded video image processing. In: Proc. Field–
Programmable Logic and Applications. (2003)

2. Babb, J., Rinard, M., Moritz, C.A., Lee, W., Frank, M., Barua, R., Amarasinghe,
S.: Parallelizing applications into silicon. In: Proc. IEEE Symposium on Field–
Programmable Custom Computing Machines. (1999)

3. Diessel, O., Milne, G.: Hardware compiler realising concurrent processes in recon-
figurable logic. IEE Proc. Computers and Digital Techniques 148 (2001) 152–162

4. Weinhardt, M., Luk, W.: Task parallel programming of reconfigurable systems. In:
Proc. Field–Programmable Logic and Applications. (2001)

5. Caspi, E., Chu, M., Huang, R., Yeh, J., Wawrzynek, J., DeHon, A.: Stream
computations organized for reconfigurable execution (SCORE). In: Proc. Field–
Programmable Logic and Applications. (2000)

6. Kalte, H., Langen, D., Vonnahme, E., Brinkmann, A., Rückert, U.: Dynamically
reconfigurable system-on-programmable-chip. In: Proc. Euromicro Workshop on
Parallel, Distributed and Network-based Processing. (2002)

7. Wirthlin, M.J., Hutchings, B.L.: A dynamic instruction set computer. In: Proc.
IEEE Symposium on FPGAs for Custom Computing Machines. (1995)

8. Lim, D., Peattie, M.: Two flows for partial reconfiguration: module based or small
bit manipulation. Application Note 290, Xilinx (2002)


	Introduction
	Related Work
	Structured System Design
	Design Evaluation
	Conclusion

